Определение температуры воздуха. Определение температуры воды

Определение температуры воздуха

Во время измерения температуры воздуха в помещении термометры подвешивают на специальном штативе. Отсчет показаний термометров производится через 10 минут после того, как их установили на штативе, чтобы жидкость в резервуаре приняла температуру окружающего воздуха.

Среднюютемпературу воздуха в помещении измеряют в следующих точках: по вертикали на уровне 0,2; 1,0; 1,5 м от пола; по горизонтали - в центре помещения и на расстоянии 0,2 м от наружной и внутренней стены, в трех точках по диагонали. После вычисления средней температуры воздуха, разности температур по вертикали и горизонтали помещения дается соответствующая оценка. Среднесуточная температуравоздуха определяется из ряда наблюдений (через равные промежутки времени 3-4 раза в сутки).

Температуру воздуха в помещении измеряют ртутными и спиртовыми термометрами. Наиболее распространены ртутные, т.к. обладают большей точностью и широтой диапазона: от-35° до+370°С. Спирт имеет низкую точку кипения (78,3°). С помощью Спиртовых термометров можно измерять очень низкие температуры (до -130°). Термометры градуируются в градусах Цельсия, Фаренгейта.

Аспирационный термометр- сухой термометр аспирационных психрометров. Аспирационные термометры измеряют температуру в какой-либо момент наблюдения. Сухой термометр психрометра точно регистрирует температуру воздуха, т.к. его резервуар защищен от воздействия лучистого тепла.

Максимальный термометр - ртутный. Сохраняет показание самой высокой температуры, имевшей место за определенный период наблюдения. Показания термометра не меняются, несмотря на последующее понижение температуры. В дно резервуара термометра впаян стеклянный стержень, который входит в капиллярную трубку и суживает ее просвет. Ртуть проходит через сужение только при повышении температуры, при понижении температуры она не может обратно войти в резервуар и
показывает бывший максимум температуры. Чтобы ртуть опустилась в резервуар, термометр необходимо встряхнуть. При наблюдении максимальные термометры устанавливают горизонтально. Отсчет температуры производят в наклонном положении.

Минимальный термометр - спиртовой. Внутри капиллярной трубки, в спирту, находится небольшой подвижный штифт. Перед наблюдением поднимают нижний конец термометра, штифт касается поверхностиспирта, затем устанавливают термометр горизонтально. При повышении температуры спирт расширяется, свободно проходит мимо штифта, не сдвигая его с места. При понижении - столбик спирта укорачивается, поверхностная пленка увлекает за собой штифт вниз и устанавливает его в положении, соответствующем минимуму наблюдавшейся температуры. Отсчет температуры производят по концу штифта, наиболее удаленному от резервуара термометра.

Электротермометры применяют для измерения температуры стен.

Термограф - самопишущий прибор для установления пределов колебаний, температуры в течение рабочего дня, суток, недели, месяцев. Воспринимающим элементом прибора является изогнутая полая металлическая пластинка, наполненная толуолом, или биметаллическая пластинка. Воспринимающий элемент связан с записывающим устройством и лентопротяжным механизмом. На ленте получается запись температуры в виде кривой. Лента разграфлена по дням, часам и градусам.

Одной из основных характеристик климата и погоды принято считать температуру воздуха. Но что же представляет собой это понятие?

Температура воздуха: определение и особенности

Степенью нагретости воздуха называют температуру воздуха. Этот показатель определяется при помощи термографов и термометров.

Температура крайне важный показатель, ведь она оказывает значительное воздействие на жизнедеятельность и здоровье человека, на растений и животных.

Во многом от температуры зависят природные условия, а также работа многих механизмом и устройств.

Необходимо знать и о таком понятии, как амплитуда температуры воздуха. Ею принято называть разность между максимальными и минимальными значениями температуры за конкретный период. Период может составлять сутки, неделю, месяц или год.

Средней температурой называют среднее арифметическое значение всех показателей температуры в течении конкретного времени. Можно выделить такие виды вычисления средней температуры – среднее суточное, среднее месячное или среднее годовое.

Максимумом температуры называют наибольшее значение температура за определенный период времени, а минимумом – наименьшее значение. Максимальная и минимальная температура тоже измеряется за сутки, месяц, год или даже столетие.

При изучении температуры воздуха применяют еще такое понятие, как изотермы . Это линии, которые соединяют точки с одинаковыми температурами воздуха, воды или почвы на географических картах.

Также их выделяют на гидрологических и почвенных разрезах, на вертикальных разрезах атмосферы. Существуют специальные карты, где указываются изотермы месячной или многолетней температуры.

Исследования показателей температуры

В 1714 году Даниэль Фаренгейт, немецкий физик, изготовил ртутный термометр, для которого он использовал иной способ очистки ртути. Для этого ученый построил шкалу, на которой есть три реперные точки.

Это 0° - температура льда, воды и нашатырного спирта, 96°, которые соответствуют температуре человеческого тела, и 32° - точка таяния льда. Эту шкалу используют в англоязычных странах, но использование шкалы Цельсия становится все более популярным.

Создателем шкалы Цельсия считается шведский физик Андерс Цельсий. Изобретенная им шкала имеет 100 равных частей, таяние льда соответствует 0 °С, а температура кипящей воды 100 °С.

Годовой ход температуры

Годовой ход температуры можно охарактеризовать многолетними средними месячными величинами, с помощью которых определяют величину среднегодовой температуры.

Вычисляют и амплитуда годового хода температуры, она закономерно увеличивается с увеличением географической широты местности. Для континентальной местности характерна большая амплитуда годового хода температуры.

Наиболее оптимальные величины параметров микроклимата для жилых помещений: температура 18-20 °С, относительная влажность 40-60%, скорость движения воздуха 0,1-0,2 м/с.

Гигиенические параметры микроклимата в помещениях нормируются в зависимости от климата для теплого и холодного периода года. Оптимальной температурой для холодного климатического района считается 21-22 °С, умеренной - 18-20 °С, теплой - 18-19 °С, жаркой - 17-18 °С.

Расчетные нормы температуры в помещениях дифференцируются в зависимости от их функционального назначения. Так, в большинстве аптечных помещений (ассистентская, асептическая, дефектарская, заготовочная, фасовочная, помещения для хранения лекарственного сырья и лекарственных средств) наиболее благоприятная температура воздуха - 18 °С;

В помещениях лечебно-профилактических учреждений:

В операционной, предоперационной, реанимационном зале, палатах для детей, ожоговых больных, послеоперационных палатах, палатах интенсивной терапии, процедурной - 22 °С,

В палатах для взрослых, кабинетах врачей и других лечебно-вспомогательных помещениях - 20 °С,

В палатах для недоношенных и новорожденных - 25 °С,

При относительной влажности - 30-60% и скорости движения воздуха - не более 0,15-0,25 м/с;

В учебных помещениях: классах, аудиториях, кабинетах, лабораториях - 18 °С,

В спортивных залах, учебных мастерских - 15-17 С

при относительной влажности в пределах 40-60% и скорости движения воздуха 0,1-0,2 м/с.

Микроклимат помещений оценивается по температурному режиму, т.е. перепадам температуры воздуха по горизонтали и вертикали в различных местах помещения. Для обеспечения теплового комфорта температура воздуха в помещениях должна быть относительно равномерной. Изменение температуры по горизонтали от наружной стены к внутренней не должно превышать 2 С, а по вертикали - 2,5 С на каждый метр высоты. Колебание температуры в помещении в течение суток не должно превышать 3 С.

Для интегральной оценке микроклимата используется индекс тепловой нагрузки среды (ТНС-индекс), характеризующий сочетанное действие на организм человека температуры, влажности, скорости движения воздуха и теплового излучения от окружающих поверхностей. Этот показатель рекомендуется использовать при скорости движения воздуха менее 0,6 м/с и интенсивности теплового облучения менее 1000 Вт/м 2 .

Нормирование микроклиматических условий в производственных помещениях осуществляется применительно к теплому и холод- ному периодам года с учетом категории работ и соответствующих энерготрат организма (табл. 1).


Для работников аптечных учреждений, относящихся по уровню энерготрат (до 139 Вт) к категории 1а, оптимальные величины показателей микроклимата регламентированы: в холодный период года температура на уровне 22-24 °С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с; в теплый период года температура составляет 23-25 °С, относительная влажность 40-60%, скорость движения воздуха 0,1 м/с.

1. Определение атмосферного давления производится с помощью барометра-анероида. Атмосферное давление измеряется в гектопаскалях (гПа) или мм рт.ст. 1 гПа = 1 г/см 2 = 0,75 мм рт.ст. Нормальное атмосферное давление в среднем колеблется в пределах 1013 + 26,5 гПа (760 + 20 мм рт.ст.).

Для непрерывной регистрации колебаний атмосферного давления используется самопишущий прибор - барограф (рис. 1). Он состоит из комплекта анероидных коробок, реагирующих на изменение давления воздуха, передающего механизма, стрелки с пером и барабана с часовым механизмом. Колебания стенок коробки передаются с помощью системы рычагов на перо самописца. Запись колебаний давления ведется на бумажной ленте, укрепленной на вращающемся барабане.

2. Определение температуры воздуха

Изолированное определение температуры воздуха может проводиться ртутными термометрами типа ТМ-6 (диапазон измерения от -30 до + 50 °С) или лабораторными спиртовыми термометрами со шкалой от 0 до + 100 °С. Для фиксации максимальной или минимальной температур применяются максимальный и минимальный термометры. Измерение температуры воздуха в производственных помещениях обычно сочетают с определением его влажности и производят с помощью психрометра. При наличии источников инфракрасного излучения измерение температуры проводят по сухому термометру аспирационного психрометра, так как резервуары термометров надежно защищены от влияния теплового облучения двойными полированными и никелированными экранами.

С помощью спиртовых термометров, укрепленных на переносном штативе на высоте 1,5 м и 0,5 м от пола, в течение 7-10 мин в каждой точке измерить температуру воздуха в следующих 4 точках:

В центре помещения на высоте 0,5 м (Т1) и 1,5 м от пола (Т2);

На высоте 1,5 м на расстоянии 5-10 см от наружной стены (оконного стекла в помещении) (Т3) и от противоположной внутренней стены (Т4);

Для изучения динамики температуры, когда возникает необходимость определения колебаний температуры в помещении, используются самопишущие приборы - термографы (суточные или недельные) типа М-16 (диапазон измерения от -20 до +50 °С). Датчиком термографа является биметаллическая изогнутая пластинка, внутренняя поверхность которой состоит из сплава инвар, практически не расширяющегося при нагревании, а наружная - из константана, имеющего относительно большой коэффициент теплового расширения. С повышением или понижением температуры кривизна биметаллической пластинки изменяется. Колебания пластинки через систему рычагов передаются на перо с чернилами, которое регистрирует температурную кривую на ленте, закрепленной на вращающемся с определенной скоростью барабане.

3. Определение тепловой радиации проводится, если в помещении есть нагревательные приборы или нагретое оборудование. Тепловая радиация - это инфракрасное излучение с длиной волны от 760 до 15000 нм. Для измерения тепловой радиации используется актинометр. Датчик актинометра (рис. 3) представляет собой термобатарею и состоит из чередующихся черных и серебристо-белых метал - лических пластин, присоединенных к разным концам электрической цепи. При разности температур на концах электрической цепи из-за нагревания черных пластин в результате поглощения инфракрасных лучей возникает термоэлектрический ток, который регистрируется гальванометром, отградуированным в единицах тепловой радиации, - кал/см 2. мин или Вт/м 2 . Предельно допустимый уровень тепловой радиации на рабочем месте = 20 кал/см 2. мин.

Перед началом измерения стрелку на шкале гальванометра необходимо поставить в нулевое положение, затем открыть крышку на задней поверхности актинометра. Показания гальванометра списываются через 3 сунды после установки термоприемника (датчика) актинометра в сторону источника теплового излучения.

4. Определение влажности воздуха.

Влажность воздуха зависит от содержания в нем водяных паров. Для характеристики влажности различают следующие понятия: абсолютная, максимальная, относительная влажность, дефицит насыщения, физиологический дефицит насыщения, точка росы.

Абсолютная влажность - упругость (парциальное давление) водяных паров в воздухе в момент измерения (в г/м 3 или мм рт.ст.). Максимальная влажность - упругость водяных паров при полном насыщении влагой воздуха определенной температуры (в г/м 3 или мм рт.ст.). Относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах. Дефицит насыщения - разность между максимальной и абсолютной влажностью (в мм рт.ст.). Точка росы - температура, при которой воздух максимально насыщен водяными парами. Нормируется только относительная влажность, которая считается нормальной в диапазоне 40-60%.

Измерение влажности воздуха может проводиться с помощью различных приборов. Абсолютная влажность может быть определена с помощью психрометров. Существует 2 его вида: аспирационный психрометр Ассмана и станционный психрометр Августа (рис. 4). Психрометр состоит из двух одинаковых термометров, резервуар одного из которых обернут легкой гигроскопичной тканью, увлажняемой дистиллированной водой перед измерением, а второй остается сухим.

Станционный психрометр Августа используется в стационарных условиях, исключающих воздействие на него ветра и лучистого тепла. Он состоит из двух спиртовых термометров. На основании их показаний абсолютная влажность определяется по таблицам или по формуле: K = f - а (tс--tв) B,

где: K - абсолютная влажность воздуха при данной температуре, мм рт.ст.;

f - максимальная влажность воздуха при температуре влажного термометра, мм рт.ст. (см. табл. 2);

а - психрометрический коэффициент, равный при несильном движении воздуха 0,001;

tc и tВ - температура сухого и влажного термометров, °С; В - атмосферное давление в момент измерения, мм рт.ст.

Наиболее широко в гигиенической практике для измерения абсолютной влажности как в помещении, так и вне его используются переносные аспирационные психрометры Ассмана, имеющие защиту от ветра и тепловой радиации. Психрометр состоит из двух ртутных термометров (имеющих шкалу от -30 до +50 °С), которые заключены в общую оправу, а их резервуары - в двойные никелированные металлические трубки защиты от лучистого тепла. Вмонтированный в головку прибора вентилятор с часовым механизмом просасывает воздух вдоль термометров с постоянной скоростью 2 м/с.

Перед началом измерений при помощи пипетки нужно увлажнить ткань на резервуаре влажного термометра, завести ключом меха- низм прибора до отказа и подвесить его вертикально на кронштейне в исследуемой точке, обычно в центре помещения, а затем через 3- 5 мин записать показания сухого и влажного термометров.

Абсолютная влажность воздуха в этом случае вычисляется по формуле: K = / 755.

Относительная влажность воздуха (в %) рассчитывается по формуле: P = K . 100 / F,

где: P - относительная влажность, %,

F - максимальная влажность воздуха при температуре сухого термометра, мм рт.ст. (см. табл. 2).

Таблица 2. Максимальная влажность воздуха при разных температурах

Температура воздуха, +°С Температура воздуха, +°С Максимальная влажность, мм рт.ст.
10,5 30,04
11,23 31,84
11,99 33,69
12,73 35,66
13,63 37,73
14,53 39,90
15,48 42,17
16,48 44,16
17,73 46,65
18,65 49,26
19,83 52,00
21,07 55,32
22,38 58,34
23,76 61,50
25,20 64,80
26,74 68,26
28,34 71,88

Непосредственно относительная влажность может быть измерена гигрометром (рис. 5). Обезжиренный человеческий волос в гигрометре натянут вдоль рамы прибора и прикреплен к стрелке. Используется свойство волоса изменять свою длину в зависимости от влажности. При изменении степени его натяжения стрелка перемещается по шкале, отградуированной в процентах. Относительная влажность измеряется обычно в центре помещения.

Для непрерывной графической регистрации относительной влажности воздуха за определенный период времени используются самопишущие приборы - гигрографы (суточный или недельный) типа М-21 (диапазон измерений от 30 до 100% при температурах от -30 до +45 °С), в которых датчиком служит натянутый в рамке пучок обезжиренных человеческих волос (рис. 6).

5. Определение скорости движения воздуха

Перемещение воздуха в атмосфере характеризуется направлением движения и скоростью. Направление определяется стороной света, откуда дует ветер, а скорость - расстоянием, проходимым массой воздуха в единицу времени (м/с). Преобладающее направление ветра в конкретной местности необходимо учитывать при планировке и строительстве населенных мест, размещении на их территории жилых зданий, аптечных организаций, детских садов, школ, больниц и других учреждений, которые должны располагаться с наветренной стороны по отношению к источникам загрязнения атмосферного воздуха и других объектов окружающей среды (промышленных предприятий, ТЭЦ и др.).

Господствующее для данного места направление ветра определяется по розе ветров. Роза ветров представляет собой графическое изображение частоты (повторяемости) ветров по румбам (направ- лениям), наблюдающихся в данной местности в течение года. Для обозначения румбов используются начальные буквы наименований сторон света. Для построения розы ветров от центра графика на основных (N, S, O, W) и промежуточных (N-O, N-W, S-O, S-W) румбах откладывают отрезки в определенном масштабе, соответствующие числу дней в году с данным направлением ветра. Затем концы отрезков по румбам соединяют прямыми линиями. Штиль (отсутствие ветра) обозначают окружностью из центра графика с радиусом, соответствующим числу дней штиля.

Роза ветров указывает на господствующее северо-восточное направление ветров в исследуемой местности в течение года, поэтому жилые дома, аптеки, больницы и детские учреждения сле- дует размещать с наветренной стороны (в северо-восточном направлении), а промышленные предприятия и другие источники загрязнения - с подветренной стороны (в юго-западном направлении). Промышленные предприятия и другие источники негативного влияния на среду обитания и здоровье человека необходимо отделять от жилой застройки санитарно-защитными зонами (СЗЗ).

Ширина санитарно-защитной зоны устанавливается в соответствии с санитарной классификацией промышленных предприятий, сооружений и иных объектов в зависимости от степени вредности производства, его мощности, характера и количества выделяемых в окружающую среду загрязняющих веществ, создаваемого шума, вибрации и других вредных физических факторов (Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН2.2.1/2.1.1.1200-03). По этим признакам промышленные предприятия разделены на 5 классов, для каждого установлен размер СЗЗ: для предприятий 1-го класса - 1000 м с не менее 40% озеленения, для 2-го - 500 м, 3-го - 300 м с не менее 50% озеленения, для 4-го - 100 м и 5-го - 50 м с не менее 60% озеленения.

Измерение сравнительно больших скоростей движения воздуха производится анемометрами различных конструкций. Выбор типа анемометра определяется величиной измеряемой скорости движения воздуха. Чашечный анемометр МС-13 измеряет скорости от 1 до 30 м/с. Его чаще всего используют в метеорологической практике. Крыльчатый анемометр АСО-3 используется в производственных помещениях для измерения скоростей движения воздуха в диапазоне 0,3-5,0 м/с.

Принцип работы приборов основан на передаче вращения лопастей, укрепленных на оси, счетному механизму, фиксирующему число оборотов. Для определения скорости воздушной среды разность между показаниями анемометра после его нахождения в струе воздуха в течение 3 мин и первоначальными показаниями прибора делят на число сунд измерения. Число оборотов в сунду соответствует скорости движения воздуха в м/с.

Для измерения малых скоростей воздуха в помещении используются стеклянные шаровые или цилиндрические кататермометры, которые позволяют измерить скорость в диапазоне 0,05-2,0 м/с.

Шкала шарового кататермометра состоит из 7 (от 33 до 40), шкала цилиндрического - из 3 (от 35 до 38). Определение основано на оценке интенсивности охлаждения нагретого прибора за счет охлаждающей способности воздуха. Охлаждающую способность воздуха «Н» определяют по фактору кататермометра (F) и времени охлаждения его резервуара (t) в сундах с 38° до 35 С или с 40 до 33С шкалы прибора.

Величина F указана в верхней части кататермометра, она соответствует количеству тепла в милликалориях, теряемого с 1 см 2 поверхности прибора при его охлаждении с 40 до 33 С или от 38 до 35 С. Прибор нагревают в стакане с горячей водой с температурой 66-75 С для того, чтобы спирт поднялся немного выше верхней отметки шкалы прибора, вытирают прибор насухо и, подвесив его в центре помещения, отмечают время, требующееся для охлаждения спирта с 40 до 33 С или с 38 до 35 С. Охлаждающую способность воздуха «Н» находят по формуле: H = [(F/3) (40-33)] / t, мкал /см 2 .

Для учета охлаждающего действия окружающего воздуха необходимо вычислить фактор Q, равный разности между средней температурой кататермометра (36,5 С) и температурой воздуха в помещении. Рассчитав H/Q, скорость движения воздуха в точке измерения находят по табл.

3. Скорость движения воздуха может быть рассчитана и по эмпирической формуле: V = [(H/Q - 0,20)/0,40] 2 м/с. Летом благоприятны скорости движения атмосферного воздуха в пределах 1-4 м/с, а в помещении - 0,2-0,4 м/с.

Для измерения и контроля параметров воздушной среды в настоящее время используются специальные приборы метеометры типа МЭС-200, предназначенные для измерения атмосферного давления, относительной влажности воздуха, его температуры и скорости воздушного потока внутри помещения. В качестве датчиков для измерения параметров в приборе используются терморезисторы и сенсор влажности с блоком усилителя.

Температура воздуха зависит от времени года, климатического пояса, времени суток, интенсивности солнечного свечения и подстилающей поверхности земли. Солнечные лучи, проходя через атмосферу, не нагревают ее. Нагрев воздуха происходит от теплоотдачи почвы, поглощающей солнечные лучи. Нагретый воздух подымается вверх, уступая место холодному, - это перемещение называется конвекцией - она способствует перемещению воздушных масс и равномерному прогреву приземных слоев атмосферы. Гигиеническое значение температуры воздуха заключается в ее влиянии на теплообмен организма. Причем, гигиеническое значение имеют не только абсолютные величины температуры воздуха, но и амплитуды ее колебаний.

У человека тепло образуется в результате окислительных процессов в клетках и тканях и нормальное существование его возможно при постоянной температуре тела. Благодаря сложному механизму терморегуляции с окружающей средой (у детей до 7-8 лет он несовершенен), организм поддерживает тепловой баланс. Наиболее благоприятна для самочувствия человека Т - 18-22 о С (для мужчин - 20 о С, для женщин - 22 о С) и амплитуда ее колебаний - 2-4 о С в течение дня.

Влажность воздуха - это количество водяных паров в воздухе. Зависит от климатического пояса, сезона года и близости водных бассейнов: в морском климате влаги больше, чем в континентальном или пустынном. Степень влажности воздуха определяется тремя показателями: абсолютной, максимальной и относительной влажностью.

Абсолютная влажность - количество водяных паров в граммах в 1 м 3 воздуха при данной температуре.

Максимальная влажность - сколько максимально может содержаться в воздухе водяных паров при данной температуре, измеряется в г на м 3 .

Относительная влажность - это отношение абсолютной влажности к максимальной, измеряется в %. Оптимальные параметры для здоровья относительной влажности - 30-60%. Гигиеническое значение влажности - в ее влиянии на потоотделение человека, которое, воздействуя на температуру тела, сохраняет ее постоянство. С повышением влажности - в тепле человеку становится жарко, на холоде - холодно, зябко.

Атмосферное давление - это давление атмосферного столба воздуха в результате земного притяжения. На уровне моря давление постоянно: на 1 см 2 - 1,033 кг или 760 мм ртутного столба. Гигиеническое значение атмосферного давления - в поддержании артериального давления (АД). Повышение или понижение давления отражается на физиологию человека. Для здорового человека эти изменения незаметны, а для больного они чувствительны: об изменениях давления сигнализирует самочувствие.

При повышении давления увеличивается парциальное давление кислорода (% его остается тем же): урежается пульс и частота дыхания, уменьшается максимальное АД и повышается минимальное АД, возрастает жизненная емкость легких, понижается кожная чувствительность и слух, появляется ощущение сухости слизистых оболочек (во рту), усиливается перистальтика кишечника и выход газов; кровь и ткани лучше усваивают кислород, из-за чего улучшаются работоспособность и самочувствие.

При искусственном повышении давления (у водолазов) увеличивается растворение атмосферного азота, который хорошо растворяется в жирах, нервной ткани и подкожной клетчатке, откуда при декомпрессии медленно выходит. При быстром подъеме водолаза с глубины азот закипает и закупоривает мелкие сосуда мозга, от чего наступает смерть водолаза, что требует медленного извлечения его с глубин. Но даже при обычных режимах работы водолазам не удается избежать эмболии азотом сосудов - у них болят суставы и часты кровоизлияния.

Движение воздуха - определяется скоростью его движения и направлением ветра. Скорость ветра измеряется в м/сек. Хорошее самочувствие сохраняется при перемещении воздуха со скоростью 0,1-0,3 м/сек - это норма для жилых помещений. Нижняя граница движения воздуха с гигиенической стороны определяется необходимостью сдувать обволакивающий человека перегретый воздух и пар, регулируя температуру тела. При повышении скорости воздуха до 0,5 м/сек возникает дискомфорт: резь в глазах, слезотечение, сухость слизистых оболочек, затруднение носового дыхания. Гигиеническое значение движения воздуха - способствует вентиляции жилых кварталов и зданий, самоочищению атмосферы от загрязнения и терморегуляции организма.

Важное значение имеет направление ветра: дует он в жилой квартал с завода или наоборот. Это учитывается в проектировании населенных мест. Направление ветра определяется страной света, откуда он движется, и называется румбом. Графическое изображение повторяемости ветра в данной местности по направлению частей света называется розой ветров . Например, на рис. №1 изображена роза ветров с преобладающим СВ ветром. Розу ветров обязательно учитывают архитекторы при строительстве жилых кварталов и промышленных предприятий: жилые кварталы следует располагать с наветренной стороны по отношению к промышленным предприятиям.

Экологическое, физиологическое значение воды.

Физиологическое значение воды . Вода играет в организме человека важную роль. Без воды не происходит ни один биохимический, физиологический и физико-химический процесс обмена веществ и энергии, невозможны пищеварение, дыхание, анаболизм (ассимиляция) и катаболизм (диссимиляция), синтез белков, жиров, углеводов из чужеродных белков, жиров, углеводов пищевых продуктов.

Такая роль воды обусловлена тем, что она является универсальным растворителем, в котором газообразные, жидкие и твердые неорганические вещества создают молекулярные или ионные растворы, а органические вещества находятся преимущественно в молекулярном и коллоидном состоянии. Именно поэтому она принимает непосредственное или косвенное участие практически во всех жизненно важных процессах: всасывании, транспорте, расщеплении, окислении, гидролизе, синтезе, осмосе , диффузии, резорбции, фильтрации, выведении и др.

С помощью воды в клетки организма поступают пластические вещества, биологически активные соединения, энергетические материалы, выводятся продукты обмена. Вода способствует сохранению коллоидального состояния живой плазмы. Вода и растворенные в ней минеральные соли поддерживают важнейшую биологическую константу организма — осмотическое давление крови и тканей.

В водной среде создаются необходимые уровни щелочности, кислотности, гидро-ксильных и водородных ионов. Вода обеспечивает кислотно-основное состояние в организме, а это влияет на скорость и направление биохимических реакций. Принимает участие в процессах гидролиза жиров, углеводов, гидролитического и окислительного дезаминирования аминокислот и в других реакциях. Вода — основной аккумулятор тепла, которое образуется в организме в процессе экзотермических биохимических реакций обмена веществ.

Кроме того, испаряясь с поверхности кожи и слизистых оболочек органов дыхания, вода принимает участие в процессах теплоотдачи, т. е. в поддержании температурного гомеостаза. Во время испарения 1 г влаги организм теряет 2,43 кДж (0,6 ккал) тепла.

Потребность организма в воде удовлетворяется за счет питьевой воды, напитков и продуктов питания, особенно растительного происхождения. Физиологическая суточная потребность взрослого человека в воде (при отсутствии физических нагрузок) в регионах с умеренным климатом ориентировочно составляет 1,5-3 л, или 90 л/мес, почти 1000 л/год и 60 000-70 000 л за 60-70 лет жизни. Это так называемая экзогенная вода.

Определенное количество воды образуется в организме вследствие обмена веществ. Например, при полном окислении 100 г жиров, 100 г углеводов и 100 г белков вырабатывается соответственно 107, 55,5 и 41 г воды. Это так называемая эндогенная вода, ежедневно образующаяся в количестве 0,3 л.

Физиологическая норма потребления воды может колебаться в зависимости от интенсивности обмена веществ, характера пищи, содержания в ней солей, мышечной работы, метеорологических и других условий. Доказано, что на 1 ккал энергозатрат организму необходимо 1 мл воды. То есть для человека, суточные энергозатраты которого составляют 3000 ккал, физиологическая потребность в воде равна 3 л.

С увеличением энергозатрат во время физических нагрузок повышается и потребность человека в воде. Особенно если тяжелый физический труд выполняют в условиях повышенной температуры, например в мартеновских цехах, на доменном производстве, на поле в жару. Тогда потребность в питьевой воде может возрасти до 8-10 и даже 12 л/сут. Кроме того, потребность в воде изменяется при определенных патологических состояниях. Например, она возрастает при сахарном и несахарном диабете, гиперпа-ратиреозе и т. п. В таком случае количество воды, употребляемое человеком в течение месяца, составляет 30 л, в течение года — 3600 л, за 60-70 лет — 216 000 л.

Поддержание водного баланса в организме человека предусматривает не только поступление и распределение воды, но и ее выведение. В состоянии покоя вода выводится через почки — с мочой (почти 1,5 л/сут), легкие — в парообразном состоянии (приблизительно 0,4 л), кишечник — с фекалиями (до 0,2 л). Потери воды с поверхности кожи, которые в значительной мере связаны с терморегуляцией, изменяются, но в среднем составляют 0,6 л.

Таким образом, из организма человека в состояния покоя ежесуточно в среднем выводится 2,7 л воды (с колебаниями от 2,5 до 3,0 л). При некоторых патологических состояниях и физической нагрузке выделение воды усиливается и соотношение путей выведения, приведенное выше, изменяется. Например, при сахарном диабете усиливается выделение воды через почки — с мочой, при холере — через пищеварительный тракт, во время работы в горячих цехах — через кожу — с потом.

Человек остро реагирует на ограничение или полное прекращение поступления воды в организм. Обезвоживание — чрезвычайно опасное состояние, при котором нарушается большинство физиологических функций организма. Большие потери воды сопровождаются выделением значительного количества макро- и микроэлементов, водорастворимых витаминов, что усугубляет негативные последствия обезвоживания для здоровья и жизни человека.

В случае обезвоживания организма усиливаются процессы распада тканевых белков, жиров и углеводов, изменяются физико-химические константы крови и водно-электролитного обмена. В центральной нервной системе развиваются процессы торможения, нарушается деятельность эндокринной и сердечно-сосудистой систем, ухудшается самочувствие, снижается трудоспособность и т. п. Четкие клинические признаки обезвоживания появляются, если потери воды составляют 5-6% массы тела.

При этом учащается дыхание, наблюдаются покраснение кожи, сухость слизистых оболочек, снижение артериального давления, тахикардия , мышечная слабость, нарушение координации движения, парестезии, головная боль, головокружение. Потери воды, равные 10% массы тела, сопровождаются значительным нарушением функций организма: повышается температура тела, заостряются черты лица, ухудшаются зрение и слух, кровообращение, возможен тромбоз сосудов, развивается анурия, нарушается психическое состояние, возникает головокружение, коллапс.

Потеря воды на уровне 15-20% массы тела смертельна для человека при температуре воздуха 30 °С, на уровне 25% — при температуре 20-25 °С.

Экологическое значение воды обеспечивается тем, что вода является универсальным растворителем многих веществ; в водной среде протекают физико-химические реакции, связанные с обменом веществ у живых существ + происходит транспорт пластических и энергетических материалов + в нее выводятся из организма вредные и использованные продукты обмена + испаряясь с поверхности почвы, кожи, органов дыхания, она участвует в температурной регуляции. В воде легко растворяются атмосферные газы. В 1л воды при 20оС растворяется 665 мл углекислого газа, а при 0оС - в 3 раза больше. В дождевой воде его больше в 33 раза, чем в воздухе - вот почему эта вода не годится для аквариумов.

В данном уроке будет введено понятие абсолютной и относительной влажности воздуха, будут обсуждаться термины и величины, связанные с этими понятиями: насыщенный пар, точка росы, приборы для измерения влажности. В ходе урока мы познакомимся с таблицами плотности и давления насыщенного пара и психрометрической таблицей.

Для человека величина влажности является очень важным параметром окружающей среды, т. к. наш организм очень активно реагирует на ее изменения. Например, такой механизм регуляции функционирования организма, как потоотделение, напрямую связан с температурой и влажностью окружающей среды. При высокой влажности процессы испарения влаги с поверхности кожи практически компенсируются процессами ее конденсации и нарушается отвод тепла от организма, что приводит к нарушениям терморегуляции. При низкой влажности процессы испарения влаги превалируют над процессами конденсации и организм теряет слишком много жидкости, что может привести к обезвоживанию.

Величина влажности важна не только для человека и других живых организмов, но и для протекания технологических процессов. Например, из-за известного свойства воды проводить электрический ток ее содержание в воздухе может серьезно влиять на корректную работу большинства электроприборов.

Кроме того, понятие влажности является важнейшим критерием оценивания погодных условий, что всем известно из прогнозов погоды. Стоит отметить, что если сравнивать влажность в различные времена года в привычных для нас климатических условиях, то она выше летом и ниже зимой, что связано, в частности, с интенсивностью процессов испарения при различных температурах.

Основными характеристиками влажного воздуха являются:

  1. плотность водяного пара в воздухе;
  2. относительная влажность воздуха.

Воздух является составным газом, в нем содержится множество различных газов, в том числе водяной пар. Для оценивания его количества в воздухе необходимо определить, какую массу имеют водяные пары в определенном выделенном объеме - такую величину характеризует плотность. Плотность водяного пара в воздухе называют абсолютной влажностью .

Определение. Абсолютная влажность воздуха - количество влаги, содержащейся в одном кубическом метре воздуха.

Обозначение абсолютной влажности : (как и обыкновенное обозначение плотности).

Единицы измерения абсолютной влажности : (в СИ) или (для удобства измерения небольшого содержания паров воды в воздухе).

Формула вычисления абсолютной влажности :

Обозначения:

Масса пара (воды) в воздухе, кг (в СИ) или г;

Объем воздуха, в котором указанная масса пара содержится, .

С одной стороны, абсолютная влажность воздуха является понятной и удобной величиной, т. к. дает представление о конкретном содержании воды в воздухе по массе, с другой стороны, эта величина неудобна с точки зрения восприимчивости влажности живыми организмами. Оказывается, что, например, человек ощущает не массовое содержание воды в воздухе, а именно ее содержание относительно максимально возможного значения.

Для описания такого восприятия введена такая величина, как относительная влажность .

Определение. Относительная влажность воздуха – величина, показывающая насколько далек пар от насыщения.

Т. е. величина относительной влажности, простыми словами, показывает следующее: если пар далек от насыщения, то влажность низкая, если близок – высокая.

Обозначение относительной влажности : .

Единицы измерения относительной влажности : %.

Формула вычисления относительной влажности :

Обозначения :

Плотность водяного пара (абсолютная влажность), (в СИ) или ;

Плотность насыщенного водяного пара при данной температуре, (в СИ) или .

Как видно из формулы, в ней фигурируют абсолютная влажность, с которой мы уже знакомы, и плотность насыщенного пара при той же температуре. Возникает вопрос, каким образом определять последнюю величину? Для этого существуют специальные приборы. Мы рассмотрим конденсационный гигрометр (рис. 4) - прибор, который служит для определения точки росы.

Определение. Точка росы - температура, при которой пар становится насыщенным.

Рис. 4. Конденсационный гигрометр ()

Внутрь емкости прибора наливается легкоиспаряющаяся жидкость, например, эфир, вставляется термометр (6) и с помощью груши (5) через емкость прокачивается воздух. В результате усиленной циркуляции воздуха начинается интенсивное испарение эфира, температура емкости из-за этого понижается и на зеркале (4) выступает роса (капельки сконденсировавшегося пара). В момент появления на зеркале росы с помощью термометра замеряется температура, вот эта температура и является точкой росы.

Что же делать с полученным значением температуры (точки росы)? Существует специальная таблица, в которой занесены данные - какая плотность насыщенного водяного пара соответствует каждой конкретной точке росы. Следует отметить полезный факт, что при увеличении значения точки росы растет и значение соответствующей ей плотности насыщенного пара. Иными словами, чем теплее воздух, тем большее количество влаги он может содержать, и наоборот, чем воздух холоднее, тем максимальное содержание в нем пара меньше.

Рассмотрим теперь принцип действия других видов гигрометров, приборов для измерения характеристик влажности (от греч. hygros - «влажный» и metreo - «измеряю»).

Волосной гигрометр (рис. 5) - прибор для измерения относительной влажности, в котором в качестве активного элемента выступает волос, например человеческий.

Действие волосного гигрометра основано на свойстве обезжиренного волоса изменять свою длину при изменении влажности воздуха (при увеличении влажности длина волоса увеличивается, при уменьшении - уменьшается), что позволяет измерять относительную влажность. Волос натянут на металлическую рамку. Изменение длины волоса передается стрелке, перемещающейся вдоль шкалы. При этом следует помнить, что волосной гигрометр дает не точные значения относительной влажности, и используется преимущественно в бытовых целях.

Более удобен в использовании и точен такой прибор для измерения относительной влажности, как психрометр (от др.-греч. ψυχρός - «холодный») (рис. 6).

Психрометр состоит из двух термометров, которые закреплены на общей шкале. Один из термометров называется влажным, т. к. он обмотан батистовой тканью, которая погружена в резервуар с водой, расположенный на тыльной стороне прибора. С влажной ткани испаряется вода, что приводит к охлаждению термометра, процесс снижения его температуры длится до достижения этапа, пока пар вблизи влажной ткани не достигнет насыщения и термометр не начнет показывать температуру точки росы. Таким образом, влажный термометр показывает температуру меньше либо равную реальной температуре окружающей среды. Второй термометр называется сухим и показывает реальную температуру.

На корпусе прибора, как правило, изображена еще так называемая психрометрическая таблица (табл. 2). С помощью этой таблицы по значению температуры, которую показывает сухой термометр, и по разности температур между сухим и влажным термометрами можно определить относительную влажность окружающего воздуха.

Однако даже не имея под рукой такой таблицы, можно примерно определить величину влажности, пользуясь следующим принципом. Если показания обоих термометров близки друг к другу, то испарение воды с влажного практически полностью компенсируется конденсацией, т. е. влажность воздуха высокая. Если, наоборот, разность показаний термометров большая, то испарение с влажной ткани превалирует над конденсацией и воздух сухой, а влажность низкая.

Обратимся к таблицам, которые позволяют определять характеристики влажности воздуха.

Температура,

Давление, мм. рт. ст.

Плотность пара,

Табл. 1. Плотность и давление насыщенных водяных паров

Еще раз отметим, что, как указывалось ранее, значение плотности насыщенного пара растет с его температурой, то же самое относится и к давлению насыщенного пара.

Табл. 2. Психометрическая таблица

Напомним, что относительная влажность определяется по значению показаний сухого термометра (первый столбец) и разности показаний сухого и влажного (первая строка).

На сегодняшнем уроке мы познакомились с важной характеристикой воздуха - его влажностью. Как мы уже говорили, влажность в холодное время года (зимой) понижается, а в теплое (летом) повышается. Важно уметь регулировать эти явления, например при необходимости повысить влажность располагать в помещении в зимнее время несколько резервуаров с водой, чтобы усилить процессы испарения, однако такой способ будет эффективен только при соответствующей температуре, которая выше, чем на улице.

На следующем уроке мы рассмотрим, что такое работа газа, и принцип действия двигателя внутреннего сгорания.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «dic.academic.ru» ()
  2. Интернет-портал «baroma.ru» ()
  3. Интернет-портал «femto.com.ua» ()
  4. Интернет-портал «youtube.com» ()

Домашнее задание

Лучи Солнца при прохождении через прозрачные вещества нагревают их очень слабо. Это объясняется тем, что прямые солнечные лучи практически не нагревают атмосферный воздух, но сильно нагревают земную поверхность, способную передавать тепловую энергию прилегающим слоям воздуха. По мере нагревания воздух становится более легким и поднимается выше. В верхних слоях теплый воздух перемешивается с холодным, отдавая ему часть тепловой энергии.

Чем выше поднимается нагретый воздух, тем больше он охлаждается.

Температура воздуха на высоте 10 км постоянна и составляет -40-45 °C.

Характерная особенность атмосферы Земли – понижение температуры воздуха с высотой. Иногда отмечается повышение температуры по мере повышения высоты. Название такого явления – температурная инверсия (перестановка температур).

Изменение температуры

Появление инверсий может быть обусловлено охлаждением земной поверхности и прилегающего слоя воздуха за короткий промежуток времени. Это возможно также при перемещении плотного холодного воздуха со горных склонов в долины.В течение суток температура воздуха непрерывно изменяется. В дневное время земная поверхность нагревается и нагревает нижний слой воздуха. Ночью наряду с охлаждением земли происходит охлаждение воздуха. Прохладнее всего на рассвете, а теплее – в послеобеденное время.

В экваториальном поясе суточного колебания температур нет. Ночные и дневные температуры имеют одинаковые значения. Несущественны суточные амплитуды на побережья морей, океанов и над их поверхностью. А вот в зоне пустынь разница между ночной и дневной температурами может достигать 50-60 °C.

В умеренной полосе максимальное количество солнечного излучения на Земле приходится на дни летних солнцестояний. Но самым жарким месяцем является июль в Северном полушарии и январь в Южном. Это объясняется тем, что несмотря на то, что солнечная радиация менее интенсивная в эти месяцы, огромное количество тепловой энергии отдает сильно нагретая земная поверхность.

Годовая амплитуда температур определяется широтой определенной местности. К примеру, на экваторе она постоянна и составляет 22-23 °C. Наиболее высокие годовые амплитуды наблюдаются в областях средних широт и в глубине материков.

Для любой местности также характерны абсолютные и средние температуры. Абсолютные температуры определяются посредством многолетних наблюдений на метеостанциях. Самая жаркая область на Земле – это Ливийская пустыня (+58 °C), а самая холодная – станция «Восток» в Антарктиде (-89,2 °C).

Средние температуры устанавливают при вычислении среднеарифметических величин нескольких показателей термометра. Так определяют среднесуточные, среднемесячные и среднегодовые температуры.

С целью выяснить, как распределяется тепло на Земле, на карту наносят значения температур и соединяют точки с одинаковыми значениями. Полученные линии называются изотермами. Данный метод позволяет выявить определенные закономерности в распределении температур. Так, наиболее высокие температуры регистрируются не на экваторе, а в тропических и субтропических пустынях. Характерно понижение температур от тропиков к полюсам в двух полушариях. С учетом того, что в Южном полушарии водоемы занимают большую площадь, чем суша, амплитуды температур между самым жарким и холодным месяцами там менее выражены, чем в Северном.

По расположению изотерм различают семь тепловых поясов: 1 жаркий, 2 умеренных, 2 холодных, 2 области вечной мерзлоты.

Похожие материалы:

1. Атмосфера

3. Климатические пояса

Новости и общество

Годовая амплитуда температур: как вычислить, особенности расчета

Все мы знаем о том, что жители земного шара живут в совершенно разных климатических зонах. Именно поэтому с наступлением холодов в одном полушарии, начинается потепление в другом. Многие едут в отпуск погреться под солнцем в других странах и даже не задумываются о годовой амплитуде температур. Как вычислить этот показатель, дети узнают еще со школьной скамьи. Но с возрастом часто просто забывают о его важности.

Определение

Перед тем, как вычислить годовую амплитуду температур по графику, необходимо вспомнить, что представляет собой данное определение. Итак, амплитуда, сама по себе, определяется как разность максимального и минимального показателя.
В случае вычисления годовой температуры амплитудой будут служить показания термометра. Для точности результатов важно, чтобы термометр всегда использовался только один. Это позволит самостоятельно в конкретном регионе определить график хода температур. Как вычислить годовую амплитуду в климатологии? Специалисты используют для этого средние показания месячных температур за прошедшие годы, поэтому их показатели всегда отличаются о тех, что вычислены самостоятельно для своего населенного пункта.

Факторы изменения

Итак, перед тем, как вычислить годовую амплитуду температуры воздуха, следует учесть несколько важных факторов, оказывающих влияние на ее показатели.

В первую очередь это географическая широта необходимой точки. Чем ближе регион расположен к экватору, тем меньше будет и годовое колебание показателей термометра. Ближе к полюсам земного шара материки ощущают сезонную смену климата сильнее, а, следовательно, и годовая амплитуда температур (как вычислить — дальше в статье) будет пропорционально расти.

Также на показатели нагрева воздуха влияет и приближенность региона к крупным водоемам. Чем ближе побережье моря, океана или даже озера, тем климат мягче, и смена температур не так ярко выражена. На суше же показатели разницы температур очень высокие, причем, как годовые, так и суточные. Конечно, изменить такую ситуацию могут часто приходящие с моря воздушные массы, как, к примеру, в Западной Европе.

Зависит амплитуда температур и от высоты региона над уровнем моря. Чем выше располагается нужная точка, тем меньше будет разница. С каждым километром она сокращается приблизительно на 2 градуса.

Перед тем, как вычислить годовую амплитуду температур нужно учитывать и сезонные климатические изменения. Такие как муссоны или засухи.

Расчеты суточной амплитуды

Осуществить такие вычисления каждый владелец термометра и свободного времени может самостоятельно. Чтобы получить максимальную точность для определенного дня, следует фиксировать показания термометра каждые 3 часа, начиная с полуночи. Таким образом, из полученных 8 замеров необходимо выделить максимальный и минимальный показатели. После этого от большего отнимается меньшее, и полученный результат является суточной амплитудой конкретного дня. Именно так проводят вычисления на метеостанциях специалисты.

Важно при этом помнить элементарное правило математики, что минус на минус дает плюс. То есть, если вычисления проводятся в холодное время года, и суточная температура колеблется от положительной днем до отрицательной ночью, то вычисление будет выглядеть примерно так:

5 — (-3) = 5 + 3 = 8 - суточная амплитуда.

Годовая амплитуда температур. Как вычислить?

Расчеты по определению годовых колебаний в показаниях термометра осуществляются аналогичным образом, только за максимальное и минимальное значение берутся средние показания термометров самого жаркого и самого холодного месяцев в году. Они же, в свою очередь, вычисляются благодаря получению среднесуточных температур.

Получение среднего показания

Чтобы определить средние показания для каждого дня, необходимо сложить в единое число все показания, зафиксированные за данный промежуток времени, и разделить результат на количество сложенных значений. Максимальную точность получают при вычислении среднего показателя из большего количества замеров, но чаще всего достаточно снятия данных с термометра каждые 3 часа.

Аналогичным образом из уже высчитанных среднесуточных показателей вычисляются и данные о средних температурах за каждый месяц года.

Осуществление расчета

Перед тем, как определить годовую амплитуду температуры воздуха в конкретном регионе, следует найти максимальный и минимальный средний месячный показатель температуры. От большего необходимо отнять меньшее, также учитывая правила математики, и полученный результат считать той самой искомой годовой амплитудой.

Важность показателей

Помимо вычисления температуры воздуха для различных географических целей, разность температур важна и в других науках. Так, палеонтологи изучают жизнедеятельность вымерших видов, вычисляя амплитуды температурных колебаний в целых эпохах. Для этого им помогают различные пробы грунтов и другие методы термографии.

Исследуя работу двигателей внутреннего сгорания, специалисты определяют периоды как определенные интервалы времени, составляющие доли секунд. Для точности измерений в таких ситуациях применяют специальные электронные регистраторы.

В географии изменения температур тоже могут фиксироваться в долях, но для этого необходим термограф. Такой прибор представляет собой механическое устройство, непрерывно фиксирующее данные о температуре на ленту или цифровой носитель. Он же определяет и амплитуду изменений, учитывая выставленные интервалы времени. Такие точные приборы применяются в тех областях, куда закрыт доступ человеку, к примеру, в зонах ядерных реакторов, где важны каждые доли градусов, и следить за их изменениями необходимо постоянно.

Заключение

Из всего вышесказанного понятно, как можно определить годовую амплитуду температуры, и для чего нужны эти данные. Эксперты для облегчения задачи делят атмосферу всей планеты на определенные климатические зоны. Связано это еще и с тем, что разброс температур по планете настолько широк, что определить средний показатель для нее, который отвечал бы действительности, невозможно. Разделение климата на экваториальный, тропический, субтропический, умеренный континентальный и морской, позволяет создать более реалистичную картину с учетом всех факторов, влияющих на показатели температуры в регионах.

Благодаря такому распределению зон можно определить, что амплитуда температур растет в зависимости от отдаленности от экватора, приближенности крупных водоемов и множества других условий, в том числе и периода летнего и зимнего солнцестояния. Интересно, что в зависимости от типа климата меняется продолжительность и переходных сезонов, а также пики жарких и холодных температур.

Источник: fb.ru

Похожие материалы

Новости и общество
Узнаём природу лучше. Что такое амплитуда температур, какие есть температурные рекорды и сколько осталось существовать ледникам?

Всё время мы слышим по телевизору о том, что грядет глобальное потепление, ледники растают, температура поднимется и вода затопит большую часть суши.

И всему виной парниковый эффект, который уничтожает озоновый слой, …

В организациях трудятся сотрудники основного состава, лица, устроенные по договорам гражданско-правового характера, совместители. Во время сдачи статистической отчетности бухгалтеру необходимо произвести расчет средне…

Автомобили
Антикорозийка для авто: какая лучше, особенности выбора, виды, применение и отзывы

В процессе эксплуатации автомобилей следует регулярно обрабатывать кузов от коррозии. При движении гравий и небольшие камни медленно, но верно разрушают ЛКП бамперов и крыльев. В эти царапины попадает влага, и со врем…

Бизнес
Бизнес-план кофейни. Как открыть кофейню: расчеты и советы успешных предпринимателей

Кофейня - это небольшое заведение, которое отличается от пунктов общественного питания особым ассортиментом. Здесь посетителям предоставляется возможность сделать заказ, состоящий из вкусного кофе и необычного к…

Домашний уют
Строительство домов из газоблока своими руками: особенности, расчет и рекомендации

Современные технологии направлены на то, чтобы сделать строительные материалы достаточно твердыми и прочными, долговечными и водозащищенными. Кроме того, они должны обладать идеальными показателями теплопроводности. С…

Домашний уют
Разделочные доски: какие лучше, особенности выбора и рекомендации

Ни одна кухня — ни домашняя, ни профессиональная — не обходится без разделочных досок. С помощью этого нехитрого приспособления удобно разделывать продукты, сохраняя поверхность стола от царапин и загрязнений. Нарезку…

Домашний уют
Расход цемента на 1 куб кирпичной кладки. Особенности расчета, пропорции и рекомендации

Перед каждым настоящим мужчиной в жизни стоят три первоочередные задачи, которые он должен выполнить, дабы подтвердить свою принадлежность к сильному полу. И если с рождением и воспитанием сына, а также посадкой дерев…

Домашний уют
Расход материалов на 1 м3 бетона: оптимальная пропорция, особенности расчета и рекомендации

На строительной площадке любого уровня, от небоскрёба до дачного домика, не обойтись без бетона. Этот материал используется для заливки фундаментов, возведения стен в монолитном строительстве, устройства перекрытий и …

Домашний уют
Минимальный уклон кровли из профлиста: допустимые параметры, особенности расчета и рекомендации

Благодаря отличным эксплуатационным характеристикам, профлист нашел широкое применение как в жилом, так и в промышленном строительстве.

При соблюдении всех положенных технологий монтажа с его использованием можно сдел…

Домашний уют
Распорные наслонные стропила: описание, схемы, устройство и особенности расчета

Стропила представляют собой основной опорный элемент конструкции любой крыши. Способов установки их существует множество. Очень часто кровли домов собирают, к примеру, на наслонных распорных стропилах. Их основной осо…

Погода в Москве. Температура воздуха и осадки. Июнь 2018 г.

В таблице представлены основные характеристики погоды в Москве — температура воздуха и количество осадков, приведенные за каждые сутки июня 2018 года.

Норма среднемесячной температуры июня: 17.0° . Фактическая температура месяца по данным наблюдений: 13.7° . Отклонение от нормы: -2.4° .
Норма суммы осадков в июне: 80 мм . Выпало осадков: 33 мм . Эта сумма составляет 41% от нормы.
Самая низкая температура воздуха (5.6° ) была 1 июня. Самая высокая температура воздуха (26.1° ) была 3 июня.

Дата Температура воздуха, °C Осадки, мм
минимум средняя максимум отклонение
от нормы
1 5.6 9.6 14.6 -5.9 0.0
2 8.5 16.3 23.9 +0.7 0.0
3 12.1 19.5 26.1 +3.8 0.0
4 15.2 19.5 25.1 +3.7 0.0
5 9.9 12.8 16.7 -3.1 8.0
6 6.8 9.8 13.2 -6.2 0.6
7 5.6 10.9 16.3 -5.2 0.0
8 10.0 12.1 16.6 -4.1 15.0
9 6.0 10.2 14.7 -6.1 0.0
10 6.1 9.8 13.5 -6.6 2.0
11 9.5 13.8 21.3 -2.7 1.3
12 12.7 16.9 25.3 +0.3 6.0
13 13.6 16.6 20.8 -0.1 0.0
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Температура воздуха в Москве.

Июнь 2018 г.

Пояснения по расчету среднесуточных значений . Значения температуры воздуха и осадков в таблице приведены за метеорологические сутки, которые в Москве начинаются в 18 ч. по всемирному времени (в 21 ч. по местному времени). Будьте внимательны: при неправильном суточном ходе температуры максимум за сутки может быть отмечен ночью, а минимум — днем. Поэтому несоответствие указанных в таблице значений ночным минимумам и дневным максимумам из архива не является ошибкой!

Пояснения к графику. Текущие минимальная, средняя, максимальная температура воздуха в Москве представлены на графике сплошными линиями соответственно синего, зеленого и красного цветов.

Нормальные значения показаны сплошными тонкими линиями. Абсолютные максимумы и минимумы температуры для каждого дня обозначены жирными точками соответственно красного и синего цвета.

Пояснения по суточным и месячным рекордам. Температурные рекорды для каждого дня определены как самое низкое и самое высокое значение по ряду данных суточного разрешения. Для мониторинга погоды в Москве суточные данные взяты за период 1879-2018 гг. Месячные рекорды погоды определены по ряду данных месячного разрешения. Месячные данные взяты за период 1779-2018 гг. — температура воздуха, 1891-2018 гг. — осадки.

Выберите интересующий вас месяц (начиная с января 2001 года) и нажмите кнопку «Ввод!».

Как вычислить среднюю температуру

Среднесуточная или среднемесячная температура воздуха важна для характеристики климата. Как и любое среднее значение, ее можно вычислить, сделав несколько наблюдений. Количество измерений, равно как и точность термометра, зависят от цели исследования.

Вам понадобится

  • — термометр;
  • — лист бумаги;
  • — карандаш:
  • — калькулятор.

Инструкция

  • Чтобы найти среднесуточную температуру наружного воздуха, возьмите обычный уличный термометр. Для характеристики климата его точность вполне достаточна, составляет она 1°.

    В России для подобных измерений применяется шкала Цельсия, но в некоторых других странах температуру могут мерить и по Фаренгейту. В любом случае необходимо для измерений применять один и тот же прибор, в крайнем случае - другой, но с точно такой же шкалой. Крайне желательно, чтобы термометр был поверен по эталонному.

  • Снимите показания через равные промежутки времени. Это можно сделать, например, в 0 часов, в 6, 12 и 18. Возможны и другие интервалы - через 4, 3, 2 часа или даже ежечасно. Необходимо проводить измерения в одних и тех же условиях. Повесьте термометр так, чтобы даже в самую жаркую дневную пору он был в тени. Посчитайте и запишите, сколько раз вы смотрели на градусник. На метеостанциях наблюдения обычно проводят через 3 часа, то есть 8 раз в сутки.
  • Сложите все показания. Разделите полученную сумму на количество наблюдений. Это и будет среднесуточная температура. Может возникнуть ситуация, когда одни показания будут положительными, а другие - отрицательными. Суммируйте их так же, как и любые другие отрицательные числа. При сложении двух отрицательных чисел найдите сумму модулей и поставьте перед ней минус. При действии с положительным и отрицательным числом вычтите из большего числа меньшее и поставьте перед результатом знак большего числа.
  • Чтобы найти среднюю дневную или ночную температуру, определите, когда в вашей местности наступают полдень и полночь по астрономическим часам. Декретное и летнее время сместило эти моменты, и полдень в России наступает в 14 часов, а не в 12. Для средней ночной температуры вычислите моменты за шесть часов до полуночи и через такое же время после него, то есть это будет 20 и 8 часов.

    Еще два момента, когда нужно посмотреть на градусник - 23 и 5 часов.

    Снимите показания, сложите результаты и разделите сумму на количество измерений. Точно так же определите среднюю дневную температуру.

  • Вычислите среднемесячную температуру.

    Сложите среднесуточные показания за месяц и разделите на количество дней. Таким же образом можно вычислить среднемесячные значения для дневных и ночных температур.

  • Если наблюдения ведутся систематически в течение нескольких лет, можно вычислить климатическую норму для каждого конкретного дня. Сложите среднесуточные температуры для определенного числа того или иного месяца за несколько лет. Сумму разделите на количество лет. В дальнейшем можно будет сравнивать среднесуточную температуру с этим значением.

© CompleteRepair.Ru

Среднесуточная температура

Cтраница 4

Теплый период года характеризуется среднесуточной температурой наружного воздуха 10 С и выше, а холодный и переходный-ниже — НО С.  

Теплый период года характеризуется среднесуточной температурой наружного воздуха 10 С и выше, а холодный и переходный — ниже 10 С.  

Окукливание весной начинается после установления среднесуточной температуры выше 10 С и происходит обычно в период окрашивания бутонов яблони. Самки нуждаются в дополнительном питании или, по крайней мере, в капельной влаге.

При температуре нефтепродукта в резервуаре выше среднесуточной температуры воздуха и коэффициенте оборачиваемости 200 и выше в год эффективность применения лучеотражающих покрытий незначительна.  

Продолжительность развития одной генерации при среднесуточной температуре 21 — 23 я относительной влажности воздуха 63 — 73 % составляет 25 — 30 дней. С повышением температуры продолжительность развития уменьшается.  

Большинство цветов хорошо растет при среднесуточной температуре от 12 до 18 — 20 С.  

Для прикидочных расчетов разность между максимальной и среднесуточной температурой наружного воздуха Л / н составляет 9 С для районов с сухим климатом и 7 С для районов с умеренным влажным климатом.  

Для прикидочных расчетов разность между максимальной и среднесуточной температурой наружного воздуха Ata составляет 9 С для районов с сухим климатом и ТС для районов с умеренным влажным климатом.  

За расчетную температуру наружного воздуха принимается среднесуточная температура (средняя за последние 5 лет по данным метеорологических наблюдений) повторяемостью не менее трех раз в месяц, которая при совпадении с неблагоприятным направлением ветра дает наихудшие условия скатывания вагонов.  

Страницы:      1    2    3    4

Больше интересных статей: