Излучение солнца. Меры защиты от солнечного излучения

Общая гигиена. Солнечная радиация и ее гигиеническое значение.

Под солнечной радиацией мы понимаем весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оприческая часть солнечнечного света, которая занимает диапозон от 280-2800 нм. Более длинные волны -- радиоволны, более короткие -- гамма-лучи, ионизируещее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озонов слое в частности. Озон распространен в всей атмосфере, но на высоте около 35 км формирует озоновый слой.

Интенсивность солнечной радиации зависит в первую очередь от высоты стояния солнца над горизонтом. Если солнце находится в зените, то путь который проходит солнечные лучи будет значительно короче, чем их путь если солнце находится у горизонта. За счет увеличения пути интенсивность солнечной радиации меняется. Интенсивность солнечной радиации зависит также от того под каким углом падают солнечные лучи, от этого зависит и освещаемая территория (при увеличении угла падения площадь освещения увеличивается). Таким образом, та же солнечная радиация приходится на большую поверхность, поэтому интенсивность уменьшается. Интесивность солнечной радиации зависит от массы воздуха через который проходит солнечные лучи. Интенсивность солнечной радиации в горах будет выше чем над уровнем моря, потому что слой воздуха через который проходят солнечные лучибудет меньше чем над уровнем моря. Особое значение представляет влияние на интенсивность солнечной радиации состояние атмосферы,ее загрязнение. Если атмосфера загрязнена, то интенсивность солнечной радиации снижается (в городе интенсивность солнечной радиации в среднем на 12% меньше чем в сельской местности). Напряжение солнечной радиации имеет суточный и годовой фон, то есть напряжение солнечной радиации меняется в течении суток, и зависит также от времени года. Наибольшая интенсивность солнечной радиации отмечается летом, меньшая -- зимой. По своему биологическому действию солнечная радиация неоднородна: оказывается каждая длина волны оказывает различное действие на организм человека. В связи с этим солнечный спектр условно разделен на 3 участка:

1. ультрафиолетовые лучи, от 280 до 400 нм

2. видимый спектр от 400 до 760 нм

3. инфракрасные лучи от 760 до 2800 нм.

При суточном и годовом годе солнечной радиации состав и интенсивность отдельных спектров подвергается изменениям. Наибольшим изменениям подвергаются лучи УФ спектра.

Интенсивность солнечной радиации мы оцениваем исходя из так называемой солнечной постоянной. Солнечная постоянная -- это количество солнечной энергии поступающей в единицу времени на единицу площади, расположенную на верхней границе атмосферы под прямым углом к солнечным лучам при среднем расстоянии Земли от Солнца. Эта солнечная постоянная измерена с помощью спутника и равна 1,94 калории\см 2

в мин. Проходя через атмосферу солнечные лучи значительно ослабевают -- рассеиваются, отражаются, поглащаются. В среднем при чистой атмосфере на поверхности Земли интенсивность солнечной радиации составляет 1, 43 -- 1,53 калории\см2 в мин.

Напряжение солнечных лучей в полдень в мае в Ялте 1,33, в Москве 1,28, в Иркутске 1,30, В Ташкенте 1,34.

Биологическое значение видимого участка спектра.

Видимый участок спекра -- специфический раздражитель органа зрения. Свет необходимое условие работы глаза, самого тонкого и чуткого органа чувств. Свет дает примерно 80% информации о внешнем мире. В этом состоит специфическое действие видимого света, но еще общебиологическое дйествие видимого света: он стимулирует жизнедеятельность организма, усиливает обмен веществ, улучшает общее самочувствие, влияет напсихофмоциональную сферу, повышает работоспосбность. Свет оздоравливает окружающую среду. При недостатке естественного осещения возникают изменения со стороны органа зрения. Быстро наступает утомляемость, снижается работоспособность, увеличивается производственный травматизм. На организм влияет не только освещенность, но и различная цветовая гамма оказывает различное влияние на психофмоциональное состояние. Наилучшие показатели выполнения работы были получены препарат желтом и белом освещении. В психофизиологическом отношении цвета действуют противоположно друг другу. Было сформировано 2 группы цветов в связи с этим:
1) теплые тона -- желтый, оранжевый, красный. 2) холодные тона -- голубой, синий, фиолетовый. Холодные и тепые тона оказывают разное физиологическое действие на организм. Теплые тона увеличивают мускульное напряжение, повышают кровянное давление, учащают ритм дыхания. Холодные тона наоборот понижают кровянное давление, замедляют ритм сердца и дыхания. Это часто используют на практике: для пациентов с высокой температурой больше всего подходят палаты окрашенные в лиловый цвет, темная охра улучшает сомочувствие больных с пониженным давлением. Красный цвет повышает аппетит. Более того эффективность лекарст можно повысить изменив цвет таблетки. Больным страдающим депрессивными расстройствами давали одно и то же лекарство в таблетках разного цвета: красного, желтого, зеленого. Самые лучшие результаты принесло лечение таблетками желтого цвета.

Цвет используется как носитель закодированной информации например на производстве для обозначенея опасности. Существует общепринятый стандарт на сигнально-опозновательную окраску: зеленый -- вода, красный -- пар, желтый -- газ, оранжевый -- кислоты, фиолетовый -- щелочи, коричневый -- горючие ждкости и масла, синий -- воздух, серый -- прочее.

С гигиенических позиций оценка видимого участка спектра проводится по следующим показателям: отдельно оценивается естественное и отдельно искусственно освещение. Естственное освещение оценивается по 2 группам показателей: физические и светотехнические. К первой группе относится:

1. световой коэффициет -- характеризует собой отношение площади застекленной поверхности окон к площади пола.

2. Угол падения -- характеризует собой под каким углом падают лучи. По норме минимальный угол падения должен быть не менее 270.

3. Угол отверстия-- характеризует освещенность небесным светом (должен быть не менее 50). На первых этажах ленинградских домов - колодцев этот угол фактически отсутсвует.

4. Глубина заложения помещения -- это отношение расстояния от верхнего края окна до пола к глубине помещения (расстояние от наружной до внутренней стены).

Светотехнические показатели -- это показатели определяемые с помощью прибора -- люксметра. Измеряется абсолютная и относительная освещаемость. Абсолютная освещаемость -- это освещаемость на улице. Коеффициент освещаемости (КЕО) определяется как отношение относительной освещаемости (измеряемой как отношение относительной освещенности (измеренной в помещении) к абсолютной, выраженное в %. Освещенность в помещении измеряется на рабочем месте. Принцип работы люксметра состоит в том что прибор имеет чувствительный фотоэлемент (селеновый - так как селен приближен по чувствительности к глазу человека). Ориентировочную освещаемость на улице можно узнать с помощью гра светового климата.

Для оценки исскуственного освещения помещений иеет значение яркость, отсутсвие пульсаций, цветность и др.

Инфракрасные лучи. Основное биологическое действие этих лучей -- тепловое, причем это действие также зависит от длины волны. Короткие лучи несут больше энергии, поэтому они проникают в глубь, оказывают сильный тепловой эффект. Длинновлонвый участок оказывает свое тепловое действие на поверхности. Это используется в физиотерапии для прогрева участков лежащих на разной глубине.

Для того чтобы оценить измерить инфракрасные лучи существует прибор -- актинометр. Измеряется инфракрасная радиация в калориях на см2\мин. Неблагоприятное действие инфракрасных лучей наблюдается в горячих цехах, где они могут приводить к профессиональным заболеваниям -- катаракте (помутнение хрусталика). Причиной катаракты является короткие инфракрасные лучи. Мерой профилактики является использование защитных очков, спецодежды.

Особенности воздействия инфракрасных лучей на кожу: возникает ожог -- эритема. Она возникает за счет теплового расширения сосудов. Особенность ее состоит в том, что она имеет различные границы, возникает сразу.

В связи с действием инфракрасных лучей могут возникать 2 состояния организма: тпловой удар и солнечный удар. Солнечный удар - результат прямого воздействия солнечных лучей на тело человека в основном с поражением ЦНС. Солнечный удар поражает тех кто проводит много часов подряд под палящими лучами солнца с непокрытой головой. Происходит разогревание мозговых оболчек.

Тепловой удар возникает из-за перегревания организма. Он может случатся с тем кто выполняет тяжелую физическую работу в жарком помещении или при жаркой погоде. Особенно характерны были тепловые удары у наших военнослужащих в Афганистане.

Помимо актинометров для измерения инфракрасной радиации существуют пираметры различных видов. В основе ох действия -- поглащение черным телом лучистой энергии. Воспринимающий слой состоит из зачерненных и белых пластинок, которые в зависимости от инфракрасной радиации нагреваются по разному. Возникает ток на термобатарее и регистрируется интенсивность инфракрасной радиации. Поскольку интенсивность инфракрасной радиации имеет значение в условиях производства то существуют нормы инфракрасной радиации для горячих цехов, для того чтобы избежать неблагоприятного воздействия на организм человека, например, в трубопрокатном цехе нарма 1,26 - 7,56, выплавка чугуна 12,25. Уровни излучения превышающие 3,7 считаются значительными и требуют проведения профилактических мероприятий -- применение защитных экранов, водянные завесы, спецодежда.

Ультрафиолетовые лучи (уф).

Это наиболее активная в биологическом плане часть солнечного спектра. Она также неоднородна. В связи с этим различают длиноволновые и коротковолновые УФ. УФ способствуют загару. При поступлении УФ на кожу в ней образуются 2 группы веществ: 1) специфические вещества, к ним относятся витамин Д, 2) неспецифические вещества -- гистамин, ацетилхолин, аденозин, то есть это продукты расщепления белков. Загарное или эритемное действие сводится к фотохимическому эффекту -- гистамин и другие биологически активные вещества способствуют расширению сосудов. Особенность этой эритемы -- она возникает несразу. Эритема имеет четко ограниченные границы. Ультрофиолетовая эритема всегда приводит к загару более или менее выраженному, в зависимости от количества пигмента в коже. Механизм загарного действия еще недостаточно изучен. Считается что сначала возникает эритема, выделяются неспецифические вещества типа гистамина, продукты тканевого распада организм переводит в меланин, в результате чего кожа приобретает своеобразный оттенок. Загар, таким образом является проверкой защитных свойств организма (больной человек не загорает, загорает медленно).

Самый благоприятный загарвозникает под воздействием УФЛ с длиной волны примерно 320 нм, то есть при воздействии длиноволновой части УФ-спектра. На юге в основном преобладают коротковолновые, а на севере -- длиноволновые УФЛ. Коротковолновые лучи наиболее подвержаны рассеянию. А рассеивание лучше всего происходит в чистой атмосфере и в северном регионе. Таким образом, наиболее полезный загар на севере -- он более длительный, более темный. УФЛ являются очень мощным фактором профилактики рахита. При недостатке УФЛ у детей развивается рахит, у взрослых -- остепороз или остеомаляция. Обычно с этим сталкиваются на Крайнем Севере или у групп рабочих работающих под землей. В Ленинградской области с середины ноября до середины февраля практически отсутствует УФ часть спектра, что способствует развитию солнечного голодания. Для профилактики солнечного голодания используется искусственный загар. Световое голодание -- это длительное отсутсвие УФ спектра. При действии УФ в воздухе происходит образование озона, за концентрацией которого необходим контроль.

УФЛ оказывают бактерицидное действие. Оно используется для обеззараживания больших палат, пищевых продуктов, воды.

Определяется интенсивность УФ радиации фотохимическим методом по количеству разложившийся под действием УФ щавелевой кислоты в кварцевых пробирках (обыкновенное стекло УФЛ не пропускает). Интенсивность УФ радиации определяется и прибором ультрафиолетметром. В медицинских целях ультрафиолет измеряется в биодозах.

СОЛНЕЧНАЯ РАДИАЦИЯ

СОЛНЕЧНАЯ РАДИАЦИЯ - электромагнитное и корпускулярное излучение Солнца. Электромагнитная радиация распространяется в виде электромагнитных волн со скоростью света и проникает в земную атмосферу . До земной поверхности солнечная радиация доходит в виде прямой и рассеянной радиации.
Солнечная радиация - главный источник энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере (см. Инсоляция). Солнечная радиация обычно измеряется по ее тепловому действию и выражается в калориях на единицу поверхности за единицу времени. Всего Земля получает от Солнца менее одной двухмиллиардной его излучения.
Спектральный диапазон электромагнитного излучения Солнца очень широк - от радиоволн до рентгеновских лучей - однако максимум его интенсивности приходится на видимую (жёлто-зелёную) часть спектра.
Существует также корпускулярная часть солнечной радиации, состоящая преимущественно из протонов, движущихся от Солнца со скоростями 300-1500 км/с (солнечный ветер). Во время солнечных вспышек образуются также частицы больших энергий (в основном протоны и электроны), образующие солнечную компоненту космических лучей.
Энергетический вклад корпускулярной составляющей солнечной радиации в её общую интенсивность невелик по сравнению с электромагнитной. Поэтому в ряде приложений термин «солнечная радиация» используют в узком смысле, имея в виду только её электромагнитную часть.
Количество солнечной радиации зависит от высоты солнца, времени года, прозрачности атмосферы . Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.
Солнечная радиация сильно влияет на Землю только в дневное время, безусловно - когда Солнце находится над горизонтом. Также солнечная радиация очень сильна вблизи полюсов, в период полярных дней, когда Солнце даже в полночь находится над горизонтом. Однако зимой в тех же местах Солнце вообще не поднимается над горизонтом, и поэтому не влияет на регион. Солнечная радиация не блокируется облаками, и поэтому вс равно поступает на Землю (при непосредственном нахождении Солнца над горизонтом). Солнечная радиация - это сочетание ярко-жёлтого цвета Солнца и тепла, тепло проходит и сквозь облака . Солнечная радиация передаётся на Землю посредством излучения, а не методом теплопроводности.
Сумма радиации, полученной небесным телом, зависит от расстояния между планетой и звездой - при увеличении расстояния вдвое количество радиации, поступающее от звезды на планету уменьшается вчетверо (пропорционально квадрату расстоянию между планетой и звездой). Таким образом, даже небольшие изменения расстояния между планетой и звездой (зависит от эксцентристета орбиты) приводят к значительному изменению количества поступающей на планету радиации. Эксцентристет земной орбиты тоже не является постоянным - в с течением тысячелетий он меняется, периодически образуя то практически идеальный круг, иногда же эксцентристет достигает 5% (в настоящее время он равен 1,67%), то есть в перигелии Земля получает в настоящее время в 1,033 больше солнечной радиации, чем в афелии, а при наибольшем эксцентристите - более чем в 1,1 раза. Однако гораздо более сильно количество поступающей солнечной радиации зависет от смен времён года - в настоящее время общее количество солнечной радиации, поступающее на Землю, остаётся практически неизменным, но на широтах 65 С.Ш (широта северных городов России, Канады) летом количество поступающей солнечной радиации более чем на 25% больше, чем зимой. Это происходит из-за того, что Земля по отношению к Солнцу наклонена под углом 23,3 градуса. Зимние и летние изменения взаимно компенсируются, но тем не менее по росту широты места наблюдения всё больше становится разрыв между зимой и летом, так, на экваторе разницы между зимой и летом нет. За Полярным кругом же летом поступление солнечной радиации очень высоко, а зимой очень мало. Это формирует климат на Земле. Кроме того, периодические изменения эксцентристета орбиты Земли могут приводить к возникновению различных геологических эпох: к примеру,

Важнейшим источником, от которого поверхность Земли и атмосфера получают тепловую энергию, является Солнце. Оно посылает в мировое пространство колоссальное количество лучистой энергии: тепловой, световой, ультрафиолетовой. Излучаемые Солнцем электромагнитные волны распространяются со скоростью 300 000 км/с.

От величины угла падения солнечных лучей зависит нагревание земной поверхности. Все солнечные лучи приходят на поверхность Земли параллельно друг другу, но так как Земля имеет шарообразную форму, солнечные лучи падают на разные участки ее поверхности под разными углами. Когда Солнце в зените, его лучи падают отвесно и Земля нагревается сильнее.

Вся совокупность лучистой энергии, посылаемой Солнцем, называется солнечной радиацией, обычно она выражается в калориях на единицу поверхности в год.

Солнечная радиация определяет температурный режим воздушной тропосферы Земли.

Необходимо заметить, что общее количество солнечного излучения более чем в два миллиарда раз превышает количество энергии, получаемое Землей.

Радиация, достигающая земной поверхности, состоит из прямой и рассеянной.

Радиация, приходящая на Землю непосредственно от Солнца в виде прямых солнечных лучей при безоблачном небе, называется прямой. Она несет наибольшее количество тепла и света. Если бы у нашей планеты не было атмосферы, земная поверхность получала только прямую радиацию.

Однако, проходя через атмосферу, примерно четвертая часть солнечной радиации рассеивается молекулами газов и примесями, отклоняется от прямого пути. Некоторая их часть достигает поверхности Земли, образуя рассеянную солнечную радиацию. Благодаря рассеянной радиации свет проникает и в те места, куда прямые солнечные лучи (прямая радиация) не проникают. Эта радиация создает дневной свет и придает цвет небу.

Суммарная солнечная радиация

Все солнечные лучи, поступающие на Землю, составляют суммарную солнечную радиацию, т. е. совокупность прямой и рассеянной радиации (рис. 1).

Рис. 1. Суммарная солнечная радиация за год

Распределение солнечной радиации по земной поверхности

Солнечная радиация распределяется по земле неравномерно. Это зависит:

1. от плотности и влажности воздуха — чем они выше, тем меньше радиации получает земная поверхность;

2. от географической широты местности — количество радиации увеличивается от полюсов к экватору. Количество прямой солнечной радиации зависит от длины пути, который проходят солнечные лучи в атмосфере. Когда Солнце находится в зените (угол падения лучей 90°), его лучи попадают на Землю кратчайшим путем и интенсивно отдают свою энергию малой площади. На Земле это происходит в полосе между от 23° с. ш. и 23° ю. ш., т. е. между тропиками. По мере удаления от этой зоны на юг или на север длина пути солнечных лучей увеличивается, т. е. уменьшается угол их падения на земную поверхность. Лучи начинают падать на Землю под меньшим углом, как бы скользя, приближаясь в районе полюсов к касательной линии. В результате тот же поток энергии распределяется на большую площадь, поэтому увеличивается количество отраженной энергии. Таким образом, в районе экватора, где солнечные лучи падают на земную поверхность под углом 90°, количество получаемой земной поверхностью прямой солнечной радиации выше, а по мере передвижения к полюсам это количество резко сокращается. Кроме того, от широты местности зависит и продолжительность дня в разные времена года, что также определяет величину солнечной радиации, поступающей на земную поверхность;

3. от годового и суточного движения Земли — в средних и высоких широтах поступление солнечной радиации сильно изменяется по временам года, что связано с изменением полуденной высоты Солнца и продолжительности дня;

4. от характера земной поверхности — чем светлее поверхность, тем больше солнечных лучей она отражает. Способность поверхности отражать радиацию называется альбедо (от лат. белизна). Особенно сильно отражает радиацию снег (90 %), слабее песок (35 %), еше слабее чернозем (4 %).

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу (отраженная радиация). Нижние слои атмосферы в значительной мерс задерживают земное излучение. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды.

Та часть суммарной радиации, которая остается после отражения и теплового излучения земной поверхности, называется радиационным балансом. Радиационный баланс земной поверхности меняется в течение суток и по сезонам года, однако в среднем за год имеет положительное значение всюду, за исключением ледяных пустынь Гренландии и Антарктиды. Максимальных значений радиационный баланс достигает в низких широтах (между 20° с. ш. и 20° ю. ш.) — свыше 42*10 2 Дж/м 2 , на широте около 60° обоих полушарий он снижается до 8*10 2 -13*10 2 Дж/м 2 .

Солнечные лучи отдают атмосфере до 20 % своей энергии, которая распределяется по всей толще воздуха, и потому вызываемое ими нагревание воздуха относительно невелико. Солнце нагревает поверхность Земли, которая передает тепло атмосферному воздуху за счет конвекции (от лат.convectio - доставка), т. е. вертикального перемещения нагретого у земной поверхности воздуха, на место которого опускается более холодный воздух. Именно так атмосфера получает большую часть тепла — в среднем в три раза больше, чем непосредственно от Солнца.

Присутствие в углекислого газа и водяного пара не позволяет теплу, отраженному от земной поверхности, беспрепятственно уходить в космическое пространство. Они создают парниковый эффект, благодаря которому перепад температуры на Земле в течение суток не превышает 15 °С. При отсутствии в атмосфере углекислого газа земная поверхность остывала бы за ночь на 40-50 °С.

В результате роста масштабов хозяйственной деятельности человека — сжигания угля и нефти на ТЭС, выбросов промышленными предприятиями, увеличения автомобильных выбросов — содержание углекислого газа в атмосфере повышается, что ведет к усилению парникового эффекта и грозит глобальным изменением климата.

Солнечные лучи, пройдя атмосферу, попадают на поверхность Земли и нагревают ее, а та, в свою очередь, отдает тепло атмосфере. Этим объясняется характерная особенность тропосферы: понижение температуры воздуха с высотой. Но бывают случаи, когда высшие слои атмосферы оказываются более теплыми, чем низшие. Такое явление носит название температурной инверсии (от лат. inversio — переворачивание).

Солнце - источник света и тепла, в котором нуждается все живое на Земле. Но помимо фотонов света, оно излучает жесткую ионизирующую радиацию, состоящую из ядер и протонов гелия. Почему так происходит?

Причины возникновения солнечного излучения

Солнечная радиация образуется в дневные часы во время хромосферных вспышек - гигантских взрывов, происходящих в атмосфере Солнца. Часть солнечного вещества выбрасывается в космическое пространство, образуя космические лучи, главным образом состоящие из протонов и небольшого количеств ядер гелия. Эти заряженные частицы спустя 15-20 минут после того, как солнечная вспышка становится видимой, достигают поверхности земли.

Воздух отсекает первичное космическое излучение, порождая каскадный ядерный ливень, который затухает с понижением высоты. При этом рождаются новые частицы - пионы, которые распадаются и превращаются в мюоны. Они проникают в нижние слои атмосферы и попадают на землю, зарываясь вглубь до 1500 метров. Именно мюоны отвечают за образование вторичного космического излучения и естественной радиации, воздействующей на человека.

Спектр солнечного излучения

Спектр солнечного излучения включает как коротковолновые, так длинноволновые области:

  • гамма-лучи;
  • рентгеновское излучение;
  • УФ-радиацию;
  • видимый свет;
  • инфракрасную радиацию.

Свыше 95% излучения Солнца приходится на область «оптического окна» - видимого участка спектра с прилегающими областями ультрафиолетовых и инфракрасных волн. По мере прохождения через слои атмосферы действие солнечных лучей ослабляется - вся ионизирующая радиация, рентгеновские лучи и почти 98% ультрафиолета задерживаются земной атмосферой. Практически без потерь до земли доходит видимый свет и инфракрасное излучение, хотя и они частично поглощаются молекулами газов и частицами пыли, находящимися в воздухе.

В связи с этим, солнечное излучение не приводит к заметному повышению радиоактивного излучения на поверхности Земли. Вклад Солнца вместе с космическими лучами в формирование общей годовой дозы облучения составляет всего 0,3 мЗв/год. Но это усредненное значение, на самом деле уровень падающего на землю излучения различен и зависит от географического положения местности.

Где солнечное ионизирующее облучение сильнее?

Наибольшая мощность космических лучей фиксируется на полюсах, а меньше всего - на экваторе. Связано это с тем, что магнитное поле Земли отклоняет к полюсам заряженные частицы, падающие из космоса. Кроме этого, излучение усиливается с высотой - на высоте 10 километров над уровнем моря его показатель возрастает в 20-25 раз. Активному воздействию более высоких доз солнечной радиации подвергаются жители высокогорий, поскольку атмосфера в горах тоньше и легче простреливается идущими от солнца потоками гамма-квантов и элементарных частиц.

Важно. Серьезного воздействия радиационный уровень до 0,3 мЗв/ч не оказывает, но при дозе 1,2 мкЗ/ч рекомендуется покинуть район, а случае крайней необходимости находится на его территории не более полугода. При превышении показаний вдвое следует ограничить пребывание в этой местности до трех месяцев.

Если над уровнем моря годовая доза космического облучения составляет 0,3 мЗв/год, то при повышении высоты через каждые сто метров этот показатель увеличивается на 0,03 мЗв/год. После проведения небольших расчетов можно сделать вывод, что недельный отпуск в горах на высоте 2000 метров даст облучение 1мЗв/год и обеспечит почти половину общей годовой нормы (2,4 мЗв/год).

Получается, что жители гор получают годовую дозу радиации, в разы превышающую норму, и должны чаще болеть лейкозом и раком, чем люди, живущие на равнинах. На самом деле, это не так. Наоборот, в горных районах фиксируется более низкая смертность от этих заболеваний, а часть населения - долгожители. Это подтверждает тот факт, что длительное нахождение в местах высокой радиационной активности не оказывает негативного влияния на организм человека.

Солнечные вспышки - высокая радиационная опасность

Вспышки на Солнце - большая опасность для человека и всего живого на Земле, поскольку плотность потока солнечного излучения может превышать обычный уровень космического излучения в тысячу раз. Так, выдающийся советский ученый А. Л. Чижевский связал периоды образования солнечных пятен с эпидемиями тифа (1883-1917 г) и холеры (1823-1923 г) в России. На основании сделанных графиков он еще в 1930 году предсказал возникновение обширной пандемии холеры в 1960-1962 годах, которая и началась в Индонезии в 1961 году, затем быстро распространилась на другие страны Азии, Африки и Европы.

Сегодня получено множество данных, свидетельствующих о связи одиннадцатилетних циклов солнечной активности со вспышками заболеваний, а также с массовыми миграциями и сезонами бурного размножения насекомых, млекопитающих и вирусов. Гематологи установили увеличение количество инфарктов и инсультов в периоды максимальной солнечной активности. Такая статистика связана с тем, что в это время у людей повышается свертываемость крови, а так как у больных с заболеваниями сердца компенсаторная деятельность угнетена, возникают сбои в его работе вплоть до некрозов сердечной ткани и кровоизлияний в мозг.

Большие солнечные вспышки происходят не так часто - раз в 4 года. В это время увеличивается количество и размер пятен, в солнечной короне образуются мощные коронарные лучи, состоящие из протонов и небольшого количества альфа-частиц. Самый мощный их поток астрологи зарегистрировали в 1956 году, когда плотность космического излучения на поверхности земли увеличилась в 4 раза. Еще одним последствием подобной солнечной активности стало полярное сияние, зафиксированное в Москве и Подмосковье в 2000 году.

Как себя обезопасить?

Конечно, повышенный радиационный фон в горах - не повод отказываться от поездок в горы. Правда, стоит подумать о мерах безопасности и отправиться в путешествие вместе с портативным радиометром, который поможет контролировать уровень радиации и при необходимости ограничить время пребывания в опасных районах. В местности, где показании счетчика показывают величину ионизирующего облучения в 7 мкЗв/ч, не стоит находиться больше одного месяца.



Добавить свою цену в базу

Комментарий

Солнце (астр. ☉) – единственная звезда Солнечной системы. Вокруг Солнца обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.

Внутреннее строение Солнца

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Внутренний объем Солнца можно разделить на несколько областей; вещество в них отличается по своим свойствам, и энергия распространяется посредством разных физических механизмов. Познакомимся с ними, начиная с самого центра.

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та «печка», которая нагревает его и не дает ему остыть. Эта область называется ядром. Под тяжестью внешних слоев вещество внутри Солнца сжато, причем, чем глубже, тем сильнее. Плотность его увеличивается к центру вместе с ростом давления и температуры. В ядре, где температура достигает 15 млн. кельвинов, происходит выделение энергии.

Эта энергия выделяется в результате слияния атомов легких химических элементов в атомы более тяжелых. В недрах Солнца из четырех атомов водорода образуется один атом гелия. Именно эту страшную энергию люди научились освобождать при взрыве водородной бомбы. Есть надежда, что в недалеком будущем человек сможет научиться использовать ее и в мирных целях (в 2005 году новостные ленты передавали о начале строительства первого международного термоядерного реактора во Франции).

Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды, а именно: лучистый перенос, конвекция и теплопроводность. Теплопроводность не играет большой роли в энергетических процессах на Солнце и звездах, тогда как лучистый и конвективный переносы очень важны.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порции света – квантов. Плотность, температура и давление уменьшаются по мере удаления от ядра, и в этом же направлении идет поток энергии. В целом процесс этот крайне медленный. Чтобы квантам добраться от центра Солнца до фотосферы, необходимы многие тысячи лет: ведь, переизлучаясь, кванты все время меняют направление, почти столь же часто двигаясь назад, как и вперед.

В центре Солнца рождаются гамма-кванты. Их энергия в миллионы раз больше, чем энергия квантов видимого света, а длина волны очень мала. По дороге кванты претерпевают удивительные превращения. Отдельный квант сначала поглощается каким-нибудь атомом, но тут же снова переизлучается; чаще всего при этом возникает не один прежний квант, а два или несколько. По закону сохранения энергии их общая энергия сохраняется, а потому энергия каждого из них уменьшается. Так возникают кванты все меньших и меньших энергий. Мощные гамма-кванты как бы дробятся на менее энергичные кванты – сначала рентгеновских, потом ультрафиолетовых и

наконец видимых и инфракрасных лучей. В итоге наибольшее количество энергии Солнце излучает в видимом свете, и не случайно наши глаза чувствительны к нему.

Как мы уже говорили, кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы «печка» внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя. На своем пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передается уже не излучением, а конвекцией.

Что такое конвекция?

Когда жидкость кипит, она перемешивается. Так же может вести себя и газ. Огромные потоки горячего газа поднимаются вверх, где отдают свое тепло окружающей среде, а охлажденный солнечный газ спускается вниз. Похоже, что солнечное вещество кипит и перемешивается. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым. Однако по инерции сюда все же проникают горячие потоки из более глубоких, конвективных слоев. Хорошо известная наблюдателям картина грануляции на поверхности Солнца является видимым проявлением конвекции.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют – феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру – грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) – фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Излучение Солнца

Солнце излучает свою энергию во всех длинах волн, но по-разному. Приблизительно 44% энергии излучения приходится на видимую часть спектра, а максимум соответствует желто-зеленому цвету. Около 48% энергии, теряемой Солнцем, уносят инфракрасные лучи ближнего и дальнего диапазона. На гамма-лучи, рентгеновское, ультрафиолетовое и радио излучение приходится лишь около 8%.

Видимая часть солнечного излучения при изучении с помощью спектроанализирующих приборов оказывается неоднородной – в спектре наблюдаются линии поглощения, впервые описанные Й.Фраунгофером в 1814 году. Эти линии возникают при поглощении фотонов определенных длин волн атомами различных химических элементах в верхних, относительно холодных, слоях атмосферы Солнца. Спектральный анализ позволяет получить информацию о составе Солнца, поскольку определенный набор спектральных линий исключительно точно характеризует химический элемент. Так, например, с помощью наблюдений спектра Солнца было предсказано открытие гелия, который на Земле был выделен позже.

Виды излучения

В ходе наблюдений ученые выяснили, что Солнце – мощный источник радиоизлучения. В межпланетное пространство проникают радиоволны, которые излучает хромосфера (сантиметровые волны) и корона (дециметровые и метровые волны). Радиоизлучение Солнца имеет две составляющие – постоянную и переменную (всплески, «шумовые бури»). Во время сильных солнечных вспышек радиоизлучение Солнца возрастает в тысячи и даже миллионы раз по сравнению с радиоизлучением спокойного Солнца. Это радиоизлучение имеет нетепловую природу.

Рентгеновские лучи исходят в основном от верхних слоев хромосферы и короны. Особенно сильным излучение бывает в годы максимума солнечной активности.

Солнце излучает не только свет, тепло и все другие виды электромагнитного излучения. Оно также является источником постоянного потока частиц – корпускул. Нейтрино, электроны, протоны, альфа-частицы, а также более тяжелые атомные ядра все вместе составляют корпускулярное излучение Солнца. Значительная часть этого излучения представляет собой более или менее непрерывное истечение плазмы – солнечный ветер, являющийся продолжением внешних слоев солнечной атмосферы – солнечной короны. На фоне этого постоянно дующего плазменного ветра отдельные области на Солнце являются источниками более направленных, усиленных, так называемых корпускулярных потоков. Скорее всего, они связаны с особыми областями солнечной короны – коронарными дырами, а также, возможно, с долгоживущими активными областями на Солнце. Наконец, с солнечными вспышками связанны наиболее мощные кратковременные потоки частиц, главным образом электронов и протонов. В результате наиболее мощных вспышек частицы могут приобретать скорости, составляющие заметную долю скорости света. Частицы с такими большими энергиями называются солнечными космическими лучами.

Солнечное корпускулярное излучение оказывает сильное влияние на Землю, и прежде всего на верхние слои ее атмосферы и магнитное поле, вызывая множество геофизических явлений. От вредного влияния излучения Солнца нас защищает магнитосфера и атмосфера Земли.

Интенсивность солнечного излучения

Имея крайне высокие температуры, Солнце является очень сильным источником излучения. Видимый диапазон солнечного излучения обладает наивысшей интенсивность излучения. При этом до Земли так же доходит большое количество невидимого спектра. Внутри Солнца протекают процессы, при которых из атомов водорода синтезируются атомы гелия. Это процессы называются процессами ядерного синтеза, они сопровождаются выделением огромного количества энергии. Эта энергия приводит к тому, что Солнце разогревается до температуры 15 миллионов градусов Цельсия (во внутренней его части).

На поверхности Солнца (фотосфере) температура достигает 5500 °С. На этой поверхности Солнце излучает энергию со значение 63 МВт/ м². До поверхности Земли доходит лишь немногая часть этого излучения, что позволяет комфортно существовать человечеству на нашей планете. Средняя интенсивность излучения на атмосферу Земли приблизительно равна 1367 Вт/м². Данное значение может колебаться в диапазоне 5% из-за того что, двигаясь по эллиптической орбите Земля отдаляется от Солнца на разное расстояние в течение года. Значение 1367 Вт/ м² называют солнечной постоянной.

Солнечная энергия на поверхности Земли

Атмосфера Земли не пропускает всю солнечную энергию. Поверхности Земли достигает не более 1000 Вт/м2. Часть энергии поглощается, часть отражается в слоях атмосферы и в облаках. Большое количество излучения рассеивается в слоях атмосферы, вследствие чего образуется рассеянное излучение (диффузное). На поверхности Земли тоже часть излучения отражается и превращается в рассеянное. Сумма рассеянного и прямого излучения называется суммарным солнечным излучением. Рассеянное излучение может составлять от 20 до 60%.

На количество энергии, поступающее к поверхности Земли, так же влияет географическая широта и время года. Ось нашей планеты, проходящая через полюса, наклонена на 23,5° относительно орбиты вращения вокруг Солнца. В период с марта

до сентября солнечный свет больше попадает на Северное полушарие, в остальное время – Южное. Поэтому продолжительность дня в летнее и зимнее время разная. Широта местности та влияет на продолжительность светового дня. Чем Севернее, тем длиннее в летнее время и наоборот.

Эволюция Солнца

Предполагается, что Солнце родилось в сжавшейся газопылевой туманности. Есть, по крайней мере, две теории относительно того, что дало толчок первоначальному сжатию туманности. Согласно одной из них предполагается, что один из спиральных рукавов нашей галактики проходил через нашу область пространства примерно 5 млрд. лет назад. Это могло вызвать легкое сжатие и привести к формированию центров тяготения в газо-пылевом облаке. Действительно, сейчас вдоль спиральных рукавов мы видим довольно большое количество молодых звезд и светящихся газовых облаков. Другая теория предполагает, что где-то недалеко (по масштабам Вселенной, конечно) взорвалась древняя массивная сверхновая звезда. Возникшая ударная волна могла быть достаточно сильной, чтобы инициировать звездообразование в «нашей» газо-пылевой туманности. В пользу этой теории говорит то, что ученые, изучая метеориты, обнаружили довольно много элементов, которые могли образоваться при взрыве сверхновой.

Далее, когда столь грандиозная масса (2*1030кг) сжималась под действием сил гравитации, она сама себя сильно разогрела внутренним давлением до температур, при которых в ее центре смогли начаться термоядерные реакции. В центральной части температура на Солнце равна 15000000K, а давление достигает сотни миллиардов атмосфер. Так зажглась новорожденная звезда (не путайте с новыми звездами).

В основном Солнце в начале своей жизни состояло из водорода. Именно водород в ходе термоядерных реакций превращается в гелий, при этом выделяется энергия, излучаемая Солнцем. Солнце принадлежит к типу звезд, называемых желтыми карликами. Оно – звезда главной последовательности и относится к спектральному классу G2. Масса одинокой звезды довольно однозначно определяет ее судьбу. За время жизни (~5 миллиардов лет), в центре нашего светила, где температура достаточно высока, сгорело около половины всего имеющегося там водорода. Примерно столько же, 5 миллиардов лет, Солнцу осталось жить в таком виде, к которому мы с вами привыкли.

После того, как в центре светила водород будет на исходе, Солнце увеличится в размерах, станет красным гигантом. Это сильнейшим образом скажется на Земле: повысится температура, океаны выкипят, жизнь станет невозможной. Затем, исчерпав «топливо» совсем и не имея более сил держать внешние слои красного гиганта, наша звезда закончит свою жизнь как белый карлик, порадовав неведомых нам внеземных астрономов будущего новой планетарной туманностью, форма которой может оказаться весьма причудливой благодаря влиянию планет.

Смерть Солнца по времени

  • Уже через 1,1 млрд. лет, светило увеличит свою яркость на 10 %, что повлечет сильное нагревание Земли.
  • Через 3,5 млрд. лет, яркость увеличиться на 40%. Начнут испаряться океаны и наступит конец всему живому на Земле.
  • По прошествии 5,4 млрд. лет, в ядре звезды закончится топливо – водород. Солнце начнет увеличиваться в размерах, за счет разрежения внешней оболочки и нагрева ядра.
  • Через 7,7 млрд. лет, наша звезда превратиться в красного гиганта, т.к. увеличиться в 200 раз из-за этого будет поглощена планета Меркурий.
  • В конце, через 7,9 млрд. лет, внешние слои звезды настолько разредятся, что распадаться на туманность, а в центре бывшего Солнца будет маленький объект – белый карлик. Так закончит существование наша Солнечная система. Все строительные элементы, оставшиеся после распада, не пропадут, они станут основой для зарождения новых звезд и планет.

  1. Наиболее распространенными звездами во вселенной являются красные карлики. По большей части это происходит из-за их низкой массы, что позволяет им жить в течение очень долгого времени, прежде чем превратиться в белых карликов.
  2. Почти все звезды во вселенной имеют одинаковый химический состав и реакция ядерного синтеза происходит в каждой звезде и является практически идентичной, определяясь лишь запасом топлива.
  3. Как мы знаем как и белый карлик, нейтронные звезды являются одним из конечных процессов эволюции звёзд, во многом возникая после взрыва сверхновой. Ранее зачастую тяжело было отличить белого карлика от нейтронной звезды, сейчас же ученые с помощью телескопов нашли различия в них. Нейтронная звезда собирает вокруг себя больше света и это легко увидеть с помощью инфракрасных телескопов. Восьмое место среди интересных фактов о звездах.
  4. Благодаря своей невероятной массе, согласно общей теории относительности Эйнштейна, черная дыра на самом деле, это изгиб пространства, таким образом, что все в пределах их гравитационного поля выталкивается к нему. Гравитационное поле черной дыры настолько сильно, что даже свет не может избежать ее.
  5. На сколько мы знаем когда у звезды заканчивается топливо, звезда может вырастать в размерах более чем в 1000 раз, далее она превращается в белого карлика, а из-за скорости реакции взрываются. Эта реакция более известна как сверхновая. Ученые предполагают, что в связи с этим долгим процессом и образуются, столь загадочные черные дыры.
  6. Многие звезды которые мы наблюдаем в ночном небе, могут казаться одним проблеском света. Однако это не всегда так. Большинство звезд, которые мы видим в небе на самом деле две звездные системы, или бинарные звездные системы. Они просто невообразимо далеко и нам кажется, что мы видим лишь одно пятнышко света.
  7. Звезды которые имеют самую короткую продолжительность жизни, являются наиболее массивными. Они представляют собой высокую массу химических веществ и как правило сжигают свое топливо гораздо быстрее.
  8. Не смотря на то что нам иногда кажется что Солнце и звезды мерцают, на самом деле это не так. Эффект мерцания является лишь светом от звезды, который в это время проходит через атмосферу Земли но еще не достиг наших глаз. Третье место среди самых интересных фактов о звездах.
  9. Расстояния, участвующие в оценке того, насколько далеко до звезды невообразимо огромны огромны. Рассмотрим пример: До ближайшая до земли звезда находится на расстоянии примерно 4.2 световых года, и что бы добраться до нее, даже на самом быстром нашем корабле, потребуется около 70 000 лет.
  10. Самая холодная известная звезда, это коричневый карлик «CFBDSIR 1458+10B» имеющий температуру всего около 100 °C. Самая горячая известная звезда, это голубой сверх гигант, находящийся в млечном пути под названием «Дзета Кормы» ее температура более 42 000 °C.