Компоненты современного теплоснабжения дома. Приводятся рекомендации по выбору оптимальной системы теплоснабжения

Описание:

Энергетика играет важную роль в жизни большого города, особенно такого как Москва. Занимающая территорию около 1000 км2 и насчитывающая более 10 млн жителей, Москва расположена в холодной климатической зоне. Продолжительность отопительного сезона составляет примерно 220 дней, и даже краткосрочное отключение энергоснабжения может привести к кризисной ситуации.

Современное состояние системы теплоснабжения в Москве и в России

Энергетика играет важную роль в жизни большого города, особенно такого как Москва. Занимающая территорию около 1000 км 2 и насчитывающая более 10 млн жителей, Москва расположена в холодной климатической зоне. Продолжительность отопительного сезона составляет примерно 220 дней, и даже краткосрочное отключение энергоснабжения может привести к кризисной ситуации. О современном состоянии системы теплоснабжения в Москве мы попросили рассказать М. А. Лапира – руководителя Департамента топливно-энергетического хозяйства г. Москвы.

Уважаемый Михаил Альбертович, в течение длительного времени вы работаете в топливно-энергетическом хозяйстве Москвы. Скажите, пожалуйста, как за это время изменилась система теплоснабжения в Москве и каково сегодня положение в целом по стране?

В 30-х годах в Москве было очень мало домов, оборудованных отоплением. Да и тепло в то время в Москве давали местные угольные котельные, часто подвальные, которых насчитывалось в городе около шести тысяч.

В 1950–1955 годах их начали активно ликвидировать, т. е. переводить дома на централизованное теплоснабжение. С тех пор было убрано большинство местных котельных, и сегодня централизованным теплоснабжением в Москве пользуется более 96 % потребителей.

Конечно и в наше время остались котельные, но они находятся в таких местах, куда не дошли тепловые сети либо неэффективно их проводить. Вместе с тем строятся и современные отдельные отопительные системы. Так, в микрорайоне Куркино дома обслуживаются собственными котельными. Это связано с тем, что проводить сети в данное место сложно и невыгодно. К тому же они нарушат уникальную природу.

В целом в России теплоснабжение обеспечивают около 500 ТЭЦ, 6,5 тыс. котельных мощностью более 20 Гкал/ч, более 180 тыс. мелких котельных и около 600 тыс. автономных индивидуальных теплогенераторов. Суммарная реализация тепла в стране составляет около 2 100 млн Гкал/год, в том числе жилищный сектор и бюджетная сфера потребляют около 1 100 млн Гкал, промышленность и прочие потребители – почти 1 000 млн Гкал. На теплоснабжение расходуется более 400 млн т. у. т./год.

В стране развита теплофикация: на ТЭЦ в наиболее экономичном теплофикационном режиме вырабатывается 71 % от общей выработки тепла. Только использование преимуществ комбинированной выработки тепловой и электрической энергии позволяет иметь относительно благоприятную среднюю цифру удельных расходов топлива на реализацию тепловой энергии – около 0,2 т. у. т./Гкал.

Расскажите, пожалуйста, что сегодня представляет собой топливно-энергетическое хозяйство Москвы?

Наша столица является крупнейшим потребителем топливно-энергетических ресурсов в России. Годовой объем расхода электроэнергии и тепла составляет соответственно около 30 млрд кВт ч и 85 млн Гкал. Электротеплоснабжение города обеспечивают 14 ТЭЦ ОАО «Мосэнерго», 67 тепловых станций, 107 мелких отопительных котельных ГУП «Мостеплоэнерго» и другие источники. Все ТЭЦ вырабатывают тепло в комбинированном цикле, а это около 75 % всего вырабатываемого тепла.

В структуре теплового баланса города ТЭЦ, районные и квартальные тепловые станции обеспечивают около 96 % тепловой потребности, децентрализованные источники тепла – около 4 %.

Основным видом топлива, сжигаемым на энергетических объектах, является газ. Его доля в общем балансе топлива составляет около 97 %.

К сожалению, руководство города в соответствии с возложенными на него функциональными обязанностями не может активно влиять на снижение роста цен на газ, хотя неоднократно заявляло о недопустимости повышения цены на газ. Повышение цены неизбежно ведет и к повышению тарифов за услуги теплоснабжения, горячего водоснабжения, электроэнергии. По принятым законам тарифы должны регулироваться 1 раз в год, и в Москве мы будем выполнять принятые законы. В 2003 году Региональной энергетической комиссии Москвы удалось отстоять повышение тарифа на электрическую энергию на 14 %, что соответствует нормативной величине по Российской Федерации.

Какие, на ваш взгляд, основные проблемы стоят сегодня перед теплоснабжением и каковы перспективы его развития?

Перед энергетиками Москвы стоит сложная задача – обеспечить надежную работу энергетического хозяйства и повысить эффективность использования энергии для удовлетворения постоянно растущего спроса на энергоресурсы с одновременным улучшением экологической ситуации и экономией бюджетных средств.

Надежность и качество энергообеспечения потребителей Москвы напрямую зависит от своевременного и полного выполнения работ по реконструкции и техническому перевооружению объектов энергетического хозяйства города.

На сегодняшний день определены ориентировочные приросты тепловой и электрической нагрузки по Москве на перспективу. Наш завтрашний день во многом зависит от строительства в Москве, объемы которого не уменьшаются. Помимо жилья, появляется много объектов социальной направленности: культурных, спортивных, торговых центров. Все они требуют энергии, тепла. Предполагается, что потребление увеличится на 15 % до 2010 года.

Даже небольшое перечисление объектов энергетики, которые должны быть введены в ближайшие годы, дает представление о масштабах задач, которые должны быть решены энергетиками Москвы. Для инженерного обеспечения города необходимо в ближайшие годы построить пять новых тепловых станций, провести реконструкцию на 16 существующих, ввести в эксплуатацию шесть тепловых насосных перекачивающих станций, построить 24 км основных тепломагистралей от ТЭЦ-27 и ТЭЦ-21.

Учитывая возрастающие объемы строительства жилья коттедж-ного типа (малоэтажная застройка) в удаленных от центра новых жилых районах Москвы, таких как Куркино и др., неизбежно возникают решения по энергоснабжению этих районов за счет децентрализованных автономных источников.

Отмечу, что основной задачей всегда остается предотвращение и уменьшение аварийности в системе теплоснабжения.

В зимний период 2002–2003 годов в Москве было 2 033 аварийных отключений, причем максимальное по продолжительности отключение, которое имело место в двух районах, продолжалось одни сутки, а в остальных случаях не более 6–7 часов. Для сравнения в отопительном сезоне 2001–2002 годов было 2 312 аварийных отключений.

Для предотвращения и сокращения аварийных ситуаций на тепловых сетях основное внимание уделяется работам по следующим направлениям:

Применение при реконструкции тепловых сетей методом бесканальной прокладки трубопроводов в пенополиуретановой изоляции производства ЗАО «Мосфлоулайн», хорошо зарекомендовавших себя по качеству и надежности.

Наряду с внедрением металлических труб с эффективной пенополиуретановой изоляцией в системах горячего и холодного водоснабжения и газа применяются гибкие пластиковые трубы, позволяющие увеличить срок службы до 50 лет, сократить время монтажа (в 2–3 раза) и снизить теплопотери при эксплуатации. Начиная с 2002 года при замене труб для горячего водоснабжения используются трубы производства московского завода «АНД Газтрубпласт».

Какое значение придается энергосбережению в современных системах теплоснабжения? Какие энергосберегающие мероприятия являются приоритетными для Москвы?

В процессе реформирования ЖКХ все более важную роль играет внедрение новых энергосберегающих мероприятий в масштабах города. Основными из них являются:

ГТУ надстройки

на тепловых станциях ГУП «Мостеплоэнерго» для выработки электроэнергии;

Внедрение энергоблоков для энергообеспечения группы зданий;

Использование давления поступающего в Москву газа для выработки электроэнергии без сжигания топлива на газораспределительных станциях ГУП «Мосгаз»;

Внедрение теплонасосных установок, использующих тепло грунта и сточных вод для отопления зданий.

Энергосбережение сегодня особенно актуально, т. к. именно при внедрении энергоэффективных мероприятий у потребителя достигается максимальная экономия энергоресурсов.

Государственная энергосберегающая политика проводится в Москве через реализацию программ энергосбережения. Департамент топливно-энергетического хозяйства координирует все работы по проведению энергосберегающих мероприятий в городском хозяйстве.

Работа в Москве в области энергосбережения принимает все более системный характер. В нее вовлечены практически все отрасли народного хозяйства Москвы: наука, промышленность, энергетика, жилищная и социальная сферы.

Правительство РФ, Государственная Дума и, в частности, Комиссия Государственной Думы по энергосбережению настойчиво рекомендуют усилить роль государства в деле энергосбережения. Департамент топливно-энергетического хозяйства в течение двух лет работал над проектом городской программы по энергосбережению. С 2001 года работы по энергосбережению проводятся в соответствии с принятой Правительством Москвы Городской программой по энергосбережению на 2001–2003 годы в г. Москве.

Выполнение всего комплекса мероприятий программы только в 2002 году дало экономичес-кий эффект в 288 тыс. т. у. т. и составило 103 % от планируемой.

Каковы перспективы использования в Москве подомового и поквартирного учета тепла? Что сдерживает его массовое внедрение?

Важную роль в процессе реформирования ЖКХ должен сыграть не расчетный, а приборный учет потребляемых ресурсов.

В новом строительстве все жилые здания оснащаются подомовыми узлами учета тепла и воды.

Более сложной оказалась проблема с установкой приборов учета тепла в районах существующей жилой застройки. Расчет по приборам для всех жителей дома можно вести только тогда, когда приборы установлены в каждой квартире. А это не всегда возможно по техническим и экономическим причинам.

При маленьких расходах и разностях температур, характерных для одной квартиры, все более или менее доступные модели квартирных счетчиков дают большие погрешности. И несмотря на прямой способ измерения, мы не получим точный результат для каждой квартиры. Кроме того, квартирные счетчики не учитывают то тепло, которое расходуется в жилом доме вне квартир. Получаются большие расхождения между суммарной оплатой всех жильцов по показаниям квартирных счетчиков и счетами, предъявляемыми к оплате поставщиком тепла.

Чтобы избежать этих расхождений, на Западе в домах с квартирными счетчиками уже десятки лет применяется другая схема оплаты. Расчет с поставщиком тепла производится по общедомовому счетчику, а оплаты для жильцов рассчитываются путем распределения общей суммы пропорционально показаниям квартирных счетчиков с учетом общих затрат дома. Кроме того, есть целый ряд других проблем, связанных с внедрением квартирных счетчиков.

Несмотря на указанные трудности, город будет активно реализовывать программу по внедрению приборного учета в 2004–2005 годах, как это предусмотрено постановлением Правительства Москвы.

Как решаются в Москве экологические проблемы на источниках, вырабатывающих тепловую энергию?

Приоритетным направлением, которое координирует и контролирует Департамент топливно-энергетического хозяйства, является проведение природоохранных мероприятий на энергетических объектах города, которые выбрасывают около 6 % суммарного объема вредных веществ в атмосферу города. Большинство проводимых природоохранных мероприятий являются одновременно и энергосберегающими.

Природоохранные мероприятия на энергетических объектах проводились в соответствии с двумя принятыми Правительством Москвы экологическими программами (отраслевой и городской) и первоочередными природоохранными мероприятиями на период до 2003 года по реализации генерального плана развития города Москвы и концепции обеспечения экологической безопасности Москвы.

По сравнению с 1999 годом выбросы энергетических предприятий в 2000–2002 годах были снижены более чем на 20 тыс. т. Всего же за период осуществления мероприятий, включенных в указанные экологические программы, выбросы загрязняющих веществ на энергетических предприятиях по сравнению с 1992 годом снижены более чем в 3 раза.

Не следует забывать, что какие бы реформы в энергетике не проводились, главная задача остается неизменной – энергообеспечение Москвы должно оставаться надежным.

> Документация Современные системы теплоснабжения (стс) представляют собой достаточно сложные технические системы со значительным количеством разнообразных по своему функциональному назначению элементов. характерным. В работе выбраны основные показатели систем теплоснабжения и газоснабжения, которые позволили обосновать оптимальные схемы теплоснабжения микрорайона. Приведен анализ основных факторов, влияющих на работу системы теплоснабжения. Приводятся рекомендации по выбору оптимальной системы теплоснабжения. Россия получила в наследство от СССР высокий уровень централизации теплоснабжения. При этом обеспечивалась комбинированная выработка теплоты и электричества. Эффективно очищались и рассеивались продукты сгорания. Но в то же время существующие централизованные системы теплоснабжения обладают существенными недостатками. Это перегрев зданий в переходный период, большие потери теплоты трубами, отключение потребителей на время проведения профилактических работ. Состояние систем теплоснабжения в России является критическим. Число аварий на сетях теплоснабжения возросло в пять раз по сравнению с 1991 г. (2 аварии на 1 км тепловых сетей). Из 136 тысяч км тепловых сетей 29 тысяч км находятся в аварийном состоянии. Потери теплоты при транспортировании теплоносителя достигают 65 %. То есть каждая пятая тонна условного топлива идет на обогрев атмосферы и грунта. Сокращение финансирования и плохое качество перекладки ухудшают ситуацию. Существует противоречие, которое заключается в том, что производители сверхнормативные потери теплоты включают в тарифы и требуют оплаты по произведенной, а не по потребляемой теплоте. Кроме того, потребители должны платить по площади отапливаемого помещения, то есть независимо от количества и качества теплоносителя. В настоящее время крайне велик интерес к децентрализованному теплоснабжению. Это связано с появлением на рынке большого разнообразия малых автоматизированных котлов зарубежного и отечественного производства, работающих в автоматическом режиме и потому, что в качестве топлива в таких системах используется газ. При таких условиях они становятся конкурентоспособными с централизованными источниками, которыми являются ТЭЦ и большие котельные. В России эксплуатируются несколько десятков многоэтажных домов с поквартирным отоплением до пяти этажей. Этажность ограничена действующими строительными нормами. В порядке эксперимента Госстрой и ГУПО МВД РФ разрешили строительство 9-14-этажных домов с поквартирным отоплением в Смоленской, Московской, Тюменской, Саратовской областях. При эксплуатации настенных котлов с закрытой топкой поступление воздуха должно быть обеспечено не только на горение, но и на 3-хкратный воздухообмен в помещении кухни, где, как правило, их устанавливают. Дымоудаление при поквартирном теплоснабжении связано с устройством наружных и внутренних газоходов из коррозионно-стойкого металла с теплоизоляцией, исключающей конденсацию при периодической работе теплогенераторов в переходный период отопительного сезона. В высотных зданиях возникают проблемы с тягой на нижних этажах (самая большая тяга) и верхних (слабая тяга) этажах. При использовании децентрализованного теплоснабжения подвалы и лестничные марши не отапливаются, что приводит к промерзанию фундамента и снижению срока службы здания в целом. Жители квартир, находящихся в центральной части, могут греться за счет владельцев окружающих квартир. Создается определенный тип «энергопаразитов». Экологические параметры настенных котлов находятся в норме, и показатель эмиссии NOx лежит в пределах от 30 до 40 мг/(кВт ч). В то же время настенные котлы имеют рассредоточенные в жилом районе выбросы продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую ситуацию, загрязняя воздух в жилом районе. В связи с перечисленными выше недостатками и преимуществами систем централизованного и автономного теплоснабжения сразу же возникает вопрос: где и в каких случаях наиболее целесообразно автономное теплоснабжение, а в каких централизованное? После сбора всей необходимой информации выполнено сравнение четырех вариантов систем теплоснабжения на примере микрорайона Куркино г. Москвы. При этом во всех квартирах устанавливаются электрические плиты. I вариант - централизованное теплоснабжение от котельных. II вариант - централизованное теплоснабжение от АИТ (автономных источников теплоты). III вариант - децентрализованное теплоснабжение от крышных котельных. IV вариант - поквартирное теплоснабжение. В первом варианте разработана система централизованного теплоснабжения, где источником теплоты является котельная, от которой предусмотрена двухтрубная прокладка тепловых сетей до ЦТП, и после ЦТП четырехтрубная на отопление и горячее водоснабжение. В этом случае подача газа осуществляется к котельной. В четвертом варианте в квартире устанавливается местный источник теплоты, который обеспечивает подачу теплоносителя в системы отопления и горячего водоснабжения. В этой схеме предложена 2-хступенчатая система подачи газа. 1–я ступень – газопровод среднего давления, который прокладывается внутри квартала (в каждом доме устанавливается шкафной регуляторный пункт). 2–я ступень – внутридомовые газопроводы низкого давления (газ подводится только к местному источнику теплоты). Второй и третий варианты являются промежуточными между первым и четвертым. Во втором случае в качестве источника теплоты используются АИТ (Автономный Источник Теплоты), от которых предусмотрена двухтрубная прокладка от АИТ до ИТП (Индивидуального Теплового Пункта), а от ИТП – четырехтрубная на отопление и горячее водоснабжение. В этом случае предусматривается подача газа к АИТ (автономным источникам теплоты) по газопроводам среднего давления. В третьем случае в качестве источника теплоты используются крышные котельные сравнительно малой мощности (от 300 до 1000 кВт), которые располагаются непосредственно на крыше здания и удовлетворяют потребность в теплоте на нужды отопления, вентиляции и горячего водоснабжения. Газопровод к котельной подводится по наружной стене здания открыто в местах, удобных для обслуживания и исключающих возможность его повреждения. Варианты систем теплоснабжения представлены на рис. 1. Технические решения по теплоснабжению на базе нескольких вариантов должны приниматься на основе технико-экономических расчетов, оптимальный вариант которых находится путем сравнения возможных решений . Наиболее дорогостоящим вариантом теплоснабжения является первый - централизованное теплоснабжение от котельной. При такой системе большая часть затрат приходится на тепловые сети с учетом ЦТП, что составляет 63,8 % от общей стоимости системы в целом. Из них на прокладку только тепловых сетей приходится 84,5 %. Затраты на сам источник теплоты – 34,7 %, на долю газовых сетей с учетом ГРП и ГРПШ приходится 1,6 % от общей суммы на систему. Четвертый вариант (с поквартирным теплоснабжением) всего на 4,2 % дешевле первого (рис. 2). Значит, их можно принять как взаимозаменяемые. Если в первом варианте большую часть затрат составляют тепловые сети, то при поквартирном теплоснабжении – источник теплоты, то есть настенные котлы – 62,14 % от общей стоимости системы в целом. Кроме этого при поквартирном теплоснабжении увеличиваются затраты на прокладку газовых сетей. Стоит обратить внимание на два других варианта. Это крышные котельные и АИТ. С точки зрения экономики наиболее выгодным является второй вариант, то есть централизованное теплоснабжение от АИТ (автономных источников теплоты). В данном варианте большая часть затрат приходится на тепловые сети с учетом ИТП, что составляет 67,3 % от общей стоимости системы в целом. Из них на сами тепловые сети приходится 20,3 %, остальные 79,7 % - на ИТП. Затраты на источник теплоты составляют 26 %, на долю газовых сетей с учетом ГРП и ГРПШ приходится 6,7 % от общей суммы на систему. Затраты на прокладку труб системы теплоснабжения зависят от протяженности тепловых сетей. Следовательно, приближение источника теплоты, работающего на газе, к потребителю путем устройства пристроенных, встроенных, крышных и индивидуальных теплогенераторов значительно снизит затраты на систему. Кроме этого статистика говорит о том, что большая часть отказов системы централизованного теплоснабжения приходится на тепловые сети, а значит, сокращение протяженности тепловых сетей повлечет за собой повышение надежности системы теплоснабжения в целом . Поскольку теплоснабжение в России имеет большое социальное значение, повышение его надежности, качества и экономичности является важнейшей задачей. Любые сбои в обеспечении населения и других потребителей тепловой энергией негативным образом воздействуют на экономику страны и усиливают социальную напряженность. При сложившейся напряженной ситуации необходимо производить внедрения ресурсосберегающих технологий. Кроме этого, для повышения надежности прокладываемых теплопроводов необходимо применять предварительно изолированные трубы бесканальной прокладки с пенопололиуретановой изоляцией в полиэтиленовой оболочке («труба в трубе»). Сутью реформы жилищно-коммунального хозяйства должно стать не повышение тарифов, а регулирование прав и обязанностей потребителя и производителя теплоты. Необходимо согласовать нормативно-правовые вопросы и разработать базу технологического регулирования. Должны быть созданы все условия экономической привлекательности для инвестиций. Рис. 1. Принципиальные схемы систем теплоснабжения Рис. 2. График приведенных затрат Литература 1. Экономика теплогазоснабжения и вентиляции: Учеб. для вузов / Л. Д. Богуславский, А. А. Симонова, М. Ф. Митин. – 3-е изд., перераб. и доп. – М.: Стройиздат, 1988. - 351 с. 2. Ионин А. А. и др. Теплоснабжение. – М.: Стройиздат, 1982. - с. 336. Материалы Международной научно-технической конференции «Теоретические основы теплогазоснабжения и вентиляции», 23 – 25 ноября 2005, МГСУ В статье рассмотрены вопросы оптимизации параметров функционирования системы теплоснабжения с использованием эксергетических методов. К таким методам относится метод термоэкономики, в котором сочетаются и термодинамические, и экономические составляющие анализа систем. Полученные в результате применения указанного метода модели позволяют получить оптимальные параметры функционирования системы теплоснабжения в зависимости от внешних воздействий. Современные системы теплоснабжения (СТС) представляют собой достаточно сложные технические системы со значительным количеством разнообразных по своему функциональному назначению элементов. Характерным для них является общность ехнологического процесса получения пара или горячей воды на котельной за счет энергии, выделяемой при сжигании органического топлива. Это позволяет в различных экономико-математических моделях учитывать только конечный результат работы СТС – подачу к потребителю теплоты Qпот в тепловых или стоимостных показателях, а в качестве главных факторов, определяющих величину Qпот, считать затраты на производство и транспортирование теплоты: расход на топливо, электроэнергию и другие материалы, заработную плату, амортизацию и ремонт оборудования и пр. Обзор методов термодинамического анализа позволяет сделать вывод, что оптимизацию параметров функционирования СТС целесообразно проводить с использованием эксергетических методов. К таким методам относится метод термоэкономики, в котором удачно сочетаются и термодинамические, и экономические составляющие анализа СТС. Основной идеей метода термоэкономики является использование для оценки изменений, происходящих в энергетической системе, некоторой обобщенной термодинамической характеристики, обеспечивающей получение конечного полезного эффекта. Учитывая, что в СТС энергия может передаваться как в форме теплоты, так и в форме механической работы, в качестве обобщенной термодинамической характеристики выбрана эксергия . Под эксергией теплоты следует понимать работу, которая может быть получена в обратимом прямом цикле при переходе некоторого количества теплоты Qh от греющего источника с температурой Th к окружающей среде с температурой Toc : где hT - термический КПД прямого обратимого цикла. При использовании термоэкономического метода анализируются изменения, происходящие с основным потоком эксергии, обеспечивающим получение полезного конечного эффекта (в случае анализа СТС - эксергии воздуха в помещении). При этом рассматриваются и учитываются потери эксергии, возникающие при передаче и преобразовании энергии в отдельных элементах СТС, а также экономические затраты, связанные с эксплуатацией соответствующих элементов СТС, наличие которых определяется выбранной схемой. Анализ изменений, претерпеваемых только основным потоком эксергии, обеспечивающим получение полезного конечного эффекта, дает возможность представить термоэкономическую модель СТС в виде ряда отдельных зон, соединенных последовательно. Каждая зона представляет собой группу элементов, обладающих относительной самостоятельностью в рамках системы. Такое линеаризованное представление технологической схемы СТС значительно упрощает все дальнейшие расчеты за счет исключения из рассмотрения отдельных технологических связей. Таким образом, метод термоэкономики, включающий термоэкономическую модель СТС, позволяет оптимизировать параметры функционирования СТС. На основе метода термоэкономики разрабатывается термоэкономическая модель СТС, принципиальная схема которой показана на рис. 1, где система водяного отопления с искусственной циркуляцией воды присоединяется к тепловой сети по независимой схеме. Рис. 1. Принципиальная схема СТС На рис. 1 обозначены элементы СТС, учитываемые при разработке модели: 11 - насос (компрессор) с электродвигателем для подачи топлива в котлоагрегат; 12 – теплообменный аппарат (котел); 13 – сетевой насос с электродвигателем для обеспечения циркуляции воды в теплосети; 14 - подающий теплопровод; 15 - обратный теплопровод; 211 – водоводяной теплообменник местного теплового пункта; 221 – циркуляционный насос местной системы отопления с электродвигателем; 212 – подогреватель сырой воды; 222 – насос исходной воды с электродвигателем; 232 – подпиточный насос с электродвигателем; 31 - отопительные приборы. При построении термоэкономической модели СТС в качестве целевой функции используется функция энергетических затрат. Энергетические затраты, непосредственно связанные с термодинамическими характеристиками системы, определяют с учетом эксергии стоимость всех потоков вещества и энергии, поступающих в рассматриваемую систему. Кроме того, для упрощения получаемых выражений сделаны следующие допущения: · не учитывается изменение потерь давления в теплопроводах при транспортировке теплоносителя. Потери давления в трубах и теплообменных аппаратах считаются постоянными и не зависящими от режима работы; · потери эксергии, происходящие во вспомогательных теплопроводах (трубах в котельной) и теплопроводах системы отопления (внутренних трубах) в результате теплообмена теплоносителя с окружающей средой, считаются постоянными, не зависящими от режима работы СТС; · потери эксергии, вызванные утечками воды из сети, считаются постоянными, не зависящими от режима работы СТС; · не учитывается теплообмен рабочего тела с окружающей средой, происходящий в котле, баках различного назначения (декарбонизаторах, баках-аккумуляторах) и теплообменных аппаратах через их наружную поверхность, омываемую воздухом; · нагрев теплоносителя за счет передачи ему дополнительной теплоты дымовых газов, также как и подогрев воздуха, поступающего в топку, теплотой уходящих газов, в рассматриваемом случае не оптимизируются. Считается, что основная часть теплоты дымовых газов используется для подогрева питательной или сетевой воды в экономайзере. Оставшаяся часть теплоты дымовых газов выбрасывается в атмосферу, при этом температура уходящих дымовых газов Туг в установившемся режиме работы котлоагрегата принимается равной 140 °С; · не учитывается нагрев перекачиваемой воды в насосах. Учитывая изложенные исходные положения и сделанные допущения, термоэкономическая модель СТС, принципиальная схема которых приведена на рис. 1, может быть представлена в виде трех последовательно соединенных зон, изображенных на рис. 2 и ограниченных контрольной поверхностью. Зона 1 объединяет насос (компрессор) с электродвигателем для подачи топлива в котлоагрегат 11, теплообменный аппарат (котел) 12, сетевой насос с электродвигателем для подачи теплоносителя потребителям 13, подающий 14 и обратный 15 теплопроводы. В зону 2(1) входит водоводяной теплообменник местного теплового пункта 211 и циркуляционный насос с электродвигателем 221, а в зону 2(2) – подогреватель сырой воды 212, насос сырой воды с электродвигателем 222 и подпиточный насос с электродвигателем 232. Зоны 2(1) и 2(2) представляют собой параллельное соединение отдельных элементов термоэкономической модели многоцелевой СТС, обеспечивающей подвод теплоты к объектам с различной температурой. В зону 3 входят отопительные приборы 31. От внешнего источника через контрольную поверхность к различным зонам термоэкономической модели СТС подводится эксергия: е11 - для привода электродвигателя топливного насоса (компрессора); е13 - для привода электродвигателя сетевого насоса; е22(1) - для привода электродвигателя циркуляционного насоса; е22(2) - для привода электродвигателя насоса сырой воды; е23(2) - для привода электродвигателя подпиточного насоса. Цена эксергии, подводимой от внешнего источника, т. е. электрической энергии, известна и равна Цэл. Равенство электрической энергии и эксергии объясняется тем, что электрическая энергия может быть полностью превратима в любой другой вид энергии . От внешнего источника подводится топливо, расход которого равен vт, а цена Цт. Так как в процессе функционирования СТС основное место занимают тепловые процессы, то в качестве оптимизируемых переменных используются такие, которые позволяют разработать термоэкономическую модель СТС и обеспечивают сравнительно простое определение температурных условий протекания процессов, имеющих место в СТС. При решении задачи статической оптимизации СТС с учетом сделанных допущений и принятых обозначений величина энергетических затрат, включающих затраты на электрическую энергию и топливо, определяется по зависимости: где t - время работы СТС. Расход электрической энергии на привод двигателей насосов и расход топлива зависят от режима работы СТС, а значит, от температурных напоров в теплообменных аппаратах, температуры уходящих газов и интервала изменения температуры теплоносителя. Поэтому правая часть выражения (2) является функцией выбранных оптимизируемых переменных. Следовательно, величина энергетических затрат является функцией нескольких переменных, экстремальное значение которой определяется при условии равенства нулю частных производных функции энергетических затрат по оптимизируемым переменным. Такой подход справедлив, если все оптимизируемые переменные рассматриваются как независимые и задача сводится к определению безусловного экстремума. В действительности эти переменные связаны между собой. Получение аналитических выражений, описывающих взаимосвязь между всеми оптимизирующими переменными, представляется достаточно сложной задачей. В то же время применение в ходе исследований метода термоэкономики позволяет упростить эту задачу. Как показано на рис. 2, термоэкономическая модель СТС представлена в виде ряда последовательно соединенных зон, что позволяет выразить эксергию, подводимую к каждой из зон, в виде функциональных зависимостей от потока эксергии, выходящего из рассматриваемой зоны, и воздействующих на эту зону оптимизируемых переменных. С учетом сказанного, количество эксергии, подводимой к различным элементам СТС от внешнего источника ej (см. рис. 2), и объемный расход топлива vт, могут быть в общем виде представлены следующим образом: Уравнения, входящие в систему (4), относятся к разным зонам термоэкономической модели, связь между которыми осуществляется основным потоком эксергии. Поток эксергии, связывающий отдельные зоны, представлен в виде функциональной зависимости от выходящего из зоны потока эксергии и воздействующих на рассматриваемую зону оптимизируемых переменных: В выражениях (4) и (5) ej - означает количество эксергии, а Ej - функцию, описывающую его изменение. Наличие связей между оптимизируемыми переменными заставляет рассматривать оптимизацию величины энергетических затрат как задачу оптимизации функции нескольких переменных при наличии ограничений типа равенств (уравнений связи), т. е. как задачу нахождения условного экстремума. Задачи, связанные с нахождением условного экстремума, могут быть решены с помощью метода неопределенных множителей Лагранжа. Применение метода неопределенных множителей Лагранжа сводит задачу нахождения условного экстремума исходной функции энергетических затрат (1) к задаче отыскания безусловного экстремума новой функции – лагранжиана. С учетом приведенных выше систем уравнений (4) и (5) выражение лагранжиана для рассматриваемой задачи оптимизации параметров функционирования СТС записывается следующим образом: При сравнении выражения для энергетических затрат (2) и для лагранжиана (6) с учетом зависимостей (4) и (5) можно убедиться в их полной тождественности. Для нахождения условий экстремума должны быть взяты частные производные от функции Лагранжа (6) по всем переменным (как оптимизируемым, так и дополнительным, которые вводятся уравнениями связи) и приравнены нулю. Частные производные по потокам эксергии, связывающим отдельные зоны термоэкономической модели ej, позволяют вычислить значения множителей Лагранжа lj. Так, частная производная по e2(1) имеет следующий вид: Система уравнений (8) устанавливает связь между диссипацией энергии и энергетическими затратами в каждой зоне термоэкономической модели при определенных значениях экономических показателей Цэл, Цт, l2(1), l2(2), l3. Величины l2(1), l2(2), l3 в общем случае выражают собой скорость изменения энергетических затрат при изменении количества эксергии или другими словами – цену единицы эксергии, выходящей из каждой зоны термоэкономической модели. Решение системы (8) с учетом уравнений (7) позволяет определить необходимые условия для нахождения минимума лагранжиана (6). Для решения систем уравнений (7) и (8) выражения (4) и (5), записанные в общем виде, необходимо представить в виде развернутых аналитических соотношений, являющихся составляющими математического описания процессов, происходящих в отдельных элементах СТС. Литература Бродянский В. М., Фратшер В., Михалек К. Эксергетический метод и его приложения. Под. ред. В. М. Бродянского - М.: Энергоатомиздат, 1988. - 288 с.

Различают два вида теплоснабжения - централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное - ТС городского района;

3. городское - ТС города;

4. межгородское - ТС нескольких городов.

Процесс ЦТС состоит из трех операций - подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла:

Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование;

Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на :

Низкопотенциальное, с температурой до 150 0 С;

Среднепотенциальное, с температурой от 150 0 С до 400 0 С;

Высокопотенциальное, с температурой выше 400 0 С.

относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0 С (в прямом трубопроводе), минимальная - 70 0 С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис-точника теплоснабжения, тепловых сетей и абонентских установок на-зывается системой централи-зованного теплоснабже-ния.

Системы теплоснабжения клас-сифицируются по типу источника теплоты (или способу приготовле-ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово-дов тепловой сети, способу обеспе-чения потребителей, степени цент-рализации.


По типу источника теплоты раз-личают три вида теплоснабжения:

Централизованное теплоснабже-ние от ТЭЦ, называемое тепло-фикацией;

Централизованное теплоснабже-ние от районных или промышлен-ных котельных;

Децентрализованное теплоснаб-жение от местных котельных или индивидуальных отопительных аг-регатов.

По сравнению с централизован-ным теплоснабжением от котель-ных теплофикация имеет ряд пре-имуществ, которые выражаются в экономии топлива за счет комбини-рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова-ния местного низкосортного топли-ва, сжигание которого в котельных затруднительно; в улучшении сани-тарных условий и чистоты воздуш-ного бассейна городов и промыш-ленных районов благодаря концент-рации сжигания топлива в неболь-шом количестве пунктов, размещен-ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова-нию современных методов очистки дымовых газов от вредных при-месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ-ном на промышленных предприя-тиях, а водяные системы применя-ются для теплоснабжения жилищ-но-коммунального хозяйства и не-которых производственных потреби-телей. Объясняется это рядом пре-имуществ воды как теплоносителя по сравнению с паром: возмож-ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря-ми при транспортировке и большей дальностью теплоснабжения, отсут-ствием потерь конденсата греюще-го пара, большей комбинированной выработкой энергии на ТЭЦ, повы-шенной аккумулирующей способ-ностью.

По способу подачи воды на го-рячее водоснабжение водяные си-стемы делятся на закрытые и открытые.

В закрытых системах се-тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на-гретая в специальных водоводяных подогревателях за счет теплоты се-тевой воды.

В открытых системах се-тевая вода непосредственно посту-пает в местные установки горя-чего водоснабжения. При этом не требуются дополнительные тепло-обменники, что значительно упро-щает и удешевляет устройство або-нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе-ме) и состав воды, подаваемой по-требителям, ухудшается из-за при-сутствия в ней продуктов коррозии и отсутствия биологической обра-ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи-вает стабильное качество горячей воды, поступающей в установки го-рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го-рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры-тых систем являются усложнение и удорожание оборудования и экс-плуатации абонентских вводов из-за установки водо-водяных подо-гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают-ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе-мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры-той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе-мах поступает деаэрированная во-да, поэтому они меньше подвер-жены коррозии и более долго-вечны.

Недостатками открытых систем являются : необходимость устройст-ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под-питки не характеризует плотность системы); нестабильность гидравли-ческого режима сети.

По числу трубопроводов разли-чают одно-, двух- и многотрубные системы. Причем для открытой си-стемы минимальное число трубо-проводов — один, а для закры-той— два. Самой простой и перс-пективной для транспортировки теплоты на большие расстояния яв-ляется однотрубная открытая си-стема теплоснабжения. Однако об-ласть применения таких систем ог-раничена в связи с тем, что ее реа-лизация возможна лишь при усло-вии равенства расхода воды, необ-ходимого для удовлетворения отопительно-вентиляционной нагруз-ки, расходу веды для горячего водоснабжения потребителей дан-ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи-тельно меньше (в 3—4 раза) рас-хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб-жении городов преимущественное распространение получили двух-трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре-бителей теплотой различают одно-
ступенчатые и многоступенчатые системы теплоснабжения. В одно-
ступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети
называются абонентскими вводами или местными теп-ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату-ра для изменения параметров теп-лоносителя в местных системах по-требителей.

В многоступенчатых системах между источником теплоты и по-требителями размещаются цент-ральные тепловые пункты или под-станции (ЦТП), в которых пара-метры теплоносителя изменяются в зависимости от расходования теп-лоты местными потребителями. На ЦТП размещаются центральная по-догревательная установка горячего водоснабжения, центральная смеси-тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель-ные приборы. Применение много-ступенчатых систем с ЦТП позво-ляет снизить начальные затраты на сооружение подогревательной ус-тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве-личению их единичной мощности и сокращению числа элементов обо-рудования.

Оптимальная расчетная произ-водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос-нове технико-экономических расче-тов.

По степени централизации теп-лоснабжение можно разделить на групповое — теплоснабжение группы зданий, районные - теплоснабжение нескольких групп зданий, городское - теплоснабжение нескольких районов, межгородское - теплоснабжение нескольких городов.

Устройство и конструкции тепловых сетей.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки; изоляционная конструкция, воспринимающая вес трубопровода и усилия, возникающая при его эксплуатации.

Трубы являются ответственными элементами трубопроводов и должны отвечать следующим требованием:

Достаточная прочность и герметичность при максимальных значениях давления и температуры теплоносителя,

Низкий коэффициент температурных деформации,

Обеспечивающий небольшие термические напряжение при переменном тепловом режиме тепловой сети,

Малая шероховатость внутренней поверхности,

Антикорозинная стойкость,

Высокая термическая сопротивление стенок трубы,

Способствующее сохранению теплоты и температуры теплоносителя,

Неизменность свойств материала при длительном воздействий высоких температур и давлений, простота монтажа,

Надежность соединения труб и др.

Имеющейся стальные трубы не удовлетворяют в полной мере всем предъявлемым требованиям, однако их механические свойства, простота, надежность и герметичность соединений (сваркой) обеспечили им преимущественное применение в тепловых сетях.

Трубы для тепловых сетей изготавливаются в основном из сталей марок Ст2сп, Ст3сп, 10, 20, 10Г2С1, 15ГС, 16ГС.

В тепловых сетях применяются бесшовные горячекатаные и электросварные. Бесшовные горячекатаные трубы выпускаются с наружными диаметрами 32 - 426мм. Бесшовные горячекатаные электросварные трубы используется при всех способах прокладки сетей. Электросварные трубы используются при всех способах прокладки сетей. Электросварные со спиральным швом рекомендуются к использованию при канальных и надземных прокладках сетей.

Опоры . При сооружений тепловых сетей применяются опоры двух типов: свободные и неподвижные. Свободные опоры воспринимают вес теплопровода и обеспечивают его свободное перемещение при температурных деформациях. Неподвижные опоры предназначены для закрепления трубопровода в характерных точках сети и воспринимают усилия, возникающие в месте фиксации как в радиальном, так и в осевом направлениях под действием веса, температурных деформаций и внутреннего давления.

Компенсаторы . Компенсация температурных деформации в трубопроводах производится специальными устройствами, называемыми компенсаторами. По принципу действия они разделяются на две группы:

Компенсаторы радиальные или гибкие, воспринимающие удлинения теплопровода изгибом или кручением криволинейных участков труб или изгибом специальных эластичных вставок различной формы;

Компенсаторы осевые, в которых удлинение воспринимаются телескопическим перемещением труб или сжатием пружинных вставок.

Наиболее широкое применение в практике имеют гибкие компенсаторы различной конфигурации, выполненные из самого трубопровода (П - и -S-образные, лирообразные со складками и без них и т.д.). Простота устройства, надежность, отсутствия необходимости в обслуживании, разгруженность неподвижных опор - достоинство этих компенсаторов.

К недостаткам гибких компенсаторов относятся: повышенное гидравлическое сопротивление, увеличенный расход труб, поперечное перемещение деформируемых участках, требующее увеличение ширины непроходных каналов и затрудняющее применение засыпных изоляций, бесканальных трубопроводов, а так же большие габариты, затрудняющие их применение в городах при насыщенности трассы городскими подземными коммуникациями.

Осевые компенсаторы выполняются скользящего типа (сальниковые) и упругими (линзовые компенсаторы).

Сальниковый компенсатор изготавливается из стандартных труб и состоит из корпуса, стакана и уплотнение. При удлинений трубопровода стакан вдвигается в полость корпуса. Герметичность скользящего соединения корпуса и стакана создается сальниковой набивкой, которая выполняется из прографиченного асбестового шнура, пропитанного маслом. Со временем набивка истирается и теряет упругость, поэтому требуется периодическая подтяжка сальника и замена набивки. От этого недостатка свободны линзовые компенсаторы, изготавливаемые из листовой стали. Линзовые компенсаторы сварного типа находят основное применение на трубопроводах низкого давления (до 0,4-0,5 МПа).

Конструктивное выполнение элементов трубопровода зависит так же от способа его прокладки, который выбирается на основании технико-экономического сравнения возможных вариантов.

Как улучшить показатели отопительной системы и сделать ее обслуживание более комфортным для собственника частного дома. Для решения этой задачи необходимо знать новые тенденции и разработки в области теплоснабжения. Все современные системы отопления частного дома должны быть не только удобны, но и иметь оптимальные эксплуатационные характеристики.

Требования к современному отоплению дома

Назначение любого теплоснабжения – поддержание комфортного уровня температуры в помещении. Однако помимо этого современное отопление частного дома должно отвечать целому ряду дополнительных требований.

Прежде всего – это максимальная безопасность для проживающих в доме. Т.е. никакой элемент теплоснабжения или его работа не должны нанести вред человеку. В особенности это относится к относительно новым полимерным материалам изготовления. Также при выборе системы следует учитывать такие факторы:

  • Экономическая целесообразность . Важно, чтобы количество получаемой тепловой энергии стремилось к аналогичному показателю потребляемой. Современное отопление частного дома должно иметь КПД, близкий к 100%;
  • Минимальные ресурсы на обслуживание . У традиционных отопительных схем есть несколько существенных недостатков – большое количество сажи (твердотопливные котлы и печи), необходимость ежегодной очистки труб, постоянный контроль за объемом топлива и режимом работы. Современные виды отопления частного дома практически полностью исключают влияние этих факторов на работу;
  • Максимальная автономность работы .

Что нужно предпринять, чтобы выполнить эти условия максимально? Для этого рекомендуется изучить предложения на рынке отопительных приборов и схем, выбрав оптимальную сборку для конкретного дома.

В большинстве случаев экономически целесообразнее провести модернизацию существующей системы, чем делать полностью новую.

Способы улучшения характеристик отопления

Далеко не всегда современные котлы отопления или трубы из новых материалов являются единственными факторами улучшения параметров системы. Сначала специалисты рекомендуют провести комплексный анализ внешних и внутренних факторов, влияющих на характеристики теплоснабжения.

Определяющим из них является уменьшение тепловых потерь здания. Именно они напрямую влияют на оптимальную мощность, которой должно обладать современное отопление без электричества или традиционного типа. Однако при этом следует учитывать нормы вентиляции – воздухообмен в каждой комнате должен соответствовать нормативам. Современные способы отопления частного дома не должны ухудшать комфорта проживания.

Способы оптимизации работы отопительной системы можно условно разделить на несколько видов – установка котлов с высоким показателем КПД, монтаж труб с пониженной теплоотдачей и применение батарей с хорошим коэффициентом теплопередачи.

Модернизация системы отопления

Для повышения текущих параметров системы можно поменять ряд ее компонентов. Подобное улучшение выполнятся только после расчета текущих характеристик и выявления «слабых» мест в отопительной схеме.

Самый простой способ – установить бак косвенного нагрева (теплоаккумулятор). Современное электроотопление в совокупности с многотарифным счетчиком дадут возможность снизить затраты на энергоноситель. Важно правильно рассчитать объем бака.

Также можно сделать более глобальные изменения в схеме:

  • Монтаж коллекторной разводки трубопроводов . Актуален для домов с большой площадью;
  • Замена стальных труб на полимерные меньшего диаметра . Это даст возможность уменьшить общий объем теплоносителя, что повлечет за собой экономию на его нагреве;
  • Установка контролирующих устройств – программаторов, терморегуляторов и т.д. Эти современные приборы отопления предназначены для слежения за текущими параметрами системы и изменения режима ее работы в зависимости от настроек.

Также значительно улучшит характеристики установка нового котла отопления. Современные газовые модели потребляют на порядок меньше энергоносителя и имеют встроенные приборы контроля и группы безопасности. Нередко современные методы отопления загородного дома предусматривают монтаж пиролизных котлов долгого горения, работающих на топливных гранулах или брикетах.

Необходимо заранее проверить, смогут ли новые элементы отопления монтироваться со старыми. Например – в открытом отоплении установка полипропиленовых труб небольшого диаметра невозможна. Они не смогут обеспечить естественную циркуляцию без монтажа насоса.

Альтернативное теплоснабжение дома

В состав современного отопления частного дома должны входить новые методы получения тепловой энергии. В отличие от стандартных они имеют низкое энергопотребление, но при этом характеризуются небольшим количеством вырабатываемого тепла.

В качестве источника тепловой энергии можно использовать солнечное излучение или почвенный нагрев теплоносителя. Все зависит от климатических условий, площади участка и финансовых возможностей:

  • . Работает по принципу разницы температур между различными слоями почвы. Для организации системы потребуются большие затраты и специальное оборудование – тепловой насос;
  • Солнечный коллектор . Это один из видов современного отопления без электричества. Напрямую зависит от интенсивности солнечного излучено в конкретном регионе. В летний период может использоваться в качестве ГВС.

Зачастую эти системы устанавливаются в качестве вспомогательных для уменьшения затрат на отопление. Каждая из них требует детального просчета для выявления целесообразности приобретения и монтажа. Так, комплексная геотермальная установка для дома площадью 150 м² будет стоить около 700 тыс. рублей.

Котлы

Центральным узлом любой классической отопительной схемы является котел. От его функциональных возможностей во многом зависят параметры теплоснабжения. Так, современные электрокотлы для отопления дома могут занимать немного места и при этом вырабатывать оптимальное количество тепловой энергии.

К отопительному оборудованию этого вида предъявляются довольно жесткие требования. Оно должно быть максимально безопасно в эксплуатации, технические характеристики соответствовать существующим нормам, а управление иметь понятно-интуитивный интерфейс.

Электрические котлы отопления

Установка электрических нагревательных приборов актуальна в том случае, если площадь помещения относительно небольшая или нет подвода магистрального газа. На практике для организации современного электроотопления можно применять не только котлы классической конструкции с ТЭНом, но и новые модели, у которых другой принцип работы.

Принцип работы электродного котла заключается в создании движения электродов в паре катод-анод. Это приводит к нагреву воды и повышению давления. В результате возникает циркуляция теплоносителя. У современных котлов отопления электродного типа помимо зоны нагрева есть блоку управления, а также предусмотрена возможность подключения к программатору.

Для получения большего количества тепла можно установить индукционный котел. Он работает по принципу электромагнитной индукции, возникающей между сердечником и обмоткой. Для обеспечения безопасности катушка и сердечник полностью изолированы от контакта с водой.

Эти современные виды электрического отопления частного дома имеют несколько особенностей. Главным из них является низкая инерционность – нагрев воды происходит очень быстро. Однако помимо этого нужно учитывать следующие особенности эксплуатации:

  • Текущие расходы на отопление. Нагрев теплоносителя с помощью электроприборов считается наиболее затратным;
  • Приобретение и монтаж дополнительных элементов – расширительного бака, циркуляционного насоса, группы безопасности;
  • У электродных котлов особые требования к теплоносителю. Он должен содержать относительно большое количество солей для поддержания реакции электролиза.

Но несмотря на эти факторы, электроотопление нашло широкое применение в зданиях с отсутствием газовых магистралей. Еще одним преимуществом является возможность организации отдельных контуров нагрева воздуха в каждом помещении.

Во время установки электрических котлов необходим монтаж УЗО. Также рекомендуется провести отдельную линию электропроводки.

Газовые конденсационные котлы отопления

Одним из современных способов отопления частного дома является установка газовых конденсационных котлов. Внешне они практически ничем не отличаются от традиционных. Разница состоит в дополнительном внутреннем теплообменнике.

Суть новаторского дополнения заключается в использовании тепловой энергии продуктов сгорания. Относительная сложная сеть внутреннего дымохода снижает температуру угарных газов до образования точки росы на дополнительном теплообменнике. Он соединен с обратной трубой отопления. В результате этого вода в нем нагревается из-за воздействия горячего конденсата.

По заверениям производителя у этого современного прибора отопления КПД может быть выше 100%. На практике он достигает 99%, что является рекордом для нагревательных котов. Но для правильного выбора определенной модели следует учитывать такие факторы:

  • Полученный конденсат нельзя сливать в канализационную систему. Он должен храниться в герметичной емкости;
  • Для каждой модели котла этого типа есть рекомендуемый температурный режим работы, при котором происходит формирование конденсата на поверхности вторичного теплообменника;
  • Высокая стоимость оборудования.

Так как этот современный метод отопления частного дома предусматривает низкотемпературный режим работы – рекомендуется увеличить площади радиаторов и батарей. Это влечет дополнительные затраты на приобретение компонентов системы.

В низкотемпературных газовых котлах можно использовать пластиковые дымоходы, так как степень нагрева угарных газов будет невысокой – до +60°С.

Твердотопливные котлы длительного горения

Альтернативной современному печному отоплению частного дома являются котлы длительного горения. В отличие от традиционных моделей нагрев теплоносителя происходит не за счет сгорания топлива, а в результате воспламенения древесных или угольных газов.

Для этого ограничивают приток воздуха в камеру сгорания, что влечет за собой тление твердого топлива. Выделяемые газы по каналам поступают в зону дожига, где происходит нагнетание кислорода с помощью вентилятора или турбины. В результате газовая смесь воспламеняется, выделяя большое количество тепловой энергии.

Преимуществами этого современного способа обогрева частного дома являются:

  • Экономичный расход топлива;
  • Долгое время работы на одной загрузке дров или угля;
  • Возможность регулировки степени нагрева теплоносителя с помощью интенсивности работы вентилятора.

Одним из недостатков этого современного отопления без электроэнергии является низкая температура угарных газов. Это приводит к образованию конденсата на дымоходной трубе. Поэтому все котлы длительного горения должны комплектоваться теплоизолированной дымоходной системой.

Стоимость всех вышерассмотренных котлов отопления отличается в зависимости от фирмы-производителя и удельной мощности.

Особенностью работы котлов длительного сгорания является большое количество сажи в камере сгорания и на теплообменнике. Поэтому их чистку нужно проводить чаще, чем у классических моделей.

Отопление дома без электричества

Но что делать, если установка современных электрокотлов для отопления дома нецелесообразна, а газовая магистраль в доме отсутствует? В качестве альтернативы можно улучшить систему печного или каминного отопления. Для этого необходимо установить систему воздушных каналов, соединенных с теплообменником печи.

Современное печное или каминное отопление частного дома с дополнительными воздушными каналами использует всю энергию от сгорания топлива. Для правильной организации необходимо продумать систему трубопроводов. Чаще всего они располагаются вверху, скрытые декоративным потолком. Для регулирования мощности притока горячего воздуха в каждом помещении должны быть установлены дефлекторы.

Кроме этого, следует знать особенности комплектации, свойственные только этому современному методу отопления загородного коттеджа:

  • Для нормальной вентиляции следует установить канал забора воздуха с улицы. Во избежание попадания пыли в систему монтируют фильтры;
  • Улучшить циркуляцию потоков можно с помощью вентиляторов или турбин. Они же являются частью современного электроотопления дома, если дополнительно установить электрические нагревательные элементы;
  • Обязательная герметичность теплообменника. Ни в коем случае угарный газ не должен попасть в воздушные каналы.

Если же анализировать стоимость обустройства, то печное или каминное виды отопления частного дома будут на порядок дороже, чем традиционные способы нагрева воздуха. Однако самая простая схема может включать в себя только воздушные каналы без системы фильтрации и принудительной циркуляции горячих воздушных потоков.

Если в отопительной системе нет канала притока воздуха с улицы – следует обеспечить вентиляцию в доме. Она может быть принудительная или естественная.

Радиаторы и трубы отопления

Помимо современных отопительных котлов не менее важными компонентами являются трубы и радиаторы. Они необходимы для эффективной передачи тепловой энергии воздуху в помещении. Во время проектирования системы необходимо решить две задачи – уменьшить тепловые потери при транспортировке теплоносителя по трубам и улучшить теплоотдачу батарей.

Любые современные радиаторы отопления должны не только иметь хорошие показатели теплопередачи, но и удобную для ремонта и обслуживания конструкцию. Это же касается трубопроводов. Их монтаж не должен вызывать затруднений. В идеале установку может осуществить сам владелец дома без применения дорогого оборудования.

Современные радиаторы отопления

Для увеличения теплоотдачи в качестве основного материала изготовления батарей все чаще используют алюминий. Он имеет хорошие показатели теплопроводности, а для получения нужной формы можно применять технологию литья или сварки.

Но нужно учитывать, что алюминий очень чувствителен к воздействию воды. Современные чугунные радиаторы отопления лишены этого недостатка, хотя и обладают меньшей энергоемкостью. Для решения этой проблемы была разработана новая конструкция батарей, у которых водяные каналы изготавливаются из стальных или медных труб.

Эти современные трубы для отопления практически не подвергаются коррозии, имея минимальные размеры и толщину стенок. Последнее необходимо для эффективной тепловой передачи алюминию энергии от горячей воды. У современных радиаторов отопления есть несколько преимуществ, заключающихся в следующем:

  • Долгий срок эксплуатации – до 40 лет. Однако он зависит от условий работы и своевременного выполнения прочистки системы;
  • Возможность выбора способа подключения – верхнее, нижнее или боковое;
  • В комплектацию может входить кран Маевского и терморегулятор.

В большинстве случаев модели современных чугунных радиаторов отопления делают дизайнерскими. Они имеют классические формы, некоторые из них изготавливаются в напольном варианте с элементами художественной ковки.

КПД радиатора отопления зависит от правильной установки и способа подключения. Это обязательно учитывается при монтаже системы.

Современные трубы отопления

Выбор современных труб отопления во многом зависит от материала их изготовления. В настоящее время чаще всего используют полимерные магистрали из полипропилена или сшитого полиэтилена. Они имеют дополнительный армирующий слой из алюминиевой фольги или стекловолокна.

Однако они имеют один существенный недостаток – относительно низкий порог температурного воздействия до +90°С. Это влечет большое температурное расширение и как следствие – повреждение трубопровода. Альтернативой полимерным трубам могут служить изделия из других материалов:

  • Медные . С точки зрения функциональности медные трубопроводы соответствуют всем требованиям к отопительной системе. Они просты в монтаже, практически не изменяют форму даже при экстремально высоких температурах теплоносителя. Даже при замерзании воды стенки медных магистралей будут расширяться без повреждения. Недостаток – высокая стоимость;
  • Нержавеющая сталь . Она не подвергается ржавлению, ее внутренняя поверхность имеет минимальный коэффициент шероховатости. К недостаткам можно отнести стоимость и трудоемкий монтаж.

Как правильно подобрать оптимальную комплектацию современного отопления? Для этого необходимо воспользоваться комплексным подходом – сделать правильный расчет системы и согласно полученным данным выбрать котел, трубы и радиаторы с соответствующими эксплуатационными характеристиками.

В видеоматериале показан пример современного отопления дома с помощью системы теплый пол:

Министерство образования и науки

ГОУ ВПО «Братский государственный университет»

Факультет энергетики и автоматики

Кафедра промышленной теплоэнергетики

Реферат по дисциплине

«Теплогазоснабжение и вентиляция»

Современные системы теплоснабжения

Перспективы развития

Выполнила:

Ст группы ТГВ-08

Н.А. Снегирева

Руководитель:

Профессор, к.т.н., кафедры ПТЭ

С.А. Семенов

Братск 2010

Введение

1. Виды систем центрального отопления и принципы их действия

2. Сравнение современных систем теплоснабжения теплового гидродинамического насоса типа ТС1 и классического теплового насоса

3. Автономные системы теплоснабжения

4. Современные системы отопления и горячего водоснабжения в России

4.1 Системы водяного отопления

4.2 Газовое отопление

4.3 Воздушное отопление

4.4 Электрическое отопление

4.5 Трубопроводы

4.6 Котельное оборудование

5. Перспективы развития теплоснабжения в России

Заключение

Список использованной литературы

Введение

Проживая в умеренных широтах, где основная часть года холодная, необходимо обеспечить теплоснабжение зданий: жилых домов, офисов и других помещений. Теплоснабжение обеспечивает комфортное проживание, если это квартира или дом, продуктивную работу, если это офис или склад.

Сначала разберёмся, что же понимают под термином «Теплоснабжение». Теплоснабжение - это снабжение систем отопления здания горячей водой либо паром. Привычным источником теплоснабжения являются ТЭЦ и котельные. Существует два вида теплоснабжения зданий: централизованное и местное. При централизованном – снабжаются отдельные районы (промышленные или жилые). Для эффективной работы централизованной сети теплоснабжения, её строят, разделяя на уровни, работа каждого элемента заключается в выполнении одной задачи. С каждым уровнем задача элемента уменьшается. Местное теплоснабжение – снабжение теплом одного или несколько домов. Централизованные сети теплоснабжения имеют ряд преимуществ: снижение расходов топлива и сокращение затрат, использование низкосортного топлива, улучшение санитарного состояния жилых районов. Система централизованного теплоснабжения включает в себя источник тепловой энергии (ТЭЦ), тепловой сети и теплопотребляющих установок. ТЭЦ комбинированно вырабатывает тепло и энергию. Источниками местного теплоснабжения являются печи, котлы, водонагреватели.

Системы теплоснабжения отличаются различными температурами и давлением воды. Это зависит от требований потребителей и экономических соображений. При увеличении расстояния, на которое необходимо «передать» тепло, увеличиваются экономические затраты. В настоящее время расстояние передачи тепла измеряется десятками километров. Системы теплоснабжения делятся по объёму тепловых нагрузок. Системы отопления относят к сезонным, а системы горячего водоснабжения – к постоянным.


1. Виды систем центрального отопления и принципы их действия

Централизованное теплоснабжение состоит из трех взаимосвязанных и последовательно протекающих стадий: подготовки, транспортировки и использования теплоносителя. В соответствии с этими стадиями каждая система состоит из трех основных звеньев: источника теплоты(например, теплоэлектроцентрали или котельной), тепловых сетей(теплопроводов) и потребителей теплоты.

В децентрализованных системах теплоснабжения каждый потребитель имеет собственный источник теплоты.

Теплоносителями в системах центрального отопления могут быть вода, пар и воздух; соответствующие системы называют системами водяного, парового или воздушного отопления. Каждая из них имеет свои достоинства и недостатки. теплоснабжение центральный отопление

Достоинствами системы парового отопления являются значительно меньшие ее стоимость и расход металла по сравнению с другими системами: при конденсации 1 кг пара освобождается примерно 535 ккал, что в 15-20 раз больше количества тепла, выделяющегося при остывании 1 кг воды в нагревательных приборах, и поэтому паропроводы имеют значительно меньший диаметр, чем трубопроводы системы водяного отопления. В системах парового отопления меньше и поверхность нагревательных приборов. В помещениях, где люди пребывают периодически (производственные и общественные здания), система парового отопления даст возможность производить отопление с перерывами и при этом не возникает опасность замерзания теплоносителя с последующим разрывом трубопроводов.

Недостатками системы парового отопления являются ее низкие гигиенические качества: находящаяся в воздухе пыль пригорает на нагревательных приборах, нагретых до 100°С и более; регулировать теплоотдачу этих приборов невозможно и большую часть отопительного периода система должна работать с перерывами; наличие последних приводит к значительным колебаниям температуры воздуха в отапливаемых помещениях. Поэтому системы парового отопления устраивают только в тех зданиях, где люди пребывают периодически - в банях, прачечных, душевых павильонах, вокзалах и в клубах.

На системы воздушного отопления расходуется мало металла, и они могут одновременно с обогревом помещения выполнять его вентиляцию. Однако стоимость системы воздушного отопления жилых зданий выше, чем других систем.

Системы водяного отопления имеют большие стоимость и металлоемкость по сравнению с паровым отоплением, но они обладают высокими санитарно-гигиеническими качествами, обеспечивающими им широкое распространение. Их устраивают во всех жилых зданиях высотой более двух этажей, в общественных и большинстве производственных зданий. Централизованное регулирование теплоотдачи приборов в этой системе достигается путем изменения температуры поступающей в них воды.

Системы водяного отопления различают по способу перемещения воды и конструктивным решениям.

По способу перемещения воды различают системы с естественным и механическим (насосным) побуждением. Системы водяного отопления с естественным побуждением. Принципиальная схема такой системы состоит из котла (генератора тепла), подающего трубопровода, нагревательных приборов, обратного трубопровода и расширительного сосуда, Нагретая в котле вода поступает в нагревательные приборы, отдает в них часть своего тепла на компенсацию потерь тепла через наружные ограждения отапливаемого здания, затем возвращается в котел и далее циркуляция воды повторяется. Ее движение происходит под действием естественного побуждения, возникающего в системе при нагреве воды в котле.

Циркуляционное давление, создавшееся при работе системы, расходуется на преодоление сопротивления движению воды по трубам (от трения воды о стенки труб) и на местные сопротивления (в отводах, кранах, вентилях, нагревательных приборах, котлах, тройниках, крестовинах и т. д.).

Величина этих сопротивлений тем больше, чем выше скорость движения воды в трубах (если скорость увеличится в два раза, то сопротивление - в четыре раза, т. е. в квадратичной зависимости). В системах с естественным побуждением в зданиях небольшой этажности величина действующего давления невелика, и поэтому в них нельзя допускать больших скоростей движения воды в трубах; следовательно, диаметры труб должны быть большими. Система может оказаться экономически невыгодной. Поэтому применение систем с естественной циркуляцией допускается лишь для небольших зданий. Радиус действия таких систем не должен превышать 30 м, а величина к должна быть не менее 3 м.

При нагревании воды в системе объем ее увеличивается. Для вмещения этого дополнительного объема воды в системах отопления предусматривается расширительный сосуд 3; в системах с верхней разводкой и естественным побуждением он одновременно служит для удаления из них воздуха, выделяющегося из воды при ее нагреве в котлах.

Системы водяного отопления с насосным побуждением. Система отопления всегда заполнена водой и задачей насосов является создание давления, необходимого только для преодоления сопротивления движению воды. В таких системах одновременно действуют естественное и насосное побуждения; суммарное давление для двухтрубных систем с верхней разводкой, кгс/м2 (Па)

По экономическим соображениям обычно принимают в размере 5-10 кгс/м2 на 1 м (49-98 Па/м).

Достоинствами систем с насосным побуждением является снижение затрат на трубопроводы (их диаметр меньше, чем в системах с естественным побуждением) и возможность от одной котельной снабжать теплом ряд зданий.

Приборы описанной системы, расположенные на разных этажах здания, работают в разных условиях. Давление р2, обеспечивающее циркуляцию воды через прибор второго этажа, примерно в два раза больше, чем давление р1 для прибора нижнего этажа. В то же время суммарное сопротивление кольца трубопровода, проходящего через котел и прибор второго этажа, примерно равно сопротивлению кольца, проходящего через котел и прибор первого этажа. Поэтому первое кольцо будет работать с избыточным давлением, в прибор на втором этаже поступит больше воды, чем нужно по расчету, и соответственно уменьшится количество воды, проходящее через прибор на первом этаже.

В результате в отапливаемом данным прибором помещении второго этажа наступит перегрев, а в помещении первого этажа - недогрев. Для устранения этого явления применяют специальные методы расчета систем отопления, а также пользуются устанавливаемыми на горячей подводке к приборам кранами двойной регулировки. Если прикрыть эти краны у приборов на втором этаже, можно полностью погасить избыточное давление и тем самым отрегулировать расход воды по всем приборам, находящимся на одном стояке. Однако неравномерность распределения воды в системе, возможна и по отдельным стоякам. Объясняется это тем, что длина колец и, следовательно, суммарные их сопротивления в такой системе для всех стояков неодинаковы: наименьшее сопротивление имеет кольцо, проходящее через стояк (ближайший к главному стояку); наибольшее сопротивление имеет самое длинное кольцо, проходящее через стояк.