Воздушные потоки в атмосфере. Представление о масштабах атмосферных движений

    Закономерности общей циркуляции атмосферы.

    Господствующие ветры (пассаты, муссоны, тропические циклоны).

    Местные ветры.

    Возникновение и развитие циклонов.

    Возникновение и развитие антициклонов.

    Циркуляция вышележащих слоев атмосферы.

1. Неравномерное распределение тепла в атмосфере приводит к неравномерному распределению атмосферного давления, а от распределения давления зависит движение воздушных масс или воздушные течения.

На характер движения воздушных масс относительно земной поверхности влияют отклоняющая сила вращения Земли, в нижних слоях атмосферы – сила трения. Всю систему воздушных течений на Земле называют общей циркуляцией атмосферы. Общую циркуляцию атмосферы усложняют местные ветры, такие как бризы, горно-долинные и т.д. Общая циркуляция атмосферы отличается большой сложностью из-за постоянного возникновения и движения циклонов и антициклонов. Циклоническая деятельность играет большую роль в формировании погоды и климата на земном шаре. При посредстве циклонов и антициклонов происходит обмен воздуха. Расчеты на ЭВМ показали, что ежегодно из одного полушария в другое в результате сезонных изменений перераспределяется 4 триллиона (4х1012) тонн воздуха, главным образом, с муссонными ветрами. Летом атмосфера «тяжелеет» на 1 триллион тонн. Ученые объясняют этот процесс активизацией биохимических процессов, связанных с активизацией свободных газов.

Несмотря на значительную сложность и разнообразие общей циркуляции атмосферы характерны устойчивые особенности, повторяющиеся из года в год. Рассмотрим зональное распределение давления и ветра у земной поверхности.

Низкое давление на экваторе и высокое давление на полюсах обусловлено термическими причинами, т.е. условиями нагревания земной поверхности на экваторе и охлаждения ее на полюсах.

Давление от экваториальной зоны растет к субтропикам, а затем падает к субполярным широтам и снова растет к полюсам. При этом меридиональный барический градиент направлен от субтропиков к экватору, от субтропиков же к полярным широтам, и от полюса к субполярным широтам. Направление барического градиента несколько раз меняется.

Причины образования зон высокого давления в субтропиках и зон низкого давления в субполярных широтах заключаются в динамических причинах, особенностях циклонической деятельности.

В умеренных широтах существуют как теплые, так и холодные воздушные массы, образуются циклоны и антициклоны, которые под действием силы Кориолиса отклоняются к 30 и 600 с. и ю.ш.

Антициклоны, возникающие в условиях западного переноса умеренных широт, при своем движении с запада на восток в то же время смещаются к более низким широтам (к 350 с. и ю.ш.), и там усиливаются. Они образуют в каждом полушарии субтропическую зону высокого давления с осью около 35 параллели.

Циклоны, возникающие также в умеренных широтах, при своем движении к востоку отклоняются к более высоким широтам и сосредотачиваются там, образуя субполярную зону низкого давления с осью около 65 параллели. Такая сепарация циклонов и антициклонов зависит от изменения отклоняющей силы вращения Земли с широтой. В циклонах и антициклонах отклоняющая сила больше в той части вихря, которая ближе к полюсу. В циклонах эта сила направлена от центра и перемещаются они на север, а антициклоны – наоборот.

По периферии субтропической зоны высокого давления, обращенной к экватору, т.е. в тропиках, барический градиент направлен к экватору, что в совокупности с отклоняющей силой создает восточный перенос, охватывающий всю тропическую зону.

По обращенной к полюсу периферии субтропической зоны в средних широтах создается западный перенос. Он простирается до оси субполярной зоны низкого давления, т.е. до 60 – 65 широты. Таким образом, в средних широтах наблюдается западный перенос, наиболее четко он выражен над океанами (особенно в южном полушарии).

Наиболее низкое давление у земной поверхности и в нижней тропосфере обнаруживается в субполярных широтах, вблизи 60 – 65 широты. Отсюда, по направлению к полюсу, давление растет. Следовательно, барический градиент направлен от полюса к субполярным широтам, что создает в полярном районе также восточный перенос.

2.Господствующие ветры (пассаты, муссоны, тропические циклоны). Рассмотрим более подробно условия общей циркуляции.

Тропические широты . Пассаты – это устойчивые восточные ветры умеренной скорости, дующие в каждом полушарии из области субтропического высокого давления к экватору (средняя скорость 5 – 8 м/сек). Субтропические зоны высокого давления распадаются на отдельные антициклоны. Субтропические антициклоны вытянуты по широте. Поэтому на обращенной к экватору периферии изобары проходят параллельно широтам, и следовательно, пассаты должны иметь восточное направление. Однако в слоях, близких к земной поверхности, где действует трение, ветер отклоняется от изобар на некоторый угол в сторону низкого давления. Это значит, что на южной периферии субтропического антициклона в северном полушарии у земной поверхности образуются юго-восточные ветры. Пассаты северного полушария часто называют северо-восточными, а пассаты южного полушария – юго-восточными.

Распределение давления меняется в тропиках в течение года незначительно. Поэтому пассаты обладают большим постоянством направления. Так как пассаты – это ветры антициклонов, они характеризуются нисходящими движениями воздуха, образованием слоя инверсии, который препятствует образованию конвективных облаков. Облака здесь не получают большого вертикального развития, не достигают уровня оледенения, который в тропиках лежит выше 5 км. Поэтому из облаков или не выпадают осадки, или выпадают незначительные кратковременные и мелкокапельные дожди, обусловленные взаимным слиянием капелек, без участия ледяной фазы.

Пассаты обоих полушарий разделены переходной зоной с неравномерными, часто слабыми, но иногда и сильными, шквалистыми ветрами. Зона сходимости пассатов называется внутритропической зоной конвергенции (тропический фронт). В результате сходимости воздушных масс, конвекция в этой зоне резко усилена и развивается до больших высот по сравнению с зонами пассатов. Облака превращаются в мощные кучевые и кучево-дождевые и из них выпадают обильные осадки ливневого характера.

Отмечается сезонное перемещение внутритропической зоны конвергенции и пассатов от января к июлю.

Муссоны. Муссоны – это устойчивые воздушные течения сезонного характера, которые меняют свое направление от зимы к лету и от лета к зиме на почти противоположное.

Муссоны, получившие развитие в тропических широтах, называются тропическими муссонами. Здесь возникновение их связано с различными температурными условиями и с различным сезонным положением экваториальной депрессии. Экваториальная депрессия смещается в июле в более высокие широты северного полушария, а в январе отодвигается в южное полушарие. Вследствие такого сезонного перемещения в некоторых областях по обе стороны от экватора, происходит сезонное изменение преобладающих барических градиентов и, следовательно, преобладающих ветров. Зимние муссоны совпадают по своему направлению с пассатами, а направление летних муссонов противоположно пассатному. По обе стороны от экватора над океаном сезонные смещения зон давления невелики, и муссоны не получают особого развития. Над материками распределение давления меняется от января к июлю достаточно сильно.

Африка. В январе над Сахарой прослеживается отрог Азорского антициклона, над Южной Африкой располагается область экваториальной депрессии. В июле область экваториальной депрессии размещается над Сахарой, а над Южной Африкой – антициклон. Смена направления барических градиентов меняется от сезона к сезону, этим и объясняется возникновение над Африкой тропических муссонов.

Особенно мощные тропические муссоны действуют над полуостровом Индостан. Объясняется это тем, что сезонные изменения температуры здесь усилены огромным материком Евразия, прогретым летом и охлажденным зимой. Кроме этого летом сюда смещается экваториальная депрессия, и над Южной Азией происходит резкая сезонная смена низкого давления на высокое и обратно с соответствующей муссонной циркуляцией. Зимний тропический муссон над полуостровом Индостан принято называть северо-восточным, летний – юго-западным. Преобладание в этом районе переноса воздуха зимой с материка на океан и летом с океана на материк приводит к важным особенностям погоды и климата: дождливый сезон совпадает с летним муссоном, а резко выраженный сухой сезон приходится на период зимнего муссона.

Тропические циклоны , их возникновение и перемещение. Тропические циклоны – это исключительно интенсивные по своей силе атмосферные вихри, развивающиеся над океанами только в тропических широтах.

1.Районы возникновения тропических циклонов располагаются между 5 и 200 с. и ю. широты. Ближе 50 к экватору тропические циклоны не развиваются, т.к. отклоняющая сила вращения Земли здесь мала, чтобы образовать завихрение.

2.Тропические циклоны развиваются только над водной поверхностью

летом и осенью данного полушария, когда зона конвергенции не очень близка к экватору, а поверхность океана особенно разогрета (до 270 и более). Над сушей тропические циклоны не возникают, т.к. велика сила трения, что приводит к увеличению поступления воздуха внутрь циклона в нижних слоях атмосферы и ослаблению его силы.

3.Приход более холодного воздуха на сильно разогретую поверхность создает неустойчивость температурной стратификации, возникают интенсивные восходящие движения.

4.Подъем сильно насыщенного воздуха сопровождается выделением огромного количества тепла конденсации, которое определяет энергию циклона. Энергия 5 – 7-дневного циклона равна взрыву нескольких водородных бомб.

5.Подъем сильно нагретого влажного воздуха будет в том случае мощным, если в верхней тропосфере над развивающимся циклоном существует хорошо выраженная расходимость токов воздуха, т.е. здесь создается дефицит давления.

6.Предполагается, что очень благоприятные условия для возникновения тропического циклона создаются между тремя антициклонами.

Сформировавшийся тропический циклон напоминает огромную воронку. «Стенки» ее толщиной от десятка до сотни километров. Давление в тропическом циклоне падает до 960 – 970 мб (885 мм). Скорости ветра в циклоне достигают 30 – 50 м/сек, отдельные порывы достигают 60 – 100 м/сек.

Облачность в тропическом циклоне представляет собой почти сплошное гигантское грозовое облако, вертикальное развитие которого достигает 14 км. Выпадают сильные ливневые осадки, большой интенсивности достигают грозовые явления. В самом центре циклона обычно находится небольшая зона диаметром – десятки км, свободная от мощных облаков, со слабыми ветрами. Это «глаз» бури, циклона, характеризующееся нисходящими движениями воздуха. На спутниках «газ» циклона темного цвета.

Живет тайфун недолго – в среднем около 7 суток, но бурно. Проносясь со скоростью более 39 м/сек, он захватывает огромные пространства.

Тропический циклон сначала перемещается в целом с востока на запад, т.е. в направлении общего переноса в тропической зоне. Сила трения над морем мала, и под действием отклоняющей силы, тропический циклон смещается к высоким широтам. Общее направление движение тропического циклона в северном полушарии – к северо-западу, а в южном – к юго-западу.

Если при перемещении циклон попадает на материк, оставаясь еще в тропиках, он теряет силу, затухает, т.к. увеличивается трение, и как следствие, увеличивается приток воздуха внутрь циклона в нижних слоях. Если же тропический циклон заходит в умеренные широты, то начинает перемещаться в восточном направлении и становится циклоном умеренных широт.

Часто циклон движется не по «стандартной» траектории, а по очень запутанной и сложной. Тропические циклоны, в зависимости от места их зарождения, называют по-разному: на Тихом океане – тайфун, в Атлантике – ураган, в Индии – циклон, в Австралии – вилли-вилли. Каждый циклон в северном полушарии получает свое собственное имя, чаще женское. Считается, что характер тайфуна также непредсказуем, как и женский. В 1975г. – году женщин, в Австралии решили давать тайфунам и мужские имена.

За последние 20 лет зарегистрировано более 500 циклонов (т.е. более 20 циклонов в год). Но бывают годы, когда прослеживается до 33 циклонов в год – 1967 г. При своем движении тропический циклон вызывает сильное волнение в море. Плоские берега, вблизи которых он проходит, затапливаются гигантскими волнами до 10 – 15 м высотой. В 1970 г., в Бангладеш, в ноябре, волна за несколько минут поглотила 250 тыс. человеческих жизней (плотность населения 460 чел./км2). В Японии в 1959 г., циклон со скоростью ветра до 90 м/сек оставил без крова более 1,5 млн. чел., погибло несколько сотен людей.

3.Местные ветры . Под местными ветрами понимают ветры, характерные для определенных географических районов. Происхождение их различно.

Бризы. Бризами называют ветры у береговой линии морей и больших озер, которые имеют резкую суточную смену направления. Днем морской бриз дует в нижних слоях атмосферы, мощностью от нескольких сот метров до нескольких км в направлении на берег, а ночью береговой бриз дует с берега на море. Бризы связаны с суточным ходом температур на поверхности суши и моря. Днем суша нагрета и температура ее поверхности выше, чем поверхности моря. Начинается подъем воздуха и отток его на высоте. Давление над сушей падает, а над морем растет. Начинается движение воздуха с моря на сушу – морской бриз. Ночью возникают обратные условия.

Дневной бриз несколько понижает температуру над сушей и увеличивает относительную влажность, особенно резко это выражено в тропиках. В Индии морской бриз понижает температуру воздуха на побережье на 2 – 3 0 С и повышает относительную влажность на 10 – 20%. В Западной Африке эффект значительно больше: морской бриз приходит на смену нагретому континентальному воздуху и снижает температуру воздуха на 10 0 С и более и повышает относительную влажность на 40% и более.

Горно-долинные ветры . Днем ветер дует из межгорной долины к горам и вверх по горным склонам – долинные и склоновые ветры, ночью горный ветер дует вниз по склонам к межгорной долине – горные ветры. Горно-долинные ветры хорошо выражены во многих котловинах и долинах Альп, Кавказа, Памира.

Под действием более интенсивной радиации в верхней части гор, днем над горными гребнями возникает усиленное восходящее движение воздуха. Давление падает, и как следствие этого воздух из прилегающих низменных участков устремляется вверх по склонам. Над склонами и в привершинной зоне существует тенденция к образованию в дневные часы облаков, иногда выпадают ливневые дожди с грозовыми явлениями.

Ночью излучение и охлаждение, а следовательно, и сжатие воздуха, в высокогорных районах выражены сильнее, чем в межгорных котловинах и долинах, и поэтому вниз, в долины ночью приходит с ветром более холодный воздух. Долинные ветры в Гималаях достигают ураганной силы

Ледниковые ветры . Этот ветер дует вниз по леднику в горах, не имеет суточной периодичности, т.к. температура поверхности ледника круглые сутки производят на прилегающий воздух охлаждающее действие. Надо льдом господствует инверсия температур и холодный воздух стекает вниз по склону. Над некоторыми ледниками Кавказа скорость ледниковых ветров достигает 3 – 7 м/сек.

Явление ледниковых ветров в огромных размерах представлено над ледяным плато Антарктиды. Здесь над постоянным ледяным покровом, на периферии материка возникают стоковые ветры, которые представляют собой перенос охлажденного воздуха по наклону местности в сторону океана со скоростью 10 – 15 м/сек.

Фён. Фёном называют теплый, сухой и порывистый ветер, дующий временами с высоких гор в долины. Фены известны во многих горах. В Кутаиси отмечается 14 дней в году с феном, в Инсбруке (Австрия) – 75 дней, на Телецком озере – 150 дней. Фен возникает в любой горной стране, если воздушное течение общей циркуляции атмосферы пересекает хребет достаточной высоты.

Переваливая через хребет, фен опускается и в нем адиабатически повышается температура на каждые 100 м на 10. Относительная влажность в нем в то же время понижается по мере роста температуры. Таким образом, если высота горы 3000 м, на вершине температура –80С, воздух опустившись адиабатически нагрелся до температуры +220С.

Выделяют южный и северный фен. Если переваливают через хребет северные воздушные массы, то фен северный и наоборот.

Бора. Борой называют сильный холодный и порывистый ветер, дующий с низких горных хребтов в сторону достаточно теплого моря. Бора известна с давних пор в районе Новороссийска, на Адриатическом побережье в Югославии. К типу боры относится ветер сарма на Байкале, норд в районе Баку, мистраль на Средиземноморском побережье Франции, нортсер в Мексиканском заливе.

В России бора возникает в районе Новороссийска, когда холодный фронт подходит к прибрежному хребту с северо-востока. Холодный воздух сразу же переваливает невысокий хребет. Низвергаясь вниз по склону под действием силы тяжести, воздух приобретает значительную скорость (более 20 м/сек.). Падая на поверхность воды, этот нисходящий ветер создает сильное волнение. При этом резко понижается температура воздуха. Падая вниз, воздух боры адиабатически нагревается, но т.к. высота невелика, а первоначальная температура воздуха низкая, то и воздух, куда движется бора, тоже понижается (в Новороссийске температура понижается на 250). Новороссийская бора затухает в 3 – 5 км от берега.

4. Возникновение и развитие циклонов . В конце 19 века метеорологи предполагали, что циклоны образуются в результате прогрева воздуха над теплой подстилающей поверхности, а антициклоны – вследствие охлаждения воздуха над холодной подстилающей поверхностью. Но в начале 20 века на основе данных аэрологических наблюдений было установлено, что в среднем температуры в тропосфере в системе циклона ниже, чем в системе антициклонов.

В 20-х годах 20 века появилась фронтологическая гипотеза. По этой гипотезе предполагалось, что циклоны возникают в результате волновых (колебательных) движений, существующих на фронтальных поверхностях между массами воздуха различной плотности. Но эта гипотеза не связывала возникновение циклонов с причинами изменения атмосферного давления, а лишь с температурными условиями.

В 40-х годах 20 века советскими учеными Х.П. Погосяном и Н.Л. Таборовским была разработана адвективно-динамическая теория. Эта теория объясняла изменения давления в данном районе действием двух факторов: изменение давления в результате горизонтального переноса масс (адвективная часть) и изменение давления за счет отклонения действительного ветра от градиентного (динамическая часть). Позже стали учитывать и адиабатические изменения, т.е. изменения которые вызываются вертикальными движениями воздуха. Возникновение циклонов и антициклонов объясняется изменением давления, происходящего за счет отклонения действительного ветра от градиентного и за счет адиабатических процессов. Перемещение циклонов и антициклонов определяется адвективными процессами.

Адвективно-динамическая гипотеза соединила процессы возникновения и развития циклонов и антициклонов с изменением атмосферного давления. По адвективно-динамической гипотезе большое внимание уделяется фронтальным зонам, где происходят активные адвективные, динамические и адиабатические процессы.

В дальнейшем было установлено, что по мере углубления циклона в его системе после момента возникновения происходит непрерывное понижение температуры, а в системе антициклона – повышение. Исключением являются нижние слои антициклона над сушей, т.к. над морем повышенная облачность и излучение не такое активное. При ясной погоде в антициклоне земная поверхность будет сильно выхолаживаться излучением, а от нее будут выхолаживаться и прилегающие к ней слои воздуха.

Жизнь каждого циклона и антициклона характеризуется тремя стадиями: возникновения, развития и старения. Продолжительность каждой стадии колеблется от нескольких часов до 2-3 суток.

Циклоны. В течение года во нетропических широтах каждого полушария возникают многие сотни циклонов. Размеры внетропических циклонов значительны. Хорошо развитый циклон может иметь в поперечнике 2-3 тыс. км, т.е. он может одновременно покрыть несколько областей, или даже несколько Западно-Европейских стран и определять режим погоды на огромной территории.

На поверхности главного фронта возникают огромные волны воздуха с длинами порядка 1000 км и более. На одних участках – в гребнях волн – фронт продвигается к низким широтам, на других – в ложбинах фронтальных волн – к высоким широтам. Возникают языки теплого и холодного воздуха. При этом в языках теплого воздуха развивается циклоническое движение (восходящие токи воздуха) и давление падает, формируется циклон.

Первая стадия возникновения циклона . Центр каждого циклона лежит на фронте. Распределение температуры в начале жизни циклона, как правило асимметрично относительно центра. В передней части циклона с притоком воздуха из низких широт температуры повышены, а в тыловой - с притоком воздуха из высоких широт температуры понижены. В передней части циклона (по движению) фронт продвигается к высоким широтам и является теплым фронтом. В тыловой части (по движению) циклона фронт продвигается к низким широтам и является холодным фронтом. В эту стадию циклон заметно выражен лишь в нижней части тропосферы.

Вторая стадия развития циклона . Фронты в циклоне обостряются вследствие сходимости там воздушных течений. Язык теплого воздуха в циклоне, между теплым и холодным фронтом называется теплым сектором. Сформировавшийся циклон становится более высоким, т.е. замкнутые изобары обнаруживаются в нем и в верхней части тропосферы. Температура воздуха в циклоне понижается, т.к. активны восходящие движения воздуха и турбулентный обмен. Давление в центре циклона колеблется от 1000 мб до 980 мб, реже 950 мб (в тропиках 885 мб). Ветры в глубоких циклонах сильные и порывы иногда достигают 30-60 м/сек.

Под действием отклоняющей силы и силы трения, воздушные токи отклоняются в область низкого давления, к центру, и возникают активные восходящие движения воздуха, что приводит к образованию облачности. В передней части циклона на теплом фронте осадки обложные, а в тыловой части – ливневого характера из кучево-дождевых облаков.

Третья стадия старения циклона . Циклон перемещается обычно в восточном направлении. При этом холодный фронт в области циклона постепенно нагоняет теплый фронт, который перемещается медленнее. При смыкании холодного фронта с теплым образуется фронт окклюзии. В начальный период окклюзии образуются обложные осадки из высокослоистых и слоисто-дождевых облаков.

В окклюдированном циклоне теплого сектора у земной поверхности уже нет, теплый воздух оттеснен в верхнюю часть тропосферы холодным воздухом, где он охлаждается, а сам циклон становится высоким и холодным. В центре циклона давление растет, циклон заполняется. Восходящие движения воздуха в центральной части циклона ослабевают и прекращаются. Облака разрушаются, устанавливается ясная погода.

Таким образом, в результате адвекции холодного воздуха в тылу циклона и наличия восходящих движений, адиабатического охлаждения весь циклон заполняется холодным воздухом.

Жизнь циклона продолжается обычно несколько суток, в некоторых случаях существование циклона оказывается длительным, особенно если он объединяются с другими циклонами, образуя одну обширную малоподвижную область низкого давления, так называемый центральный циклон.

Перемещение циклонов осуществляется с запада на восток с составляющей, направленной к высоким широтам. Поэтому наиболее глубокие циклоны наблюдаются в субполярных широтах (на севере Атлантического и Тихого океанов, в южном полушарии – вблизи материка Антарктиды). Но иногда эта закономерность нарушается и циклоны перемещаются аномалийно.

1.Циклон – воздушный вихрь с низким давлением в центре;

2.движение ветра в циклоне против часовой стрелки в северном полушарии и по часовой стрелке – в южном;

3.воздушные токи под действием отклоняющей силы и силы трения отклоняются к центру, в область низкого давления, как следствие возникают восходящие движения воздуха, облакообразование и выпадение осадков;

4.циклоны перемещаются с запада на восток при западном переносе с отклонением под действием отклоняющей силы к высоким широтам.

5. Возникновение и развитие антициклонов . Между циклонами возникают и развиваются антициклоны. Их размеры и скорости движения примерно такие же, как и в циклонах.

Первая стадия возникновения антициклона. Холодный воздух в системе антициклона находится в правой части, а теплый – в левой части. Нисходящие движения воздуха и адиабатическое повышение температуры, адвективные процессы в левой половине его вызывают общее повышение температуры в системе антициклона. В результате адиабатического нисходящего движения воздуха происходит повышение температуры, водяной пар удаляется от точки насыщения, облака рассеиваются и прекращаются осадки.

Вторая стадия развития антициклона . Антициклон является мощным барическим образованием с высоким давлением в приземном центре и расходящейся системой сравнительно слабых приземных ветров. Давление достигает 1030-1040 мб в центре, а над Азиатским материком 1060-1070 мб. В высоту он развивается на несколько км. Под действием отклоняющей силы и силы трения воздушные токи отклоняются от центра к периферии, возникают нисходящие движения воздуха, температура воздуха повышается, устанавливается ясная, безоблачная, безветренная погода.

Третья стадия старения антициклона . В результате продолжающейся адвекции тепла и адиабатического нагревания, антициклон заполняется теплым воздухом во всей тропосфере и превращается в очаг тепла с хорошо выраженной антициклональной циркуляцией.

Контрасты температур, являющиеся его энергетической базой, перемещаются на периферию и антициклон начинает разрушаться. При разрушении антициклона нередко появляются облака и начинают выпадать осадки.

Направление движения антициклонов определяется также в основном направлением основного потока. Но в отличии от циклонов в перемещении антициклонов преобладает составляющая, направленная к низким широтам.

1.Антициклон – это воздушный вихрь с высоким давлением в центре;

2.Ветер в антициклоне перемещается по часовой стрелке в северном полушарии и против – в южном;

3.под действием отклоняющей силы и силы трения, воздушные токи отклоняются от центра к периферии, образуются нисходящие движения воздуха, устанавливается ясная, безветренная погода без осадков;

4.антициклоны перемещаются в западном направлении и под действием отклоняющей силы смещаются к низким широтам;

5.продолжительность жизни антициклона в среднем 4-5 дней, но в отдельных случаях они существуют более долгий срок.

Муссоны умеренных широт прослеживаются на восточных побережьях материков, и обусловлены разной степенью теплоемкости земной поверхности и водной.

6. Циркуляция вышележащих слоев атмосферы . В верхней тропосфере и в стратосфере высокое давление совпадает с высокой температурой, низкое – с низкой температурой (барическая ступень). Исключение составляет узкая зона вблизи экватора, расположенная в южном полушарии. Здесь при высоких температурах, в зоне конвергенции пассатов сохраняется низкое давление при интенсивной конвекции. В среднем в тропосфере температура повышается от полюсов к тропикам и вместе с этим повышается давление. Барический градиент направлен от низких широт к высоким, а в районе экватора – к экватору. Это обуславливает восточный перенос вблизи экватора, западный перенос над остальными частями полушарий.

Таким образом, вокруг полюсов существуют планетарные циклоны (в северном полушарии – против часовой стрелки, а в южном – наоборот).

Особенно сильный западный перенос существует в районе 30-350с. и ю. широт. Скорость ветра достигает более 35 м/сек. В западном переносе наблюдаются огромные волны, длиною в несколько тысяч километров. Вокруг земного шара их укладывается в каждый момент 4-6. Длинные волны перемещаются с запада на восток, но медленнее, чем при западном переносе. Воздух в этих волнах отклоняется и к высоким и к низким широтам. На общий западный перенос накладывается влияние циклонов и антициклонов.

Начиная с 12-14 км, изменение температуры зимой и летом над полушариями различное. С высоты 18-20 км отмечаются в летнем полушарии максимальные температуры над полюсом, т.к. солнечные лучи падают под углом и проходят больший путь. Уменьшение температур прослеживается в направлении к экватору (в верхних слоях атмосферы температура воздуха зависит от поглощения тепла атмосферой, а у поверхности Земли – от нагрева поверхности). В зимнем полушарии над полюсом – минимальные температуры. Следовательно: летом северного полушария барический градиент направлен от северного полюса к южному, летом южного полушария – от южного полюса к северному, значит в зимнем полушарии сохраняется западный перенос и в высоких слоях стратосферы.

Неравномерность поступления солнечной радиации в те или иные регионы Земли служит главной причиной циркуляции Вм атмосферы с образованием циклонов и антициклонов. Циркуляция атмосферы – важнейший климатообразующий процесс, способствующий переносу тепла и влаги из одних регионов в другие и определяющий характер К. в любой точке поверхности земного шара. Существование циркуляции атмосферы обусловлено, главным образом, неоднородным распределением атмосферного давления, вызванным в основном различным притоком солнечной радиации в тех или иных широтах, различными физическими свойствами земной поверхности (суши, моря и льда), а также отклоняющим влиянием вращения Земли на воздушные потоки.

Совокупность этих причин определяет местонахождение и перемещение постоянных и сезонных центров действия атмосферы, т.е. обширных областей атмосферы с преобладанием антициклонов (областей повышенного атмосферного давления) или циклонов (областей с пониженным атмосферным давлением). Размещение центров действия атмосферы отражает наиболее устойчивые особенности общей циркуляции атмосферы. Различают постоянные центры действия атмосферы, проявляющиеся в течение всего года – экваториальную депрессию; области высокого атмосферного давления над тридцатыми широтами северного и южного полушарий (Азорский антициклон (max) , Северо-Тихоокеанский / Гавайский max, Южно-Атлантический max, Южно-Индийский max, Южно-Тихоокеанский max); депрессии субполярных широт (Исландская депрессия (min), Алеутский min, Субантарктический min); полярные области высокого атмосферного давления (Арктический антициклон (max), Антарктический max), а также сезонные центры действия атмосферы, образование которых связано с интенсивным прогревом или охлаждением внутренних районов материков в летний и зимний сезоны – например, Азиатский антициклон, Канадский антициклон, Сахаро-Аравийский min, Южно-Азиатский min. Атмосферное давление само по себе не имеет большого непосредственного значения для климатов, но косвенное его значение нельзя недооценивать. В результате неравномерного распределения атмосферного давления возникает движение воздуха относительно земной поверхности, обычно горизонтальное, которое направлено от области высокого давления к низкому. Это движение не что иное, как ветер.

Существование постоянных центров действия определяет формирование постоянных ветров. Для тропического пояса характерна пассатная циркуляция.

Схема распределения давления и ветров на земной поверхности

Пассат – это постоянный ветер тропических широт, его возникновение связано с оттоком воздуха из области высокого давления над тридцатыми широтами в область экваториальной депрессии. Под воздействием силы Кориолиса пассаты в северном полушарии имеют северо-восточное направление, в южном полушарии – юго-восточное направление. Пассаты тропической зоны характеризуются удивительным постоянством направления и относительно равномерной скоростью. Поэтому в тропических широтах образуется пояс восточных ветров. Зона тропических восточных ветров по обе стороны экватора, включая и внутритропическую зону конвергенции, занимает самую большую площадь по сравнению с остальными звеньями общей циркуляции атмосферы.

Для внетропической зоны характерен западный перенос воздуха и в этих широтах формируется поле западных ветров. Западные ветры – это постоянные ветры умеренных широт. Их формирование обусловлено падением температуры воздуха и атмосферного давления от субтропиков (области высокого давления над тридцатыми широтами) к субполярным широтам. Меридионально направленные (вследствие существования барического градиента) воздушные течения отклоняются силой Кориолиса вправо в северном полушарии и влево – в южном, т.е. в обоих случаях с запада на восток. Зона западного переноса Вм отличается интенсивной циклонической деятельностью.

Зоны общей циркуляции меняют свое положение в соответствии с годовым ходом высоты Солнца, что является причиной устойчивого чередования преобладающих направлений ветра на окраинах этих зон. Хотя их смещение и незначительно, но оно играет большую роль в формировании климатических условий переходных климатических поясов (субарктического, субтропического, субэкваториального).

Ветер – одно из основных понятий метеорологии. Различают прямое воздействие ветра: рельефообразующий фактор, влияет на форму растений, способствует переносу семян растений, вызывает морские течения, регулирует дальность распространения морских и материковых влияний и т.д. Но большее значение, чем прямое воздействие ветра, имеют его косвенные эффекты, ибо именно ветру мы обязаны сменами погоды, связанными с перемещением различных Вм с их разнообразными свойствами.

Воздушные массы – относительно однородные части тропосферы, соизмеримые с большими частями материков и океанов и обладающие определенными общими свойствами (температурой, влажностью, давлением и т.д.); формируются над однородной подстилающей поверхностью, в однородных радиационных условиях; перемещаются как целое в одном из течений общей циркуляции атмосферы (что в значительной степени определяет характер климатических условий) и отделяются друг от друга атмосферными фронтами. По происхождению различают: арктические, антарктические, умеренных широт, тропические и экваториальные Вм с подразделением их (кроме экваториальных) на морской и континентальный типы.

Фронтальные зоны, формирующиеся в зоне контакта Вм, обладают большой неустойчивостью атмосферы. Для арктического и полярного атмосферных фронтов характерно образование циклонов, крупных атмосферных вихрей. Циркуляция воздуха в вихрях направлена в северном полушарии против, а южном – по часовой стрелке, с отклонением к центру циклона в нижних слоях атмосферы. В различных частях циклона отмечаются значительные температурные контрасты. Прохождение циклонов обычно сопровождается усилением облачности и осадков, изменением температуры воздуха и резкой сменой погоды.

Схема развития фронтального циклона (по С.П. Хромову)

Во внутритропической зоне конвергенции (зоны столкновения в атмосфере пассатов Северного и Южного полушарий, или пассата и экваториального муссона) наблюдаются сильные восходящие токи воздуха, приводящие к образованию мощной облачности и выпадению обильных ливневых осадков.

На территории Северных материков, большая часть которых располагается в умеренном, субарктическом и субтропическом поясах, господствует западный перенос Вм умеренных широт. Исландский и Алеутский барические минимумы, которые формируются над океаническими бассейнами в районе 60 0 с.ш., служат зонами конвергенции Вм, развития фронтальных процессов и формирования циклонов, которые смещаются с запада на восток, с океанов на материки и определяют режим погод на значительных пространствах Северных материков. Наиболее сильно влияние западных ветров проявляется в западно-приокеанических секторах Евразии и Северной Америки в субарктическом, умеренном поясах, где формируются морские типы климата, отличающиеся теплой для данных широт зимой, прохладным летом и большим количеством осадков, выпадающих в течение всего года с небольшим преобладанием зимних осадков. В западно-приокеаническом секторе субтропического пояса формируется средиземноморский климат с влажной зимой (влияние западных ветров) и сухим жарким летом (из-за летнего положения субтропических антициклонов).

В пределах южных тропических материков, основная площадь территории которых расположена в экваториально-тропических широтах, господствует пассатная циркуляция. В тропических широтах всех южных тропических материков пассаты непосредственно участвуют в образовании климатов восточных побережий. На восток Южной Америки, Австралии и Южной Африки пассаты приносят мТВ. Они способствуют выпадению осадков на восточных склонах береговых поднятий. В летнее время количество осадков увеличивается, т.к. усиливается пассатная циркуляция и влагосодержание Вм возрастает. С продвижением вглубь континентов, Вм трансформируются и количество осадков снижается. Более быстрое превращение мТВ в кТВ происходит в холодный период. Для этих районов характерны тропические влажные (пассатно влажные) климаты.

Особенно большую роль циркуляция пассатного типа играет в формировании климата северной, наиболее широкой части Африки, которая к тому же расположена в непосредственном соседстве с огромным материковым блоком Евразии. Северо-восточный пассат устойчиво наблюдается в течение всего года между 30 0 и 17 0 с.ш. над территорией северной Африки. Вм, перенесенные пассатным потоком, формируются в области повышенного давления тридцатых широт, располагающейся над севером Африки и Аравией. По своим свойствам это кТВм, которые очень сухие и осадков не дают. Поэтому, в зоне влияния этого воздушного потока формируется самая большая по площади пустыня мира – Сахара. Сахару называют «детищем северо-восточного пассата».

В зимний период над внутренними районами Северных материков развиваются обширные области с высоким атмосферным давлением: Канадский, Северо-Американский, Азиатский антициклоны. Наибольшей устойчивостью отличается Азиатский антициклон, центр которого расположен над северной Монголией и южным Забайкальем. Вм, формирующиеся в этих областях повышенного давления, отличаются сухостью и очень низкими температурами. Растекание Вм из Азиатского антициклона обусловливает снижение температур и отсутствие зимних осадков на огромных пространствах Северной, Центральной, Восточной Азии.

В летний период внутренние районы материков прогреваются, над ними формируются барические депрессии, в которые затягиваются Вм с окраин материков. Например, летние муссонноподобные ветры с Мексиканского залива, столкновение тихоокеанский и атлантических Вм над внутренними районами Мексиканского нагорья с развитием внутритропической конвергенции; аналогичные процессы развиваются летом южного полушария над внутренними районами Южной Африки.

На фоне общей циркуляции атмосферы в ряде регионов проявляется местная циркуляция, обусловленная географическими особенностями соответствующей территории: характером рельефа, резкими контрастами температуры воздуха, подстилающей поверхностью и др. Существует много локально обусловленных ветров, носящих местные наименования. Среди местных ветров обособленные группы образуют бризовые ветры, горно-долинные ветры, нисходящие (фёновые) ветры, синоптические региональные ветры (их формирование связано со специфической, чаще других повторяющейся, синоптической ситуацией): сирокко, самум, хамсин, вилли-вилли и др.; штормовые (торнадо, смерч, тайфун) ветры.

Циркуляция атмосферы -- система замкнутых течений воздушных масс, проявляющихся в масштабах полушарий или всего земного шара. Подобные течения приводят к переносу вещества и энергии в атмосфере как в широтном, так и в меридиональном направлениях, из-за чего являются важнейшим климатообразующим процессом, влияя на погоду в любом месте планеты.

Изменчивость погоды общеизвестна и ее капризы ежедневно подтверждаются синоптическими картами и сводками погоды, которые появляются в интернете, газетах и демонстрируются по телевидению. Если же нанести на карты средние за один сезон или даже за целый год значения ветра, температуры и других метеорологических элементов, то более недолговечные характеристики, такие, как движущиеся циклоны или антициклоны, будут отфильтрованы и выявятся более простые и яркие характеристики ветров. На такой карте можно найти обширные области, в которых атмосфера ведет себя совершенно определенно. Рассмотрим основные области распределения давления, характеризующие атмосферную циркуляцию. Вблизи экватора виден пояс низкого давления, в котором большую часть года преобладают штиль или слабые ветры,-- эту зону во времена парусного флота мореплаватели называли экваториальной зоной затишья. В период равноденствия (когда Солнце в полдень стоит вертикально над экватором) здесь обычно бывают грозовые шквалы. Эти шквалы формируются в межтропической зоне конвергенции (или на своеобразном тропическом фронте), где сходятся пассаты двух полушарий. Межтропическая зона конвергенции в зависимости от положения Солнца в разные сезоны года перемещается из северного полушария в южное и обратно (можно заметить, что над сушей она движется несколько быстрее, чем над морем). С обеих сторон эту зону окаймляют области высокого давления, известные под названием конских широт. Ветры, движущиеся от этих областей в сторону экватора, и есть пассаты, имеющие в северном полушарии северо-восточное направление, а в южном -- юго-восточное. Эти направления ветров постоянны только в Атлантическом океане, где не сказывается влияние муссонов Юго-Восточной Азии. Севернее и южнее конских широт, т. Е. между 35 и 60°, в обоих полушариях давление понижается по направлению к полюсам. В этих зонах преобладают западные ветры от поверхности земли до нижней стратосферы. В приземном слое они более изменчивы, чем пассаты, особенно в северном полушарии, где в этих широтах сильно развита циклоническая деятельность. Наконец, в очень высоких широтах, около полюсов, лежит небольшая область высокого давления, из которой ветры направлены к умеренным широтам.

Эта простая схема ветров в приземном слое существенно изменяется от сезона к сезону и зависит от неравномерного нагревания суши и моря солнцем -- средний ветер меняет свое направление, интенсивность и даже характер. Например, в умеренных широтах циклоны чаще возникают зимой и движутся по направлению к экватору. Наоборот, субтропические антициклоны становятся особенно мощными летом и движутся по направлению к полюсам. Над континентами летом температура повышается, а атмосферное давление падает, тогда, как зимой имеет место обратное явление. Более четко давление и ветер изменяются при переходе от зимы к лету над Восточной Азией.

Характер ветра нарушают также горные хребты, особенно Скалистые горы, Анды и нагорье Тибет. Эти горные области способствуют превращению высотных западных ветров в серии волн в умеренных широтах. Эти волны, связанные с положением и формой основных высотных антициклонов и семейств циклонов вблизи поверхности земли, вероятно, ответственны в какой-то мере за сезонные изменения давления над континентами и морями. атмосфера погода энергообмен циркуляция

Чтобы получить некоторые сведения о сезонных изменениях общей циркуляции, рассмотрим общий характер ветров в «летнем» и «зимнем» полушариях одновременно. Летняя полусфера представляет простую картину. В тропических широтах до высоты примерно 18 км наблюдаются слабые и непостоянные восточные пассаты; на больших высотах скорость их повышается более чем до 100 км/час. Их называют иногда восточными ветрами Кракатау, потому что более трех лет они несли вулканическую пыль, выброшенную в атмосферу во время грандиозного извержения, которое произошло на острове Кракатау в 1883 г., и развеяли вокруг Земли. Иногда наблюдают восточные ветры и в полярных широтах.

Между поясами низкоширотных и высокоширотных восточных ветров существует система устойчивых западных ветров, которую называют западным переносом. Западные ветры дуют в слое от поверхности земли и до уровня 20 км. В отдельных районах скорость этих ветров резко возрастает, тогда образуются два или три быстро движущихся потока внутри ветровой системы. Такие потоки называются струйными течениями, они располагаются на высотах около 10 или 12 км (сразу под тропопаузой). Скорость ветров в этих потоках доходит до 400 км/ч и более. Впервые со струйными течениями встретились военные самолеты во время второй мировой войны, и с тех пор они исследуются с помощью радиозондов, самолетов и ракет. Сегодня самолеты, летящие с запада на восток, имеют преимущество перед теми, что летят с востока на запад, поскольку они могут воспользоваться этими струйными течениями. (Лишь одно значительное струйное течение направлено с востока на запад, оно развивается летом над Индийским океаном в северном полушарии.) Длина таких быстро несущихся рек воздуха колеблется от нескольких сотен до нескольких тысяч километров. Как правило, струйные течения в атмосфере связаны с резко углубляющимися циклонами, которые, двигаясь к экватору, способствуют усилению западных ветров и превращению их в струйные течения.

Зимой положение и интенсивность различных ветровых систем разнообразнее. В высоких широтах (выше 65°) восточные ветры значительно сильнее, чем летом, и проникают дальше к экватору. Выше 15 км в стратосфере восточные ветры заменяются сильными западными ветрами, которые циркулируют вокруг полюса и называются западными ветрами полярной ночи. Обычно различают ось струйного течения и ветры, дующие со скоростями до 300 км/ч на высотах от 25 до 30 км. В середине зимы наблюдаются самые сильные и устойчивые западные ветры в тропосфере, они несут стремительные и глубокие циклоны, гребни и антициклоны и определяют погоду в нижних слоях атмосферы. Если летом они обычно простираются от 35 до 65° широты на уровне моря, то зимой наблюдаются от 30 до 70°. (На высоте примерно 5 км они простираются почти от самого экватора до полюса.) В нижних слоях стратосферы ветры быстро ослабевают с высотой в среднем до 50 км/ч на уровне 20 км. Однако в верхних слоях стратосферы они снова набирают скорость, достигая максимума на высоте примерно 55 км, т. Е. уже в слоях нижней мезосферы. Эти высотные сильные западные ветры называются мезосферными западными потоками.

Вдоль всех этих воздушных потоков, как правило, движутся возмущения. Западные потоки в средних и высоких широтах характеризуются движением особенно мощных циклонов и антициклонов, которые связаны с волнами различных размеров в средней и верхней тропосфере и в нижней стратосфере. Практически карты среднего давления зимой на высоте 3 км и в мезосфере мало чем отличаются одна от другой. Но атмосфера при этом не ведет себя одинаково на всех уровнях. В стратосфере, например, ветры распространяются от холодных областей к теплым, а не наоборот, как в тропосфере. Циркуляция же в стратосфере является скорее охлаждающей, чем нагревающей системой, она усиливает контрасты температуры над различными частями земной поверхности, а не выравнивает их, хотя изменения температуры в целом определяют здесь вертикальные движения. Выше 80 км атмосфера ионизована и подвержена влиянию ряда других факторов, например, электрических и магнитных полей.

В последнее время многое стало известно об общей циркуляции в атмосфере, особенно в северном полушарии. Но даже сейчас по этим данным мы не можем судить о причинах изменения погоды и климата. Сведения об общей циркуляции были пополнены английскими, американскими и скандинавскими метеорологами, исследовавшими баланс углового момента. В качестве отправной точки они избрали предположение, что полная величина энергии и количество водяного пара, неравномерно распределенные по земному шару, должны оставаться постоянными в атмосфере в целом. И затем они смогли обнаружить, где находятся области источников и стоков энергии и водяного пара на Земле и как различные области обмениваются друг с другом запасами энергии и водяного пара.

Чтобы понять, как осуществляется обмен энергией, необходимо помнить, что атмосфера не только вращается вместе с Землей, но также имеет собственное движение вокруг земной оси. Другими словами, атмосфера обладает угловым моментом. Угловой момент тела, движущегося по кругу, пропорционален его скорости, расстоянию от центра круга (в данном случае от земной оси) и его массе. Угловой момент равен произведению трех указанных величин. Как было сказано выше, в низких широтах вообще преобладают восточные ветры (пассаты), а в средних -- западные. Вследствие трения этих ветров о поверхность Земли, которая вращается с запада на восток, на низких широтах возникает значительный угловой момент западных ветров за счет большого здесь радиуса вращения атмосферы. Поэтому низкие широты являются источником углового момента, который переносится в область средних широт, играющих роль стока углового момента ровно настолько, насколько тормозят вращение Земли пассаты. Западный перенос благодаря поверхностному трению ветра о земную поверхность способствует вращению Земли. В целом же скорость вращения Земли остается неизменной. Влияние поверхностного торможения должно было бы в течение примерно 10 дней остановить оба вида циркуляции, после чего атмосфера начала бы вращаться вместе с Землей, не будь этого переноса углового момента западных ветров от низких к высоким широтам. Однако это возможно лишь в равномерно нагретой атмосфере. Угловой момент от низких широт к высоким переносится циркуляцией в ячейке Гадлея и мощными циклонами, идущими из низких широт в высокие. Второй процесс ярче выражен в верхних слоях тропосферы с максимальным переносом на высоте примерно 10 км на широте 32°, т. Е. в области стационарных субтропических антициклонов. Кроме того, момент почти наверняка переносится большими волнами давления в верхних слоях тропосферы и сопровождающим их семейством приземных циклонических и антициклонических возмущений в умеренных широтах.

Подобно угловому моменту энергия переносится с низких широт и малых высот, куда поступает избыточное ее количество, к тем областям, где атмосфера теряет ее путем радиационного охлаждения, т. Е. к высоким широтам и большим высотам. Ветры -- следствие неравномерного нагревания Земли -- стремятся сгладить температурные различия, различия в кинетической энергии, в распределении водяного пара. Поток кинетической энергии относительно мал по сравнению с другими формами энергетического обмена.

Между широтами 30 и 40°, где обмен энергии наибольший, значение выделяемого при конденсации тепла и тепла, связанного с температурой воздуха в переносе энергии, более или менее одинаково. К северу от 40-й параллели больше всего энергии переносится в виде тепла, затраченного на испарение воды в тропиках. Скрытое тепло высвобождается, когда водяной пар конденсируется в облачные капли, особенно интенсивно в средней и верхней тропосфере. Здесь воздух интенсивно охлаждается благодаря длинноволновому излучению облаков в космическое пространство.

Атмосфера содержит примерно постоянное количество влаги, несмотря на неравномерное распределение испарения и осадков по поверхности земного шара. И подобно энергии и угловому моменту, влага переносится от областей, где испарение превышает осадки, к областям стока пара, где наблюдается обратный процесс, т. Е. количество осадков превышает испарение. Таким образом, достигается глобальный баланс влаги. Но вычислить в деталях количество влаги, участвующей в крупно- и мелкомасштабных переносах, люди не в состоянии, так как неизвестно, сколько осадков выпадает над большей частью океанов и над территорией, где нет достаточно густой сети станций. Кроме того, не существует и удовлетворительных приборов для измерения испарения. Правда, довольно точную оценку можно сделать и по некоторым косвенным данным. Некоторые региональные исследования показали, что распределение областей образования и стока водяного пара зависит не столько от широты места, сколько от других более сложных закономерностей. Например, оказалось, что сильно отдаленные друг от друга Мексиканский залив и северо-восточная часть Тихого океана обеспечивают около 90% всех осадков, выпадающих над бассейном реки Миссисипи. Был установлен другой парадоксальный факт: некоторые засушливые районы являются источниками водяного пара в атмосфере. (Здесь можно предположить, что в эти области вода поступает путем подземного стока или в виде рек.) Неудивительно, что меньше всего испарение в полярных районах вследствие низких температур и отсутствия достаточно сильных ветров. Но в средних широтах, особенно там, где часты сильные ветры и имеются теплые моря, испарение весьма интенсивное. Над теплыми океаническими течениями северной части Атлантического и Тихого океанов, например, испарение в год достигает 250 см.

Приветствую Вас дорогие читатели! В данной статье хотелось бы поговорить о том, как на нашей планете происходят воздушные течения.

Циркуляция атмосферы - система проявляющихся в масштабах всего земного шара либо полушарий, замкнутых течений воздушных масс.

Основной источник движения воздуха – это лучистая энергия Солнца. Эта энергия распределяется по всему земному шару неравномерно. Причина возникновения ветра именно в этом.

Солнечной радиации поступает больше в тропическую и экваториальную , а в высокие и умеренные – меньше, поэтому воздух сильнее нагревается в низких широтах, чем в полярных областях и умеренной зоне. Разница атмосферного давления и температуры возникает между холодной и теплой массой воздуха. Это и порождает ветер.

Бриз – это простой пример возникновения ветра. Он возникает через разницу температур воздуха над сушей и морем. Днем над сушей воздух нагревается больше, чем над морем. Нагретый воздух поднимается, и его заменяет воздух из моря.

Оборотное явление происходит ночью: море остается теплым, а суша охлаждается. Тогда, над морем поднимается воздух, а на его место занимает воздух из суши. Более могущественные ветра возникают приблизительно так же. Они дуют из области высокого давления в область низкого.

Пока существует разница давления, происходит этот процесс. Исключение – узкая зона вблизи экватора, там, на силу и направление ветра еще влияют и другие силы. Одна из этих сил – отклоняющая сила вращения , которая названа силой Кориолиса.

Ветер, находящийся выше шара трения, то есть на высоте около 1 км, под влиянием этой силы дует вдоль градиента, а от него отклоняется на 90°. В приземном шаре воздуха еще действует и сила трения с земной поверхностью, которая уменьшает скорость ветра и отклоняет его влево.

Скорость ветра растет, а горизонтальные градиенты температуры, давление и влажность увеличиваются, при сближении холодного и теплого воздуха.

Фронтальными или переходными, называют зоны, в которых теплая и холодная масса воздуха сближаются. Ежедневно возникают и рушатся в воздушном океане над полярными и умеренными областями обеих полушарий такие неспокойные зоны. Невелика ширина фронтальных зон – преимущественно 1- 2 тыс. км.

Антициклоны и циклоны – самые большие атмосферные вихри, они возникают на фронтах, где концентрируются большие запасы кинетической энергии, из-за разницы давления и температур. В диаметре они достигают 1 – 3 тыс. км. Охватывают нижние слои стратосферы и всю тропосферу, и развиваясь по вертикали, достигают десятков километров.

Не удивительно, что в таких грандиозных вихрях теплая масса воздуха переносится из тропиков и экваториальной зоны в высокие и умеренные широты, а холодные массы – в тропики и экваториальную зону. В результате – в высоких широтах температура относительно повышается, а в низких – .

и с погода обычно связана с циклонами, а малооблачная и ясная – с антициклонами. В антициклоне преобладают нисходящие движения воздуха, при которых степень насыщенности влагой уменьшается, а в циклоне – восходящие движения воздуха, которые способствуют конденсации влаги.

Эти атмосферные вихри, во внетропических широтах наблюдаются везде, но есть районы, в которых одни из них возникают реже, а другие чаще.

Зимой в Северном полушарии, чаще всего циклоны образуются на севере Тихого и Атлантического океанов, а антициклоны – на материках Северной Америки и . Летом на часто возникают циклоны, но они менее интенсивны. Летом они интенсивны над .

В Южном полушарии между летом (декабрь – февраль) и зимой (июнь – август) отличия невелики. Антициклоны чаще всего встречаются в северной части умеренной зоны и в субтропиках, при этом их центры размещаются над океанами, а циклоны чаще всего встречаются вокруг Антарктиды.

Преимущественные ветра зависят от атмосферного давления. Пассаты особенно характерны для низких широт. Эти ветра, постоянно направленны в сторону экваториальной зоны из областей высокого давления. В Южном полушарии они юго-восточного направления, в Северном полушарии – северо-восточного.

Муссоны, в отличие от пассатов, сезонные ветра. Они связаны с разницей температуры воздуха над океанами и материками. Летом эти ветры дуют из прохладных океанов на нагретые материки, а зимой — от прохладных материков к теплым океанам.

Для низких широт типичны муссоны, особенно для юго-востока и юга Азии. В умеренной зоне они также появляются, на Дальнем Востоке, в частности. И муссоны, и пассаты – это ветра приземного слоя . Совсем другая картина наблюдается на высотах. Выше 2 – 3 км, в умеренной зоне, преобладают западные ветра.

На высоте 12 км, их средняя скорость достигает больших значений: наибольшие средние скорости зонального ветра в январе над Аравией – 44 м/с, над юго-востоком Северной Америки – 40 м/с, над Японскими островами больше 60 м/с.

Небольшие средние скорости ветра в высоких широтах и на севере умеренной зоны: преимущественно не более 10 – 12 м/с. Но при интенсивном развитии антициклонов и циклонов, в отдельные дни, на высоте 9 – 12 км, скорость движения может превышать 60 – 80 м/с. Скорости воздушных течений летом везде ослабевают и даже на высоте не превышают 30 – 40 м/с.

Таким образом, — это ветра (воздушные массы), которые зависят от высоты, и места их формирования, которые как бы вращаются по замкнутому кругу.

Общая циркуляция атмосферы - круговоротные движения воздушных масс, простирающиеся по всей планете. Они являются переносчиками различных элементов и энергии по всей атмосфере.

Прерывистое и сезонное размещение тепловой энергии вызывает воздушные течения. Это приводит к разному прогреванию почвы и воздуха на всевозможных территориях.

Именно поэтому солнечное влияние является основоположником движения воздушных масс и циркуляции атмосферы. Воздушные движения на нашей планете бывают абсолютно разные - достигающие нескольких метров или десятков километров.

Самая простая и понятная схема циркуляции атмосферы бала создана еще много лет назад и используется в наши дни. Движение воздушных масс неизменно и безостановочно, они движутся по нашей планете, создавая замкнутый круг. Быстрота передвижения этих масс напрямую связана с солнечной радиацией, взаимодействия с океаном и взаимодействия атмосферы с почвой.

Атмосферные движения вызываются нестабильностью распределения солнечного тепла по всей планете. Чередование противоположных воздушных масс - теплых и холодных, - их постоянное скачкообразное перемещение вверх и вниз, образует различные циркуляционные системы.

Получение тепла атмосферой происходит тремя путями - использованием солнечной радиации, с помощью конденсации пара и теплообмена с земным покровом.

Влажный воздух также важен для насыщения атмосферы теплом. Огромную роль в этом процессе играет тропическая зона Тихого океана.

Воздушные потоки в атмосфере

(Потоки воздуха в атмосфере Земли )

Воздушные массы различаются по своему составу, зависящему от места зарождения. Воздушные потоки подразделяются на 2 основных критерия - континентальные и морские. Континентальные формируются над почвенным покровом, поэтому они мало увлажнены. Морские, наоборот, очень влажные.

Основными воздушными потоками Земли являются пассаты, циклоны и антициклоны.

Пассаты образуются в тропиках. Их движение направлено в сторону экваториальных территорий. Это связано с перепадами давления - на экваторе оно низкое, а в тропиках - высокое.

(Красным на схеме отображены пассаты (trade winds) )

Образование циклонов происходит над поверхностью теплых вод. Воздушные массы передвигаются от центра к краям. Их влияние характеризуется обильными осадками и сильными ветрами.

Тропические циклоны действуют над океанами на приэкваториальных территориях. Они формируются в любое время года, вызывая ураганы и штормы.

Антициклоны образуются над материками, где понижена влажность, но есть достаточное количество солнечной энергии. Воздушные массы в этих потоках движутся от краев к центральной части, в которой они нагреваются и постепенно снижаются. Именно поэтому циклоны приносят ясную и безветренную погоду.

Муссоны являются переменными ветрами, направление которых меняется посезонно.

Также выделяются вторичные воздушные массы, такие как тайфун и торнадо, цунами.