Атмосферная циркуляция. Центры действия атмосферы

Морской сайт Россия нет 13 ноября 2016 Создано: 13 ноября 2016 Обновлено: 13 ноября 2016 Просмотров: 6134

Ветром называется движение воздуха из районов с более высоким давлением воздух в область более низкого давления. Скорость ветра определяется величиной разности атмосферного давления.

Влияние ветра в судовождении необходимо постоянно учитывать, т. к. он вызывает дрейф судна, штормовое волнение и т.п.
Из-за неравномерности нагревания различных частей земного шара существует система атмосферных течений планетарного масштаба (общая циркуляция атмосферы).

Воздушный поток состоит из отдельных вихрей, беспорядочно перемещающихся в пространстве. Поэтому скорость ветра, измеряемая в какой-либо точке,беспрерывно меняется во времени.
Наибольшие колебания скорости ветра наблюдаются в приводном слое. Для того чтобы иметь возможность сопоставлять скорости ветра, за стандартную высоту была принята высота 10 метров над уровнем моря.
Скорость ветра выражают в метрах в секунду, силу ветра - в баллах. Соотношение между ними определено шкалой Бофорта.

Колебания скорости ветра характеризуются коэффициентом порывистости,под которым понимается отношение максимальной скорости порывов ветра к его средней скорости, полученной за 5 – 10 минут.
С возрастанием средней скорости ветра коэффициент порывистости уменьшается. При больших скоростях ветра коэффициент порывистости равен примерно 1,2 - 1,4.

Пассаты - ветры, дующие весь год в одном направлении в зоне от экватора до 35° с. ш. и до 30° ю. ш. Устойчивы по направлению: в северном полушарии - северо-восточные, в южном - юго-восточные. Скорость - до 6 м/с.

Муссоны - ветры умеренных широт, летом дующие с океана на материк,зимой - с материка на океан. Достигают скорости 20 м/с. Муссоны приносят на побережье зимой сухую ясную и холодную погоду, летом - пасмурную, с дождями и туманами.

Бризы возникают вследствие неравномерного нагрева воды и суши в течение суток. В дневное время возникает ветер с моря на сушу (морской бриз). Ночью с охлажденного побережья - на море (береговой бриз). Скорость ветра 5 – 10 м/с.

Местные ветры возникают в отдельных районах вследствие особенностей рельефа и резко отличаются от общего воздушного потока: возникают в результате неравномерного прогрева (охлаждения) подстилающей поверхности. Подробные сведения о местных ветрах даются в лоциях и гидрометеорологических описаниях.

Бора - сильный и порывистый ветер, направленный вниз по горному склону. Приносит значительное похолодание. Наблюдается в местностях, где невысокий горный хребет граничит с морем, в периоды, когда над сушей увеличивается атмосферное давление и понижается температура по сравнению с давлением и температурой над морем.
В районе Новороссийской бухты бора действует в ноябре - марте со средними скоростями ветра около 20 м/с (отдельные порывы могут быть 50 - 60 м/с). Продолжительность действия от одних до трех суток.
Аналогичные ветры отмечаются на Новой Земле, на средиземноморском побережье Франции (мистраль) и у северных берегов Адриатического моря.

Сирокко - горячий и влажный ветер центральной части Средиземного моря сопровождается облачностью и осадками.

Смерчи - вихри над морем диаметром до нескольких десятков метров, состоящие из водяных брызг. Существуют до четверти суток и движутся со скоростью до 30 узлов. Скорость ветра внутри смерча может доходить до 100 м/с.

Штормовые ветры возникают преимущественно в областях с пониженным атмосферным давлением. Особенно большой силы достигают тропические циклоны, при которых скорость ветра нередко превышает 60 м/с.

Сильные штормы наблюдаются и в умеренных широтах. При движении воздушные теплые и холодные массы воздуха неизбежно соприкасаются друг с другом.

Переходная зона между этими массами называется атмосферным фронтом. Прохождение фронта сопровождается резким изменением погоды.

Атмосферный фронт может находиться в стационарном состоянии или в движении. Различают теплые, холодные фронты, а также фронты окклюзии. Основными атмосферными фронтами являются: арктические, полярные и тропические. На синоптических картах фронты изображают в виде линий (линия фронта).

Тёплый фронт образуется при наступлении теплых воздушных масс на холодные. На картах погоды тёплый фронт отмечается сплошной линией с полукругами вдоль фронта, указывающими в сторону более холодного воздуха и направление движения.
По мере приближения тёплого фронта начинает падать давление, уплотняются облака, выпадают обложные осадки. Зимой при прохождении фронта обычно появляются низкие слоистые облака. Температура и влажность воздуха медленно повышаются.

При прохождении фронта температура и влажность обычно быстро возрастают, ветер усиливается. После прохождения фронта направление ветра меняется (ветер поворачивает по часовой стрелке), падение давления прекращается и начинается его слабый рост, облака рассеиваются, осадки прекращаются.

Холодный фронт образуется при наступлении холодных воздушных масс на более теплые (рис.18.2). На картах погоды холодный фронт изображается сплошной линией с треугольниками вдоль фронта, указывающими в сторону более теплых температур и направление движения. Давление перед фронтом сильно и неравномерно падает, судно попадает в зону ливней, гроз, шквалов и сильного волнения.

Фронт окклюзии – это фронт, образованный слиянием теплого и холодного фронтов. Представляется сплошной линией с чередующимися треугольниками и полукругами.

Циклон - атмосферный вихрь огромного (от сотен до нескольких тысяч километров) диаметра с пониженным давлением воздуха в центре. Воздух в циклоне циркулирует против часовой стрелки в северном полушарии и по часовой стрелке в южном.

Различают два основных вида циклонов - внетропические и тропические.

Первые образуются в умеренных или полярных широтах и имеют диаметр от тысячи километров в начале развития, и до нескольких тысяч в случае так называемого центрального циклона.

Тропический циклон - циклон, образовавшийся в тропических широтах, это атмосферный вихрь с пониженным атмосферным давлением в центре со штормовыми скоростями ветра.
Сформировавшиеся тропические циклоны движутся вместе с воздушными массами с востока на запад, при этом постепенно отклоняясь к высоким широтам.
Для таких циклонов характерен также т. н. «глаз бури» - центральная область диаметром 20 - 30 км с относительно ясной и безветреной погодой. В мире ежегодно наблюдается около 80 тропических циклонов.

На Дальнем Востоке и в Юго-Восточной Азии тропические циклоны называются тайфунами (от китайского тай фын – большой ветер), а в Северной и Южной Америке - ураганами (исп. huracán по имени индейского бога ветра).
Принято считать, что шторм переходит в ураган при скорости ветра более 120 км/час, при скорости 180 км/час ураган называют сильным ураганом.

Атмосферная циркуляция является одним из важнейших климатообразующих факторов. Поэтому при наличии многолетних колебаний характера общей циркуляции атмосферы неизбежно происходят изменения климата в различных регионах. В связи с этим целесообразно использовать результаты исследований многолетних крупномасштабных изменений в атмосфере для анализа климатических характеристик.

В общей циркуляции атмосферы наблюдаются устойчивые изменения, которые обнаруживаются при статистическом анализе. Эти изменения отражаются на климатических условиях в каждом географическом регионе. Изучение влияния циркуляции атмосферы на формирование речного стока в пределах территории Беларуси целесообразно выполнить с использованием классификации типов атмосферной циркуляции (по Г.Я. Вангенгейму и А.А Гирсу) и индексов Северо-атлантического колебания (по Дж. Харрелл). Макроциркуляционный метод Г.Я. Вангенгейма и А.А. Гирса описывает циркуляцию атмосферы на трех пространственных уровнях и является действующим оперативным методом, который используется более 50 лет и актуален в настоящее время. Территория Беларуси в пространственном аспекте соответствует зоне действия данного метода. В то же время для современной оценки последних данных наблюдений и для всестороннего анализа связи общей циркуляции атмосферы и условий формирования речного стока в пределах региона необходимо привлечение новейших подходов, используемых для Атлантико-Евразийского сектора. В качестве такого метода целесообразно использование индексов Северо-атлантического колебания, которые являются предиктором для изменений общего состояния атмосферы и соответсвенно могут быть использованы для прогнозных исследований в области гидрометеорологии.

На основе учета характера длинных волн Г.Я. Вангенгейм установил, что все типы элементарных синоптических процессов можно обобщить в трех типах атмосферной циркуляции: западном (W), восточном (Е) и меридиональном (С). Макропроцессы W отражают зональное состояние атмосферы, процессы Е и С отражают меридиональное состояние атмосферы. А.А. Гирс получил 9 типов макропроцессов (W з, W м1 , W м2 . Е з, Е м1 , Е м2 , С з, С м1 , С м2), которые могут рассматриваться как основные формы атмосферной циркуляции северного полушария или как разновидности форм западной, восточной и меридиональной форм.

Для макропроцессов западной формы циркуляции (W з, W м1 , W м2) характерно следующее. В тропосфере наблюдаются волны малой амплитуды, быстро смещающиеся с запада на восток. Географическая локализация основных высотных (АТ500) гребней и ложбин показана на рисунке 2.1.

Ослаблен междуширотный обмен воздухом, а интенсивность зональных составляющих циркуляции повышена. Эта особенность определяется направлением и величиной термических и барических градиентов в толще тропосферы. Градиенты в среднем направлены с юга на север.

При трех разновидностях западной формы (W з, W м1 , W м2) отмечаются отрицательные аномалии давления, отражающие наличие здесь в толще тропосферы быстро смещающихся волн малой амплитуды и связанные с ними смещения циклонов у поверхности земли с запада на восток.

Рисунок 2.1 - Синоптические условия на территории Беларуси при макропроцессах западной (W) форме циркуляции

Состояние центров действия атмосферы различно при разных формах циркуляции и их разновидностях в северном полушарии. Так, для рассматриваемых процессов западной формы при всех трех ее разновидностях в районе расположения сибирского зимнего максимума отмечается отрицательная аномалия давления, что свидетельствует об ослаблении этого центра действия.

Распределение аномалий температуры воздуха при макропроцессах западной формы W з, W м1 , W м2 следующее. Характерны положительные аномалии температуры, так как во всех трех разновидностях здесь получил развитие процесс одной и той же западной формы. Вместе с тем в каждой из разновидностей имеются и свои особенности. Так, в случае W M1 , величина аномалий наибольшая, а при W з? наименьшая.

Для макропроцессов восточной формы (Ез, Ем1, Ем2) характерно следующее. В толще тропосферы наблюдаются стационарные волны большей амплитуды. Географическая локализация основных высотных (АТ500) гребней и ложбин при разновидностях восточной формы представлена на рисунке 2.2. Траектории наземных барических образований, зависящие от направления ведущего потока на высотах, приобретают значительную меридиональную составляющую, чем они существенно отличаются от процессов западной формы.

При процессах восточной формы циклоны смещаются в высокие широты в районах к западу от положения оси гребней и «ныряют» к югу в районах, расположенных восточнее высотных гребней. Струйные течения огибают гребни с севера, а ложбины с юга. Поэтому наиболее активная циклоническая деятельность в северных широтах отмечается там, где располагаются высотные гребни, а в южных широтах, где располагаются высотные ложбины.

Рисунок 2.2 синоптические условия на территории Беларуси при макропроцессах восточной (Е) формы циркуляции

Именно в этих районах наблюдаются «слияния» воздушных масс с различной температурой и происходит обострение фронтов.

Распределение аномалий давления при процессах восточной формы находится в согласии с положением основных высотных гребней и ложбин, свойственных разновидностям данной формы: под восточными частями высотных гребней формируются области положительных аномалий давления, под западными? области отрицательных аномалий.

Распределение аномалий давления при макропроцессах восточной формы принципиально отличается от их распределения при западной форме. При западной форме области положительных и отрицательных аномалий располагаются зонально, при восточной? меридионально.

Сопоставление аномалий давления, свойственных восточной форме, с картой норм позволяет составить представление о состоянии центров действия атмосферы при рассматриваемой форме циркуляции.

Процессы меридиональной формы (С з, С м1 , С м2) подобно процессам формы Е характеризуют меридиональное состояние атмосферы. Поэтому основной особенностью длинных термобарических волн, свойственных этой форме, так же как и восточной форме, является их стационарность, наличие большой амплитуды, а значит и усиленного междуширотного обмена воздухом. Вместе с тем процессы меридиональной формы имеют и принципиальные отличия от процессов формы Е, так как географическое положение высотных гребней и ложбин и связанных с ними наземных полей аномалий у этих форм обратные (рисунок 2.3).

Рисунок 2.3 - синоптические условия на территории Беларуси при макропроцессах меридиональной (С) формы циркуляции

Струйное течение подобно струйному течению при макропроцессе Е огибает гребни с севера, а ложбины с юга. Однако, поскольку при меридиональной и восточной формах гребни и ложбины расположены в разных районах полушария, имеются соответствующие различия и в географическом расположении струйных течений.

В распределении аномалий температуры при макропроцессах С з, С м1 , С м2 четко проявляется меридиональность этих процессов. При этом географическое положение областей аномалий температуры находится в хорошем согласии с локализацией высотных гребней и ложбин (рисунок 2.3): под западными частями высотных гребней у земли формируются области положительных аномалий, под восточными? области отрицательных аномалий.

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Циркуляция атмосферы Атмосферные осадки8 класс Циркуляция атмосферыСистема перемещения воздуха над материками и океанами под влиянием энергии СолнцаВоздух перемещается из поясов с более высоким атмосферным давлением в пояса с более низким атмосферным давлением. Это является основной причиной циркуляции атмосферы. Циркуляция атмосферыОбщая схема циркуляции атмосферы Направление движения воздушных масс в тропосфере Области низкого атмосферного давления (экваториальный и умеренные) Области высокого атмосферного давления (тропические и полярные) Постоянные и сезонные ветрыВетры тропических широтПассаты - это ветры, которые дуют круглый год преимущественно над океаном от тропиков Северного и Южного полушарий к экватору.Под влияние вращения Земли вокруг оси пассаты отклоняются в Северном полушарии вправо, т.е. дуют с северо-востока на юго-запад, а в Южном – влево и направлены с юго-востока на северо-запад. Постоянные и сезонные ветрыВетры умеренных широтЗападные ветры - это ветры, которые дуют круглый год от тропиков Северного и Южного полушарий в умеренные широты.Вследствие вращения Земли воздушные течения постепенно отклоняются к востоку. Так они приобретают преимущественно западное направление. Постоянные и сезонные ветрыВетры полярных областейВ полярных областях Земли воздух перемещается от полярных областей высокого давления в сторону пониженного давления умеренных широт.Это в Северном полушарии – северо-восточные ветры и в Южном – юго-восточные.Антарктические ветры устойчивы и имеют большие скорости. Постоянные и сезонные ветрыВетры полярных областейМуссон – это сезонные ветер, который летом дует с моря на сушу, а зимой с суши на море.Летние муссоны приносят прохладный насыщенный влагой воздух и вызывают выпадение осадков.Зимний муссон несёт холодный и сухой воздух, малооблачную сухую погоду. Распределение осадков на ЗемлеРаспределение величины атмосферных осадков в зависимости от широты местностиПричины неравномерного распределения осадков: Температура воздуха;Общая циркуляция атмосферы;Положение территории относительно Мирового океана Распределение осадков на ЗемлеЭкваториальные широтыХарактерно максимальное количество осадков – до 2000 мм в год.На склонах гор до 6000-7000 мм.Абсолютный максимум – предгорья Гималаев (Черапунджи – 12 000 мм).Долина Черапунджи (Индия) Распределение осадков на ЗемлеТропические широтыХарактерно наименьшее количество осадков– 100 - 250 мм в год.Это Сахара, пустыни Аравии, Западной Австралии и др.Минимальное количество осадков для пустыни Атакама (0,01 мм)..Пустыня Атакама (Южная Америка) Распределение осадков на ЗемлеУмеренные широтыЗначительное количество осадков в Северном полушарии связано с западными ветрами.На западе материков – 2000-3000 мм и более.В центральной части – 600-300 мм.В муссонных областях –до 1000 мм.Лондон (Великобритания) Распределение осадков на ЗемлеПолярные широтыМалое количество осадков – менее 250 мм в год.Основные причины:Слабая солнечная радиация;Низкие температуры воздуха;Ничтожная величина испарения.Научная станция в Антарктиде

Атмосфера - наиболее подвижная, динамичная часть географической оболочки. Это объясняется, во-первых, ее газообразным состоянием, во-вторых, спецификой ее теплового режима. Атмосфера нагребается преимущественно снизу, от земной поверхности, поэтому в ней часто возникают вертикальные, а следовательно, и горизонтальные движения.

Тепловые машины. В механическую энергию атмосферных движений переходит 1-2 % усваиваемой земной поверхностью солнечной энергии. Переход осуществляется в процессе работы так называемых тепловых машин. Разработка идеи о тепловых машинах географической оболочки принадлежит советскому ученому академику В. В. Шулейкину. Тепловой машиной называют систему, в которой тепловая энергия превращается в механическую. Каждая тепловая машина состоит из двух основных элементов нагревателя и холодильника, которые связываются между собой потоком вещества - теплоносителя. Благодаря разности температур теплоноситель перемещается от нагревателя к холодильнику, а вместе с ним переносится и теплота, часть теплоты при этом расходуется на движение теплоносителя.

Наиболее крупной тепловой машиной в географической оболочке является система экватор - полюсы. Ее называют тепловой машиной первого рода. С ней связаны наиболее масштабные движения в атмосфере. Различия в нагревании материков и океанов приводят к возникновению тепловых машин второго рода. С ними связывают возникновение муссонов в умеренных и субтропических широтах. Однако существуют и другие представления о природе возникновения муссонов.

В географической оболочке существует множество других тепловых контрастов: внутренний водоем - окружающая его суша, горы - равнины, ледники - поверхности без льда и т. д. В каждом таком случае можно говорить о своего рода тепловой машине, в которой происходит преобразование части тепловой энергии в механическую.

Коэффициент полезного действия тепловых машин в географической оболочке невелик. Это объясняется как небольшой разницей температур нагревателей и холодильников, так и большими потерями энергии на теплообмен с окружающей средой. Возникновение движения воздуха в атмосферных тепловых машинах рассмотрим на упрощенном примере.

Как известно, давление в любой точке атмосферы равно весу вышележащего столба воздуха. При равномерном нагревании земной поверхности и атмосферы изменение давления с высотой происходит одинаково во всех точках, что можно изобразить с помощью изобар (линий, соединяющих точки с одинаковым атмосферным давлением), проведенных на вертикальном разрезе атмосферы (рис. III. 6, а). Поступление дополнительного тепла в точку В приведет к расширению воздуха и к подъему изобар вверх (рис. III. 6, б). Это не вызовет изменения давления у земной поверхности, однако в атмосфере возникнет разность давления по горизонтали, причем горизонтальный барический градиент будет направлен в сторону точки А. Перенос воздуха в этом направлении на высоте приведет к увеличению массы воздуха над точкой А, а следовательно, и к увеличению давления воздуха в этой точке (т. е. на уровне земной поверхности). Теперь уже у земной поверхности возникает барический градиент, но направленный в противоположную сторону, т. е. к точке Б (рис. III. 6, в). Соответственно в этом направлении начнется перенос воздуха у земной поверхности.

Таким образом в теплых районах у земной поверхности возникают области пониженного давления, в холодных - повышенного, а на высоте - наоборот. Так образуются замкнутые вертикальные конвективные ячейки (кольца) циркуляции - элементарные тепловые машины.

Крупномасштабные вертикальные кольца циркуляции наблюдаются в низких широтах. В экваториальной зоне воздух поднимается вверх. В верхней тропосфере он направляется в сторону тропиков в виде антипассата. На широте 30-35° происходит опускание воздуха, откуда он направляется к экватору в виде пассата (см. рис. III. 8). Это вертикальное кольцо циркуляции было названо ячейкой Гадлея в честь английского ученого XVIII в., изучавшего пассатную циркуляцию. В наше время выяснилось, что пассаты и антипассаты связаны не только с процессами в вертикальных конвективных ячейках, т. е. с процессами термической природы, но и с динамическими процессами. Подробнее этот вопрос разбирается на занятиях по метеорологии и климатологии.

Основные закономерности атмосферной циркуляции. Совокупность движений атмосферного воздуха образует атмосферную циркуляцию. Основа ее возникновения - неравномерное распределение тепла в атмосфере, т. е. термический фактор. Возникающие движения преобразуются далее под влиянием отклоняющей силы вращения Земли (силы Кориолиса), трения о земную поверхность и ряда других факторов и приобретают сложную структуру.

Общее представление о закономерностях движений воздуха можно получить на основе анализа среднего многолетнего распределения атмосферного давления и преобладающих ветров у земной поверхности в январе и июле (см. Физико-географический атлас мира, с. 40-41). В распределении атмосферного давления проявляются две основные закономерности: с одной стороны, зональность, с другой - влияние материков и океанов. Зональность четко прослеживается на рис. III. 7, где приведена осредненная по широте величина атмосферного давления. Наблюдается чередование зон высокого и низкого давления. В области экватора давление ниже, чем в окаймляющих его тропических и субтропических областях. Высокое давление в этих поясах сменяется низким в умеренных и субполярных широтах. К полюсам происходит небольшое увеличение давления. Соответственно такому распределению давления формируется система ветров (см. Физико-географический атлас мира, с. 40-41). От субтропической области высокого давления в сторону экватора направлены пассаты, отклоняющиеся от градиента давления под действием силы Кориолиса и приобретающие восточную составляющую. В умеренных широтах господствующий перенос - западный, в полярных- восточный. Следует подчеркнуть, что это - осредненная картина, которая полностью совпадает с реальным распределением лишь в отдельные моменты. Изменчивость и непостоянство - характерные черты атмосферной циркуляции.

Не следует думать, что в природе существует простая причинная цепь: неоднородность в распределении тепла - распределении давления - распределении ветров. В общем виде такая последовательность возникновения цепи физических воздействий действительно наблюдается, однако реальное распределение трех названных характеристик зависит от их взаимодействия между собой и со многими другими факторами. Например, исходное распределение тепла мы связываем обычно с поступлением солнечной радиации на земную поверхность. Оно создает термическую неоднородность и тем самым обусловливает возникновение разности атмосферного давления, а следствием последней является ветер. Ветер, возникнув как результат перечисленных выше факторов, сам становится мощным фактором, воздействующим на первые два. Воздушные массы переносят тепло, влагу, минеральные соли и тем самым перераспределяют энергию на поверхности Земли. Последнее в свою очередь вызывает перераспределение атмосферного давления и системы ветров. На эти процессы влияет облачность - мощный регулятор радиационного и теплового обмена между земной поверхностью, атмосферой и космическим пространством. В результате картина настолько усложняется, что однозначно невозможно определить цепь причинно-следственных событий.

В средних и высоких широтах перенос воздуха в больших масштабах осуществляется в виде вихревых потоков - циклонов и антициклонов. Циклон - движущаяся восходящая система потоков воздуха, образующих спираль, закручивающуюся в южном полушарии по часовой стрелке, в северном - против часовой стрелки. Поэтому в северном полушарии при перемещении циклонов с запада на восток (это доминирующее направление движения циклонов в широкой полосе от 40 до 80° широты) в передней части циклона происходит перенос воздуха с юга на север, в тыловой - с севера на юг. В южном полушарии наблюдается аналогичный процесс с той лишь разницей, что в передней части наблюдается заток воздуха с севера на юг, в тыловой - с юга на север. Одновременно в циклонах осуществляются вертикальные движения - в центральной части циклона воздух поднимается вверх.

В антициклонах воздух движется по спирали от центра, где наблюдается высокое давление. Одновременно происходит опускание воздуха над центром антициклона.

В циклонах и антициклонах формируются особые погоды. На территории, занятой циклоном, наблюдается низкое давление, как правило, выпадают атмосферные осадки, происходит резкая смена направления и скорости ветра. Для антициклонов характерно высокое давление, чаще всего малооблачная устойчивая погода без осадков.

Распространение циклонов и антициклонов на земной поверхности характеризуется определенными закономерностями. В областях преимущественного распространения циклонов на климатических картах вырисовываются минимумы давления (Физико-географический атлас, с. 40-41), в областях распространения антициклонов - максимумы давления. Соответственно минимумам и максимумам распределяются атмосферные осадки (там же, с.42- 43). Увеличение осадков в циклонах связано с поднятием воздуха на атмосферных фронтах. В процессе поднятия воздух охлаждается. При определенной температуре происходит конденсация или сублимация содержащегося в воздухе водяного пара. Образовавшиеся водяные капли или кристаллы льда при достижении достаточных размеров падают на земную поверхность. В антициклонах воздух опускается, сжимается, благодаря этому нагревается и удаляется от точки насыщения.

В экваториальной зоне вследствие малых значений силы Кориолиса (sin ф составляет один из множителей в выражении, определяющем эту силу) циклоны и вообще вихревые системы не образуются. Большое количество атмосферных осадков в этой зоне связано с конвективным поднятием воздуха.

Таким образом, основные (фоновые) закономерности распределения атмосферных осадков связаны с характером циркуляционных процессов. Карта атмосферных осадков позволяет увидеть множество деталей в их распределении, связанных с влиянием рельефа и других факторов.

На рис. III. 8 дана схема общей циркуляции атмосферы с учетом основных типов движения в атмосфере (пассатов, вихревых систем, восточных ветров в полярных районах и вертикальных колец). В целом циркуляция атмосферы складывается из зональных, меридиональных и вертикальных движений. Зональные движения (вдоль параллелей) преобладают. Они на порядок интенсивнее меридиональных и на два порядка - вертикальных. Хотя меридиональные движения и слабее зональных, их значение велико. Меридиональные потоки осуществляют межширотный обмен воздуха. Именно благодаря меридиональному переносу (который имеет место и в океане) реальное распределение температуры на земной поверхности менее контрастное, чем солярное, - теоретически рассчитанное по радиационному переносу энергии (табл. III. 1).

Вертикальные движения (их главные потоки изображены на рис. III. 8 в виде колец) сильно уступают горизонтальным движениям по интенсивности. Однако они также играют исключительно важную роль, поскольку без них вообще была бы невозможна циркуляция атмосферы.

Типы атмосферной циркуляции. В отдельные периоды соотношение между зональными и меридиональными потоками в атмосфере меняется. Соответственно этому исследователи выделяют несколько типов атмосферной циркуляции, которые можно свести к двум основным - широтному (зональному) и меридиональному.

При широтном типе циркуляции контрасты между низкими и высокими широтами возрастают, а погодные условия характеризуются сравнительно слабой изменчивостью. При меридиональном типе циркуляции обмен воздушными массами между теплыми и холодными районами обусловливает резкую изменчивость погоды, а вследствие этого - и резкую изменчивость всего комплекса физико-географических процессов.

Типы атмосферной циркуляции постоянно сменяют друг друга. Однако в течение нескольких, следующих друг за другом лет (до 15) часто наблюдается преобладание (иногда весьма четко выраженное) одного типа циркуляции. Причина чередования типов не совсем ясна. Возможно, что она связана с солнечной активностью. Высказываются предположения и о существовании в атмосфере (лучше сказать в системе атмосфера - океан - земная поверхность) собственных ритмов.

В последние 15-20 лет на земном шаре отмечено учащение экстремальных явлений погоды (сильные засухи и одновременно исключительно дождливые сезоны, частые ураганы, жестокие морозы и др.). Некоторые ученые связывают их с деятельностью человека, все в более широких масштабах воздействующего на природную среду. Другие считают, что они обусловлены преобладанием в современную эпоху меридионального типа циркуляции (один из этапов колебания климата), вызывающего экстремальные процессы в атмосфере вследствие более активного обмена холодных полярных и теплых тропических масс воздуха.

В атмосфере наблюдаются также местные циркуляции - движения воздуха, связанные с формами рельефа, ледниками, взаимодействием суши и водоемов и другими факторами. Они получили название горно-долинных, склоновых и ледниковых ветров, бризов, фенов и др. Их роль в перераспределении на земной поверхности тепла, влаги и других параметров также значительна, хотя и имеет локальный характер.

Однако, несмотря на постоянные переносы воздуха, в целом ат-мосфера сохраняет состояние, близкое к равновесному. Все переносы связаны между собой и образуют гигантский атмосферный круговорот. Механическая энергия атмосферы постепенно рассеивается и превращается в теплоту, которая затем преобразуется в длинноволновое излучение и направляется в Космос или к земной поверхности. Другая часть механической энергии передается океану при трении воздушных масс о водную поверхность.

Если бы поступление солнечной энергии не возобновляло термическую неоднородность земной поверхности, атмосферная циркуляция вскоре бы прекратилась (примерно за две недели). Еще быстрее это произошло бы на невращающейся Земле при отсутствии силы Кориолиса. Однако непрерывное поступление солнечной радиации к Земле приводит к постоянному воспроизведению основных элементов циркуляции.

Структура общей циркуляции атмосферы в целом весьма сложна как во времени, так и в пространстве. Для нее характерно чередование зональных и меридиональных движений, что затрудняет составление ее схем. Общая циркуляция атмосферы к тому же еще в деталях недо­статочно изучена. В пособии рассматриваются лишь географи­ческие особенности циркуляции нижней половины атмосферы, где со­средоточена основная масса (до 90% и более) содержащейся в ней влаги.

На высотах в несколько километров над большей частью земного шара преобладают западные ветры . Это связано с уменьшением темпе­ратур к высоким широтам; в более же холодном воздухе давление по вертикали падает быстрее, и на высотах над полярными районами давление оказывается пониженным. Лишь между экватором и тропи­ками (и то не везде или не во все сезоны) преобладают восточные ветры, о чем можно судить по картам потоков влаги. У поверхности земли картина более сложная. В высоких широтах вы­деляется зона ветров с восточной составляющей. В более низких широтах возникают сезонные особенности ветров, обусловленные разли­чиями температур между полушариями, между океанами и сушей, ко­торые в самом общем смысле можно назвать муссонными. Взаимодей­ствие муссонных и зональных ветров общей циркуляции приводит к ее усложнению. Материки могут испытывать в разные сезоны влияние воз­душных потоков со стороны различных океанов (например, Восточная Азия в первую половину года испытывает влияние Индийского океана, а во вторую половину-Тихого). Муссонные потоки могут не получать компенсации в более верхних слоях, там муссонная составляющая по­давляется общим зональным переносом. По этой же причине в умерен­ных и субтропических широтах муссонные тенденции, характерные для восточных побережий, слабо проявляются на западных частях мате­риков, где преобладают зональные составляющие общей циркуляции. В экваториальных районах западные побережья материков могут испы­тывать муссонные влияния даже больше восточных.

В самом общем виде режим осадков и переноса влаги по широтным географическим зонам может быть описан, согласно Б. П. Алисову , следующим образом.

Экваториальная зона характеризуется относительно слабыми ветрами и переносом влаги. Однако районы, где сильны муссонные тенденции и циркуляционные зоны в течение года мигри­руют по широте, по очереди испытывают влияние пассатов обоих полушарий. Причем летом переход пассата через экватор при­водит к превращению его в ветер с западной составляющей. В этом процессе участвуют и ветры более высоких слоев атмосферы (на карте экваториальная зона в подобных районах прервана).



Ход осадков относительно равномерный с тенденцией к максимуму весной и осенью. Однако в условиях со сложной оро­графией и взаимодействием муссонов, например в Индонезии, годовой ход осадков сильно различается даже на близких расстояниях. В зави­симости от того, является ли район наветренным или подветренным к орографическим препятствиям, осадки существенно различаются, однако экстремальные значения для материков здесь не отмечаются.

Зона экваториальных муссонов характеризуется существенными переносами влаги, меняющими направление по сезонам. В большей части зоны, особенно у побережий и орографических пре­пятствий, осадки очень велики (Черапунджи в Индии, Дебунджа в Ка­меруне, Андагойа в Колумбии). Осадки в основном выпадают летом, зима сухая. Исключение составляют восточные берега материков, где летний муссон приходит с суши, переваливая через горы (Вьетнам, Сомали), а зимний идет с океана по западной периферии океанического антициклона. Осадки в течение года выпадают здесь относительно равно­мерно.

На восточных побережьях материков (остров Мадагаскар и Австра­лия) много осадков приносят тропические циклоны, приходящие чаще всего осенью (в Бенгальском заливе весной и осенью, в Аравийском - несколько больше весной, впрочем, в последнем циклоны очень редки).

Пассатная зона обеих полушарий располагается от оси субтропиче­ских антициклонов к экватору. В нижних слоях атмосферы области высокого давления, так называемые «стационарные антициклоны» (азорский, гавайский и антициклоны в каждом из трех океанов в южном полушарии), сохраняются только над океанами. Летом над материками в нижних слоях атмосферы они исчезают, сохраняясь в более высоких слоях в виде незначительных нисходящих движений. Это затрудняет образование осадков в пассатной зоне, а над тропическими пустынями образуются замкнутые области пониженного влагосодержания атмо­сферы.

В северном полушарии океанические антициклоны лучше выражены летом, в южном-зимой, что связано с перераспределением воздуха между полушариями. В южном полушарии сезонное перераспределение воздуха между материками и океанами из-за незначительности пло­щади суши в этих широтах существенной роли не играет. В зоне пас­сатов до значительных высот в тропосфере господствуют восточные ветры, вызывающие достаточно большие переносы влаги. Сухость пас­сатных ветров в нижних слоях и ясное небо при большом притоке сол­нечной радиации приводят в этой зоне к большому испарению с океа­нов, которое значительно превышает осадки.

Во всех остальных зонах имеет место обратное соотношение. В боль­шей части пассатной зоны осадков выпадает мало, а местами они практически отсутствуют. Осадки малы как из-за нисхо­дящих движений, так и из-за пассатной инверсии, особенно низко опускающейся на восточной периферии океанических антициклонов.

На западных берегах океанов, подветренных к пассату, океаниче­ский воздух попадает на материк лишь в процессе бризовой циркуля­ции. Уменьшению осадков способствует выход у побережий холодных глубинных вод, а также холодные течения и опускание воз­духа по склонам береговых горных цепей материка (Анды). Наи­меньшее количество осадков в этой зоне наблюдается в глубине ма­териков и на их западных побережьях. При этом область уменьшения осадков проникает глубоко в океан, захватывая как прибреж­ные острова, так и центральную его часть. Лишь в западных частях океанов и на восточных побережьях материков (например, в Центральной Америке), где пассат увлажняется и теряет свою меридиональную со­ставляющую, а инверсия поднимается и ослабляется, наветренные гористые участки увлажняются обильно (на Гавайских островах в одном из пунктов около 12000 мм за год), в подветренных же ча­стях островов выпадает всего несколько сот миллиметров. На восточные побережья здесь проникают еще тропические циклоны (в Центральной Америке из-за узости суши они проходят и на Тихоокеанское побережье).

Субтропическая зона циркуляции располагается на внешней перифе­рии пассатной зоны. Ее особенности проявляются в основном в летнее время. Зимой здесь преобладает изменчивая циркуляция умеренных широт. В этой зоне переносы влаги летом сохраняют восточное, а зи­мой западное направление. Над океанами, остро­вами и в западных частях материков лето сухое, а зима влажная, с ча­стым прохождением циклонов умеренных широт (Средиземноморье и др.).

В глубине материков максимум осадков переходит на весну, когда при более высокой температуре в воздухе содержится больше влаги, а циклоническая деятельность на фронте умеренных широт наиболее развита. Однако в глубине материков, кроме высокогорных районов, сухо (преобладает ландшафт степи и пустыни). В благоприятных оро­графических условиях годовая сумма осадков уменьшается до несколь­ких миллиметров (пустыня Такла-Макан, Долина Смерти).

На восточных побережьях Азии, Африки и Северной Америки и в этой зоне развивается муссонная циркуляция, приводящая к их обильному увлажнению с преобладающим летним максимумом осад­ков.

В зоне умеренных широт господствующим является западный перенос. В нижних слоях на южной периферии зоны (северное полушарие) он может быть и восточным, преобладающее направление здесь слабо выражено, а на некоторой высоте перенос сменяется западным, что и определяет общий поток влаги. В этой зоне приток радиации по срав­нению с предыдущими зонами существенно ослабевает, и во все сезоны за исключением лета он сильно меняется с широтой. Это приводит к большим контрастам температуры, интенсивной атмосферной цирку­ляции и изменчивости погоды изо дня в день. В этой зоне возникают также большие годовые и особенно сезонные различия температуры между материками и океанами, вызывающие формирование зимой внутри материков антициклонов (наиболее мощного в Евразии). Летом над материками давление понижено. Над океанами сезонный ход давления обратный. Сезонные минимумы давления сдвинуты на периферию зоны в субполярные районы. Из-за больших сезонных различий между мате­риками и океанами в потоках влаги возникают довольно большие мери­диональные составляющие.

Атмосферная циркуляция и скорости воздушных потоков в соответ­ствии с температурными контрастами в холодное время больше, чем летом, что несколько уменьшает годовой ход переносов влаги, обус­ловленный различиями влагосодержания. В среднем почти весь год влагосодержание атмосферы в соответствующих широтах над океаном больше, чем над сушей (или близко к нему). Количество осадков и их годовой ход разнообразны. Преобладание осадков над испарением, как правило, нарастает к полярным районам.

Над океанами и прибрежными районами (а также в горах) зимой выпадает осадков больше, чем летом и весной, но по направлению в глубь материка под влиянием зимнего выхолаживания (а в дальней­шем и увеличения антициклональности) летние (или весенние) осадки начинают преобладать над зимними. В центральных и восточных ча­стях материка осадков зимой (например, в Азии) может выпадать совсем мало. Муссонные тенденции в восточной части материка при­водят к увеличению меридиональных составляющих зимой (от поляр­ных, а летом от экваториальных широт). Это приводит к боль­шому годовому ходу влагосодержания: зимой оно мало, а летом очень велико.

В западных частях материков меридиональные составляющие цирку­ляции выражены слабее и характеризуются обратным годовым ходом, в котором различия между летом и зимой сглажены. В южном полушарии в этой зоне почти нет суши. Узкая полоса суши южной Америки, юга Тасмании и южного острова Новой Зеландии слишком незначительна и резко выраженных сезонных особенностей не вызывает, кроме Анд, в орографической тени которых уменьшается влагосодержание атмосферы. Влияние материков, расположенных север­нее (в других климатических зонах) распространяется и на зоны уме­ренных широт (например, в Тасмановом море). Субарктическая зона, где летом четко выражена циркуляция умеренных широт, а зимой полярных, выделяется лишь в северном полушарии. В южном океаниче­ском полушарии сезонные изменения границ циркуляции малы. Осо­бенности этой зоны целесообразно рассмотреть вместе с циркуляцией арктической зоны.

В полярных зонах обоих полушарий циркуляция имеет ряд общих черт и существенные различия, связанные главным образом с распре­делением океанов и суши. Характерной чертой этих частей обоих полу­шарий является господство льдов - материковых ледников на суше и плавучих айсбергов на морях. Ледники значительно увеличивают высоту суши. Кроме того, суша в этих районах (Гренландия на севере, Антарктида на юге) гориста и высока. Это создает весьма суровые климатические условия на суше, низкие температуры в течение всего года, незначительное влагосодержание, а в центральных частях Ант­арктиды очень малые осадки. Материки и крупные острова этих широт круглый год являются центрами холода. Зимой, в полярную ночь, это происходит в связи с большим выхолаживанием по сравнению с той же высотой в свободной атмосфере-летом из-за большой отражательной способности снега и льда при низких температурах. Поэтому крупные участки суши имеют тенденцию становиться центрами циркуляционных процессов.

Морские льды также являются источниками выхолаживания, но это влияние сильнее проявляется летом. Зимой же они оказываются даже теплее суши, но намного холоднее незамерзшей части океана. Граница полярных льдов во времени неустойчива. С этим фактором связаны многолетние колебания климата. В полярных областях, особенно над сушей, имеется тенденция к образованию антициклонов, а на внешней границе воздушных масс, сформировавшихся в этих областях, возникает арктический (в южном полушарии-антарктический) фронт и развива­ется циклоническая деятельность. На периферии полярных областей увлажнение довольно значительно. Поскольку условия этих областей в какой-то мере определяют межширотные контрасты температур, они влияют на увлажнение умеренных и даже низких широт и участвуют в формировании многолетних колебаний осадков. Циклоны проникают и в глубь полярных областей, особенно в Арктике. Переносы влаги в нижних слоях атмосферы в полярных областях обоих полушарий имеют преимущественно восточную составляющую, но с высотой ветер быстро переходит на западные румбы, и общий поток влаги летом при­обретает западную составляющую. Зимой потоки влаги очень малы и в высоких широтах имеют направление с востока на запад.

Таким образом, главная роль атмосферной циркуляции в водном балансе земного шара - это формирование осадков и переноса тепла и влаги. Воздушные течения, создаваемые общей циркуляцией, пере­мешивают водяной пар, формирующийся над океаном и сушей, упоря­дочивают поверхностные течения в океанах и усиливают испарение.

ГЛАВА 2. ВОДНЫЙ БАЛАНС ЕВРОПЫ