Что такое амплитуда температур? Главные причины, определяющие величину суточной ам¬плитуды.

Тогда меня манила Сахара, её климат и температуры.

Помню, что в состав двухдневной местной экскурсии, которую звали "большой юг" , входила поездка по территориям Сахары. Непременно записавшись на неё, я, вместе с другими туристами и гидом, отправились в небольшое путешествие.

Сильнее всего мне запомнились слова гида о том, что дневная температура в Сахаре может достигать 50 градусов, а ночная порой опускается до 0 . Это удивительное явление гид назвал "амплитудой температур" .

Вернувшись домой, я узнал больше об этом слове и сейчас поделюсь с вами знаниями.


Что такое амплитуда температур

Научные словари так характеризуют амплитуду. Амплитуда - наибольший показатель смещения переменной величины от её среднего изначального значения . Но если говорить простыми словами об амплитуде температур, то она является разностью между наибольшим показателем температуры в воздухе и наименьшим за отдельно взятый временной период (например, за год, за месяц или за день).

Вычисляется амплитуда путём вычитания из максимальной усреднённой температуры – минимальную . То есть, если максимальная средняя температура за лето была +30°С, а зимой -10°С, то амплитуда за год будет равна: 30 - (-10) = 40 градусов.

Таким же образом вычисляется температурная амплитуда за любой другой период.

Нельзя забывать о том, что характер земной поверхности оказывает на изменение амплитуд температур за сутки. Так, в пасмурные дни, амплитуды снижаются.


От чего зависит амплитуда температур

Все эти колебания всегда зависят от широты, где находится местность :

Все значения температур были взяты с их показателей в материковых центрах, на побережьях она имеет другие показатели, более низкие.

А рекордно высокая амплитуда (более 100°С) фиксируется каждый год в регионах Якутии .


Стоит отметить, что резкие смены температурных амплитуд в течение одних суток (характерные, в основном, для экстраконтинентальной долготной зоны) весьма отрицательно действуют на здоровье человека.

Вот и всё. Я надеюсь, что благодаря моему рассказу, вы открыли для себя что-то новое. Удачи в путешествиях!

Воздух, как стекло, пропускает солнечные лучи к поверхнос-ти Земли и при этом не нагревается. Потрогай оконное стекло в солнечный день. Ты убедишься, что оно холодное, а подокон-ник тёплый. Воздух в тропосфере нагревается от земной повер-хности, нагретой Солнцем. Поэтому чем дальше (выше) от Зем-ли, тем оно холоднее.

Температуру воздуха на метеорологических станциях опре-деляют с помощью термометра каждые три часа. Термометр должен быть в тени, куда на протяжении дня не проникают солнечные лучи. Иначе будем иметь не температуру воздуха, а температуру нагретой Солнцем стеклянной трубки.

От чего зависит температура воздуха? Почему она выше все-го в полдень и ниже всего — утром, до восхода Солнца? Почему вблизи экватора температуры на протяжении года всегда вы-сокие, а около полюсов — низкие? Почему летом в наших ши-ротах всегда теплее, чем зимой?

Солнечные лучи нагревают Землю неравномерно. Чем выше Солнце над горизонтом, тем выше температура. Следователь-но, температура воздуха зависит от угла падения солнечных лучей. А угол падения — от широты местности и от времени суток. Между экватором и тропиками угол падения лучей самый большой (до 90°), возле полюсов — самый маленький.

В Северном полушарии угол падения солнечных лучей самый большой 22 июня. Поэтому летом всегда теплее, а зимой — холоднее.

Ежедневно составляют прогнозы погоды. Измерения, в частности температуры воздуха, делают каж-дые три часа, а в прогнозе называют лишь одну цифру, т.е. среднюю суточную температуру .

Разницу между самой высокой и самой низкой температу-рами называют амплитудой колебаний температуры .

Различают суточную амплитуду — разницу между самой высокой и самой низкой температурами в продолжение дня, месячную — разницу между самой высокой и самой низ-кой среднесуточными температурами в продолжение месяца, годовую — разницу между средними температурами самого тёплого и самого холодного месяцами года.

Годовые амплитуды колебания температуры увеличивают-ся от экватора к полюсам. На экваторе они составляют около 1 °С, на широте Киева — 27,7 °С.

По данным, полученным во время наблюдений за измене-ниями температуры воздуха, составляют графики хода темпе-ратур: суточные, месячные, годовые (рис. 57).

Географическая широта и соответственно угол падения солнеч-ных лучей — главные причины изменения температуры воздуха . Кроме этого, на неё влияют прозрачность атмосферы, облач-ность, направление ветра, осадки и др. Материал с сайта

Рис. 57. Графики изменения температур: а - суточный; б - годовой
  • Воздух получает тепло от земной поверхности, нагретой солнечными лучами.
  • Степень нагревания земной поверхности зависит от угла падения солнечных лучей на её поверхность. Чем больше этот угол, тем нагревание больше.
  • Угол падения солнечных лучей зависит от времени суток, широты местнос-ти, положения Земли относительно Солнца (в течение года).
  • Разницу между максимальной и минимальной температурами называют ампли-тудой колебаний температуры. Она может определиться за сутки, месяц, год.

На этой странице материал по темам:

  • Изменение температурыво время суток года ипричины

  • Как меняется температура воздуха с изменением высоты

  • 1. главная причина изменения температуры воздуха в течение дня?

  • Главные причины, определяющие величину суточной ам¬плитуды

  • От чего зависят годовые колебания температуры воздуха

Вопросы по этому материалу:

Годовая амплитуда температуры воздуха

Все воздушные массы зимой холоднее, а летом теплее. Поэтому температура воздуха в каждом отдельном месте изменяется в годовом ходе: средние месячные температуры в зимние месяцы ниже, а в летние выше. Если мы вычислим для какого-либо места средние месячные температуры по многолетнему ряду наблюдений, то получим, что эти средние месячные температуры плавно изменяются от одного месяца к другому, повышаясь от января или февраля к июлю или августу и затем понижаясь (рис. 24).

Рис. 24. Годовой ход температуры воздуха на широте 62°. 1 - Торсхавн, средняя годовая температура 6,3 °С; 2 - Якутск, -10,7 °С.

Разность средних месячных температур самого теплого и самого холодного месяца называют годовой амплитудой температуры воздуха. В климатологии рассматриваются годовые амплитуды температуры, вычисленные по многолетним средним месячным температурам.

Годовая амплитуда температуры воздуха прежде всего растет с географической широтой. На экваторе приток солнечной радиации изменяется в течение года очень мало; по направлению к полюсу различия в поступлении солнечной радиации между зимой и летом возрастают, а вместе с тем возрастает и годовая амплитуда температуры воздуха. Над океаном, вдали от берегов, это широтное изменение годовой амплитуды, од-

Нако, невелико. Если бы Земля была сплошь покрыта океаном, свободным ото льда, то годовая амплитуда температуры воздуха изменялась бы от нуля на экваторе до 5-6°С на полюсе. В действительности над южной частью Тихого океана, вдали от материков, годовая амплитуда между 20 и 60° ю. ш. увеличивается приблизительно с 3 до 5°С. Однако над более узкой северной частью Тихого океана, где больше влияние соседних материков, амплитуда между 20 и 60° с. ш. растет уже с 3 до 15 °С.

Годовые амплитуды температуры над сушей значительно больше, чем над морем (так же как и суточные амплитуды). Даже над сравнительно небольшими материковыми массивами южного полушария они превышают 15 °С, а под широтой 60° на материке Азии, в Якутии, они достигают 60 °С (карта IX).

Но малые амплитуды наблюдаются и во многих областях над сушей, даже вдали от береговой линии, если туда часто приходят воздушные массы с моря, например в Западной Европе. Напротив, повышенные амплитуды наблюдаются и над океаном там, куда часто попадают воздушные массы с материка, например в западных частях океанов северного полушария. Стало быть, годовая амплитуда температуры зависит не просто от характера подстилающей поверхности или от близости данного места к береговой линии. Она зависит от повторяемости в данном месте воздушных масс морского и континентального происхождения, т. е. от условий общей циркуляции атмосферы.

Карта IX. Средние годовые амплитуды температуры воздуха (°С).

Не только моря, но и большие озера уменьшают годовую амплитуду температуры воздуха и тем смягчают климат. Посреди озера Байкал годовая амплитуда температуры воздуха 30-31 °С, на его берегах около 36 °С, а под той же широтой на р. Енисее 42°С. Аналогичное влияние на температуру воздуха наблюдается на озерах Иссык-Куль, Ладожском, Севан и др.

С высотой годовая амплитуда температуры убывает. В горах внетропического пояса это убывание в среднем 2 °С на каждый километр высоты. В свободной атмосфере оно больше; из рис. 25 видно, что над океаном к югу от Японии годовая амплитуда даже в пределах нижних 100 м убывает вдвое. Однако во внетропических широтах значительный годовой ход температуры остается даже в верхней тропосфере и в стратосфере. Он определяется сезонным изменением условий поглощения и отдачи радиации не только земной поверхностью, но и самим воздухом.

Рис. 25. Годовой ход температуры воздуха над океаном к югу от Японии непосредственно над водой (1) и на высоте 100 м (2).




Вы можете вычислить самостоятельно. Проведите необходимые измерения. На метеостанциях обычно замеряют температуру наружного воздуха 8 раз в сутки, то есть через каждые три часа, начиная с полуночи.

Найдите максимальное и минимальное значения. Вычтите из большего меньшее. Если вы проводите измерения летом, то оба значения будут положительными. Например, самая высокая температура у вас +25°С, самая низкая - +10°С. Отняв от первого числа второе, вы получите 15°С. Это и есть амплитуда суточной температуры в конкретный день.

Для вычисления амплитуд в и зимний период пользуйтесь теми же способами, которые вы применяете при решении математических задач с положительными и числами. Например, если у вас днем температура 10°С, а ночью опускается до -10°С, действия будут аналогичны тем, что описаны в первом случае. Из 10° вычтите -10, то есть А=10-(-10)=10+10=20.

Амплитуда месячных или годовых температур высчитывается таким же способом. Среди всех значений найдите максимальное или минимальное, а затем вычтите из первого второе.

Можно посчитать и амплитуду среднесуточных температур. Сначала вычислите средние значения, например за каждые сутки. Чтобы найти среднесуточную температуру, необходимо сложить все значения и разделить полученную сумму на количество измерений. Чем чаще вы смотрите на термометр, тем выше будет точность результата. Хотя обычно для вычисления среднесуточной температуры бывает достаточно 8 измерений, как и для определения амплитуды.

Выпишите все среднесуточные температуры за месяц. Найдите самое большое значение и самое маленькое. Вычтите из первого второе. Годовая амплитуда рассчитывается так же.

Полезный совет

Для определения амплитуды температур желательно пользоваться одним и тем же термометром. Это может быть как обычный уличный спиртовой градусник, так и домашняя цифровая метеостанция. Такое устройство сочетает в себе сразу несколько приборов. По нему вы можете рассчитать и разные другие амплитуды, например влажности и давления.

Если вы не очень уверенно оперируете с положительными и отрицательными числами, сделайте себе шкалу, наподобие числовой линейки. Отметьте на ней точку 0. Поделите правую и левую части на отрезки равной длины. В правой части у каждой отметки проставьте положительные числа, в левой - отрицательные в зеркальном отображении. Откложите вправо количество градусов выше нуля, влево - ниже. Посчитайте, сколько отрезков находится между этими точками.

Источники:

  • как рассчитать амплитуду

Амплитудой называется разница между экстремальными значениями той или иной величины, в данном случае температуры . Это важная характеристика климата той или иной местности. Умение вычислять этот показатель необходимо также медикам, поскольку сильные колебания температуры в течение суток могут указывать на наличие определенных заболеваний. С подобной задачей постоянно сталкиваются биологи, химики, физики-ядерщики и представители многих других отраслей науки и техники.

Вам понадобится

  • - термометр либо термограф;
  • - календарь наблюдений;
  • - часы с секундомером.

Инструкция

Определите интервал времени, в котором будут проводиться измерения. Он зависит от цели исследования. Например, для определения колебания температуры наружного воздуха необходимо измерять ее в течение 24 часов. На метеостанциях наблюдения обычно записывают через каждые 3 часа. Наиболее точными будут измерения, если проводить их по астрономическому времени.

В других используется иная периодичность. При исследовании работы сгорания требуется измерение температуры в интервалах, равных времени такта работы двигателя, а это тысячные доли секунды. В этих случаях либо применяют электронные регистраторы, либо температурные изменения определяются по амплитуде инфракрасного излучения. Для палеонтологов и геологов важен разброс температур на протяжении целых геологических эпох, а это миллионы лет.

Разность температур можно определить либо методом проб, либо термографическим способом. В первом случае необходимый промежуток времени разделите на равные отрезки. Измеряйте температуру в эти моменты и записывайте результаты. Этот способ хорош, когда счет идет на годы, месяцы или часы.

По отмеченным данным найдите самую высокую температуру и самую низкую. Вычтите из второй первую. Вы получите числовое значение амплитуды. Необходимо проводить измерения одним и тем же поверенным термометром.

Очень часто требуется определить амплитуду не только абсолютных значений, но и средних величин. Для этого необходимы длительные наблюдения и вычисления средних температур за или год. Для определения температуры наружного воздуха проведите ряд наблюдений, запишите результаты, сложите их и разделите на количество наблюдений. Точно так же вычисляйте среднесуточную температуру весь месяц. Найдите самое большое и ее значения, вычтите из первого второе. Таким образом, вы получите амплитуду среднесуточных температур за данный период.

Если период составляет доли секунды, необходимо использовать термограф. Он должен быть в школьном кабинете физики либо . В этом случае в механическом приборе происходит непрерывная запись данных о температуре на движущуюся ленту или вращающийся барабан. На ленте механического термографа есть координатная сетка, на которой отображаются как времени, так и численные значения температур. В электронных приборах запись идет на различные носители, в том числе цифровые.

В обоих случаях колебания температуры графически выглядят как кривая с пиками и впадинами, расположенными поперек временной оси. На этой кривой можно взять любой интервал и вычислить в нем амплитуду . Электронные приборы позволяют достичь большего быстродействия при измерениях, а следовательно и большей точности. Кроме того, цифровые данные могут быть непосредственно использованы программой обработки, которая автоматически вычисляет амплитудные значения. Такой метод применяется на долговременных автоматических метеостанциях, а также для измерений в условиях, непригодных для пребывания . Например, при измерениях в активной зоне ядерного реактора. Вне зависимости от того, сами ли вы проводите вычисления или это за вас прибор, способ остается тем же самым, что и в случае с дискретным вариантом измерений.

Для нахождения амплитуды необходимо взять линейку или другое приспособление для измерения расстояний и измерить наибольшее отклонение от положения равновесия. В случае с математическим маятником нужно измерить его длину и высоту подъема. Для измерения амплитудных значений напряжения и силы переменного тока нужно будет получить показания вольтметра и амперметра.

Вам понадобится

  • линейка, рулетка, вольтметр и амперметр для переменного тока

Амплитудой температуры называется разность между наибольшим и наименьшим значением температуры воздуха за какой-либо промежуток времени. Если разность определяется за сутки, то это суточная амплитуда температур. Если за год, то годовая амплитуда температур.

Колебание температуры воздуха в течение суток зависит в первую очередь от того, суша это или вода. Над морями и океанами температура колеблется незначительно (на пару градусов), т. к. вода имеет большую теплоемкость. Это значит, что она медленно нагревается, но и медленно остывает.

Суша нагревается и остывает достаточно быстро. Над местностями с достаточно влажным климатом суточные колебания обычно составляют не более 20 °C, а, например, в пустыне до 50 °C.

Также суточная амплитуда температуры зависит от рельефа и облачности.

Годовая амплитуда температуры местности в основном зависит от географической широты и близости океана. На экваторе годовые колебания незначительны, а в умеренном поясе больше. Около океанов колебания меньше, над материками вдали от океанов - больше.

Суточным ходом температуры воздуха называется изменение температуры воздуха в течение суток – в общем отражает ход температуры земной поверхности, но моменты наступления максимумов и минимумов несколько запаздывают, максимум наступает в 14 часов, минимум после восхода солнца.

Суточная амплитуда температуры воздуха (разница между максимальной и минимальной температурами воздуха в течение суток) выше на суше, чем над океаном; уменьшается при движении в высокие широты, (наибольшая в тропических пустынях – до 400 С) и, возрастает в местах с оголенной почвой. Величина суточной амплитуды температуры воздуха – это один из показателей континентальности климата. В пустынях она намного больше, чем в районах с морским климатом.

Годовой ход температуры воздуха (изменение среднемесячной температуры в течение года) определяется, прежде всего, широтой места. Годовая амплитуда температуры воздуха — разница между максимальной и минимальной среднемесячными температурами.

Теоретически можно было бы ожидать, что суточная амплитуда, т. е. разница наивысшей и наинизшей температур, будет наибольшей около экватора, потому что там солнце днем стоит гораздо выше, чем в более высоких широтах, и в полдень в дни равноденствия достигает даже зенита, т. е. посылает вертикальные лучи и, следовательно, дает наибольшее количество тепла. Но этого в действительности не наблюдается, так как, кроме широты, на суточную амплитуду влияют и многие другие факторы, от совокупности которых зависит величина последней. В этом отношении имеет огромное значение положение местности относительно моря: представляет ли данная область сушу, отдаленную от моря, или же близко лежащую к морю местность, например остров. На островах благодаря смягчающему влиянию моря амплитуда незначительна, еще менее она на морях, океанах, в глубине же материков она гораздо более, причем величина амплитуды возрастает от берегов внутрь континента. В то же время амплитуда зависит и от времени года: летом она больше, зимой меньше; разница объясняется тем, что летом солнце стоит выше, чем зимой, да и продолжительность летнего дня гораздо более зимнего. Далее, на суточную амплитуду оказывает влияние облачность: она умеряет разницу температур дня и ночи, задерживая тепло, лучеиспускаемое землей ночью, и в то же время умеряя действие солнечных лучей.

Самая значительная суточная амплитуда наблюдается в пустынях и на высоких плоскогорьях. Горные породы пустынь, совершенно лишенные растительности, сильно накаляются в течение дня и быстро излучают за ночь всю полученную днем теплоту. В Сахаре суточная амплитуда воздуха наблюдалась в 20-25° и больше. Бывали случаи, когда после высокой дневной температуры ночью даже замерзала вода, и температура падала на поверхности земли ниже 0°, а в северных, частях Сахары даже до -6,-8°, поднимаясь днем гораздо выше 30°.

Значительно меньше суточная амплитуда в местностях, покрытых богатой растительностью. Здесь часть теплоты, получаемой за день, тратится на испарение растениями влаги, и, кроме того, растительный покров защищает землю от непосредственного нагревания, задерживая в то же время излучение ночью. На высоких плоскогорьях, где воздух значительно разрежен, ночью-приходо-расходный баланс тепла резко отрицателен, а днем резко положителен, поэтому суточная амплитуда здесь иногда больше, чем в пустынях. Например, Пржевальский во время своего путешествия в Центральной Азии наблюдал в Тибете суточное колебание температуры воздуха, даже до 30°, а на высоких плоскогорьях южной части Северной Америки (в Колорадо и Аризоне) суточные колебания, как показали наблюдения, достигали 40°.

Незначительные колебания суточной температуры наблюдаются: в полярных странах; например, на Новой Земле амплитуда не превышает в среднем 1-2 даже летом. На полюсах и вообще в высоких, широтах, где солнце совсем не показывается в течение суток или месяцев, в это время нет совершенно суточных колебаний температур. Можно сказать, что суточный ход температуры сливается на полюсах с годовым и зима представляет ночь, а лето — день. Исключительный интерес в этом отношении представляют наблюдения советской дрейфующей станции «Северный полюс».

Таким образом, наивысшую суточную амплитуду мы наблюдаем: не у экватора, где она около 5° на суше, а ближе к тропику северного полушария, так как именно здесь материки имеют самое большое протяжение, и здесь же расположены величайшие пустыни, и плоскогорья. Годовая амплитуда температуры зависит, главным образом, от широты места, но, в противоположность суточной, годовая амплитуда увеличивается по мере удаления от экватора к полюсу. Вместе с тем на годовую амплитуду оказывают влияние все те факторы, с которыми мы уже имели дело при рассмотрении суточных амплитуд. Точно так же колебания увеличиваются с удалением от моря в глубь материка, и наиболее значительные амплитуды наблюдаются, например, в Сахаре и в Восточной Сибири, где амплитуды еще значительнее, потому что здесь играют роль оба фактора: континентальность климата и высокая широта, тогда как в Сахаре амплитуда зависит, главным образом, от континентальности страны. Кроме того, колебания зависят и от топографического характера местности. Чтобы убедиться, насколько этот последний фактор играет значительную роль в изменении амплитуды, достаточно рассмотреть колебания температуры на юрах и в долинах. Летом, как известно, температура уменьшается с высотой довольно быстро, поэтому на одиноко стоящих вершинах, окруженных со всех сторон холодным воздухом, температура значительно ниже, чем в долинах, сильно нагреваемых летом.

Суточная и годовая амплитуды температур

Зимой же, наоборот, холодные и плотные слои воздуха располагаются в долинах, и температура воздуха повышается с высотой до известного предела, так что отдельные небольшие вершины иногда являются зимой как бы тепловыми островами, тогда как летом — более холодными пунктами. Следовательно, годовая амплитуда, или разница между температурами зимы и лета, в долинах значительнее, чем на горах. Окраины плоскогорий находятся в тех же условиях, как отдельные горы: окруженные холодным воздухом, они в то же время получают меньше тепла сравнительно с плоскими, равнинными местностями, так что и амплитуда их не может быть значительной. Условия нагревания центральных частей плоскогорий уже иные. Сильно нагреваясь летом благодаря разреженности воздуха, они сравнительно с отдельно стоящими горами излучают тепла гораздо меньше, потому что окружены нагретыми же частями плоскогорья, а не холодным воздухом. Поэтому летом температура на плоскогорьях может быть очень высока, зимой же плоскогорья теряют много тепла путем лучеиспускания вследствие разреженности воздуха над ними, и естественно, что здесь наблюдаются очень сильные температурные колебания.

⇐ Предыдущая46474849505152535455Следующая ⇒

Дата публикования: 2015-01-26; Прочитано: 878 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Как найти амплитуду температур

Амплитудой называется разница между экстремальными значениями той или иной величины, в данном случае температуры. Это важная характеристика климата той или иной местности. Умение вычислять этот показатель необходимо также медикам, поскольку сильные колебания температуры в течение суток могут указывать на наличие определенных заболеваний. С подобной задачей постоянно сталкиваются биологи, химики, физики-ядерщики и представители многих других отраслей науки и техники.

Вам понадобится

  • — термометр либо термограф;
  • — календарь наблюдений;
  • — часы с секундомером.

Инструкция

  • Определите интервал времени, в котором будут проводиться измерения. Он зависит от цели исследования. Например, для определения колебания температуры наружного воздуха необходимо измерять ее в течение 24 часов. На метеостанциях наблюдения обычно записывают через каждые 3 часа. Наиболее точными будут измерения, если проводить их по астрономическому времени.
  • В других отраслях науки используется иная периодичность. При исследовании работы двигателя внутреннего сгорания требуется измерение температуры в интервалах, равных времени такта работы двигателя, а это тысячные доли секунды. В этих случаях либо применяют электронные регистраторы, либо температурные изменения определяются по амплитуде инфракрасного излучения. Для палеонтологов и геологов важен разброс температур на протяжении целых геологических эпох, а это миллионы лет.
  • Разность температур можно определить либо методом проб, либо термографическим способом. В первом случае необходимый промежуток времени разделите на равные отрезки. Измеряйте температуру в эти моменты и записывайте результаты. Этот способ хорош, когда счет идет на годы, месяцы или часы.
  • По отмеченным данным найдите самую высокую температуру и самую низкую. Вычтите из второй первую. Вы получите числовое значение амплитуды.

    годовая амплитуда

    Необходимо проводить измерения одним и тем же поверенным термометром.

  • Очень часто требуется определить амплитуду не только абсолютных значений, но и средних величин. Для этого необходимы длительные наблюдения и вычисления средних температур за месяц или год. Для определения среднесуточной температуры наружного воздуха проведите ряд наблюдений, запишите результаты, сложите их и разделите на количество наблюдений. Точно так же вычисляйте среднесуточную температуру весь месяц. Найдите самое большое и самое маленькое ее значения, вычтите из первого второе. Таким образом, вы получите амплитуду среднесуточных температур за данный период.
  • Если период составляет доли секунды, необходимо использовать термограф. Он должен быть в школьном кабинете физики либо географии. В этом случае в механическом приборе происходит непрерывная запись данных о температуре на движущуюся ленту или вращающийся барабан. На ленте механического термографа есть координатная сетка, на которой отображаются как интервалы времени, так и численные значения температур. В электронных приборах запись идет на различные носители, в том числе цифровые.
  • В обоих случаях колебания температуры графически выглядят как кривая с пиками и впадинами, расположенными поперек временной оси. На этой кривой можно взять любой интервал и вычислить в нем амплитуду . Электронные приборы позволяют достичь большего быстродействия при измерениях, а следовательно и большей точности. Кроме того, цифровые данные могут быть непосредственно использованы программой обработки, которая автоматически вычисляет амплитудные значения. Такой метод применяется на долговременных автоматических метеостанциях, а также для измерений в условиях, непригодных для пребывания человека. Например, при измерениях в активной зоне ядерного реактора. Вне зависимости от того, сами ли вы проводите вычисления или это делает за вас прибор, способ остается тем же самым, что и в случае с дискретным вариантом измерений.