Получение ртути в промышленности. Что такое ртуть и какими свойствами она обладает? Что представляет собой ртуть

Между селом Карагаш и городом Слободзея, сообщил в пятницу местный телеканал со ссылкой на министерство госбезопасности (МГБ) непризнанной республики.

(Hg) - химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжелый металл, жидкий при комнатной температуре.

Ртуть - один из семи металлов , известных с древнейших времен. Несмотря на то, что ртуть относится к рассеянным элементам и в природе ее очень мало (примерно столько же, сколько и серебра), она встречается в свободном состоянии в виде вкраплений в горные породы.

Кроме того, ее очень легко выделить при обжиге из основного минерала - сульфида (киновари). Пары ртути легко конденсируются в блестящую, как серебро, жидкость. Ее плотность настолько велика (13,6 г/куб. см), что ведро с ртутью обычный человек даже не оторвет от пола.

Ртуть широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и другие соединения), в качестве пигмента (киноварь), в сельском хозяйстве в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами).

В домашних условиях ртуть может оказаться в дверном звонке, лампах дневного света, медицинском термометре.

Металлическая ртуть высокотоксична для любых форм жизни. Основную опасность представляют пары ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании ртуть попадает в кровь. В организме ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезёнке, ткани мозга и др.

Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма ртуть выводится через почки, кишечник, потовые железы и др.

Острые отравления ртутью и ее парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. Характерный признак отравления - появление по краю десен каймы сине-черного цвета; поражение десен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту.

При отравлениях органическими соединениями ртути (диэтилмеркурфосфатом, диэтил-ртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефало-полиневрит) и сердечно-сосудистой систем, желудка, печени, почек.

Основная мера предосторожности при работе с ртутью и ее соединениями - исключение попадания ртути в организм через дыхательные пути или поверхность кожи.

Пролитую в помещении ртуть надо собирать самым тщательным образом. Особенно много паров образуется в том случае, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например, между плитками паркета. Все эти капельки необходимо собрать.

Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же промытой азотной кислотой медной проволочкой. А те места, где ртуть еще могла бы задержаться, заливают 20%-ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути - тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была пролита ртуть.

Экологические последствия заражения парами ртути проявляются, прежде всего, в водной среде - подавляется жизнедеятельность одноклеточных морских водорослей и рыб, нарушается фотосинтез, ассимилируются нитраты, фосфаты, соединения аммония и т. д. Пары ртути фитотоксичны, ускоряют старение растений.

Пожалуй, ртуть является одним из немногих химических элементов, обладающих массой интересных свойств, а также обширнейшей сферой применения за всю историю человечества. Вот лишь некоторые интересные факты об этом химическом элементе.

Прежде всего, ртуть — единственный металл и второе (наряду с бромом) вещество, которое при комнатной температуре пребывает в жидком состоянии. Твердым она становится только при температуре –39 градусов. А вот повышение ее до +356 градусов заставляет ртуть закипать и превращаться в ядовитый пар. Благодаря своей плотности она имеет большой удельный вес (см. статью Самые тяжелые металлы в мире). Так, 1 литр вещества весит более 13 килограммов.

Чугунное ядро плавает в ртути

В природе она может встречаться в чистом виде – вкраплениями небольших капель в других породах. Но чаще всего ртуть добывали, обжигая ртутный минерал киноварь. Также присутствие ртути можно обнаружить в сульфидных минералах, глинистых сланцах и др.

Благодаря своему цвету в античные времена этот металл даже отождествляли с живым серебром, о чем свидетельствует одно из её латинских названий: argentumvivum. И это немудрено, ведь находясь в своем естественном состоянии – жидком, она способна «бежать» быстрее воды.

Благодаря отличной электропроводимости ртуть широко применяется при изготовлении осветительных приборов и выключателей. А вот ртутные соли используются при изготовлении различных веществ, от антисептиков до взрывчатки.

Человечество использует ртуть вот уже более 3000 лет. Благодаря своей токсичности она активно применялась древними химиками для того чтобы извлечь из руды золото , серебро , платину и другие металлы. Такой способ под названием амальгация позже был забыт, к нему вернулись только в XVI столетии. Возможно, благодаря именно ему добыча золота и серебра колонизаторами Южной Америки в свое время достигла колоссальных размеров.

Особое место в использовании ртути в средневековье является применение ее в мистических ритуалах. Распыляемый красный порошок киновари, по мнению шаманов и магов, должен был отпугивать злых духов. Также применяли «живое серебро» для добывания золота алхимическим путем.

Но металлом ртуть стала только лишь в 1759 году, когда Михаил Ломоносов и Иосиф Браун смогли доказать этот факт.

Несмотря на свою токсичность, ртуть активно применяли лекари древности при лечении всевозможных заболеваний. На ее основе изготавливали медицинские препараты и снадобья для лечения различных кожных заболеваний. Она входила в состав мочегонных и слабительных препаратов, использовалась в стоматологии. А йоги древней Индии, согласно запискам Марко Поло, употребляли напиток на основе серы и ртути, который продлевал им жизнь и давал силы. Также известны случая изготовления китайскими знахарями «пилюлю бессмертия» на основе данного металла.

В медицинской практике известны случаи использования ртути и при лечении заворота кишок. По мнению врачей тех времен, благодаря своим физическим свойствам «жидкое серебро» должно было проходить через кишки, распрямляя их. Но указанный способ не прижился, так как он имел весьма плачевные результаты – пациенты погибали от разрыва кишечника.

Сегодня в медицине ртуть можно встретить только лишь в градусниках, измеряющих температуру тела. Но и в этой нише ее постепенно вытесняет электроника.

Но несмотря на приписываемые полезные свойства, ртуть обладает и разрушительными свойствами на человеческий организм. Так, по мнению ученых, жертвой ртутного «лечения» стал русский царь Иван Грозный. При эксгумации его останков современные специалисты установили, что государь русский умер в результате ртутной интоксикации, полученной им в ходе лечения сифилиса.

Губительным стало применение солей ртути и для средневековых мастеров по изготовлению шляп. Постепенное отравление парами ртути становилось причиной слабоумия, получившего название болезни сумасшедшего шляпника. Этот факт нашел отражение в «Алисе в стране чудес» Льюиса Кэрролла. Автор отлично изобразил этот недуг в образе Сумасшедшего Шляпника.

А вот употребление ртути с целью самоубийства как раз наоборот, не увенчивались успехом. Известны факты, когда люди выпивали ее или делали внутривенные ртутные инъекции. И все они остались живыми.

Применение ртути

В современном мире ртуть нашла широчайшее применение в электронике, где компоненты на ее основе используются во всевозможных лампах и прочей электротехнике, ее применяют в медицине для производства некоторых лекарств и в сельском хозяйстве при обработке семян. Ртуть применяют для производства краски, которой открашивают корабли. Дело в том, что на подводной части судна могут образовываться колонии бактерий и микроорганизмов, которые разрушают обшивку. Краска на основе ртути препятствует этому разрушительному воздействию. Также этот металл используют при переработке нефти для регулирования температуры процесса.

Но на этом ученые не останавливаются. Сегодня проводится большая работа по изучению полезных свойств данного металла с последующим его применением в механике и химической промышленности.

Ртуть: 7 коротких фактов

  1. Ртуть это единственный металл, который при нормальных условиях находится в жидком состоянии.
  2. Возможно изготовить сплавы ртути со всеми металлами, кроме железа и платины.
  3. Ртуть — очень тяжелый металл, т.к. обладает огромной плотностью. Например, 1 литр ртути имеет массу около 14 кг.
  4. Металлическая ртуть не так ядовита как принято считать. Наиболее опасны пары ртути и её растворимые соединения. Сама металлическая ртуть не всасывается в желудочно-кишечном тракте и выводится из организма.
  5. Ртуть нельзя перевозить в самолетах. Но не из-за её токсичности как может показаться на первый взгляд. Все дело в том, что ртуть, контактируя с алюминиевыми сплавами, делает их хрупкими. Поэтому, случайно разлив ртуть, можно повредить самолет.
  6. Способность ртути равномерно расширяться при нагреве нашла широкое применение в разного рода термометрах.
  7. Помните Сумасшедшего Шляпника из «Алисы в стране Чудес»? Так вот раньше такие «шляпники» существовали на самом деле. Все дело в том, что фетр, используемый для производства шляп, обрабатывали ртутными соединениями. Постепенно ртуть накапливалась в организме мастера, а одним из симптомов ртутного отравления является сильное расстройство рассудка, проще говоря шляпники часто в итоге сходили с ума.

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия


До 1937 г. добыча ртути в США не превышала обычно 700 т в год.  

В зависимости от спроса добыча ртути и цена на нее меняются в значительных пределах. При нормальных условиях, когда не будет повышенного спроса на ртуть для военных целей, цена ртути на мировом рынке должна быть в пределах 0 75 - 1 долл кг.  

В 1994 г. была прекращена добыча ртути.  

В таблице приведены данные статистики добычи ртути в разных странах.  

Встречается в природе в виде руды и служит для добычи ртути.  

Использование ртути как рабочего вещества паросиловых установок ограничивается все же следующими обстоятельствами: разведанные запасы и добыча ртути относительно невелики, а стоимость ее сравнительно высока.  

Однако хроническое прерывистое отравление, при котором периоды активной интоксикации перемежаются с периодами латентной интоксикации, до сих пор могут обнаруживаться среди работников предприятий по добыче ртути. В латентные периоды симптомы ослабляются до такой степени, что они заметны лишь при внимательном обследовании; сохраняются лишь неврологические проявления в форме обильного потоотделения, дермографизма и, в некоторой степени, эмоциональной нестабильности.  

Отдельные группы шахтеров сталкиваются и с некоторыми другими вредными факторами - загрязнителями воздуха. Работающие на золотых приисках и в обогатительных цехах, а также на добыче ртути подвергаются воздействию ртутных паров и, следовательно, риску отравления ртутью. На золотых приисках и свинцовых рудниках имеет место воздействие мышьяка и риск заболевания раком легких. На никелевых рудниках воздействие никеля повышает риск заболевания раком легких и кожными аллергическими реакциями.  

Даже тогда, когда причинно-следственная связь между воздействием препарата и последующим отравлением была установлена, наши предки часто придерживались политики приемлемого риска. В этом случае риск считался приемлемым, поскольку добычей ртути занимались заключенные и рабы.  

Основным промышленным материалом является киноварь. Известно также уникальное месторождение Гуитцуко (Мексика), где главный рудный материал - ливингстонит. В некоторых случаях промышленные запасы ртути наблюдаются в месторождениях, главным минералом которых является амальгама серебра, например месторождение Нью-Альмаден (Мексика), где в течение ряда лет проводилась добыча ртути. Подавляющая часть ртути заключена в собственно ртутных месторождениях. Значительно меньшее промышленное значение имеют ртутно-сурьмяные, ртутно-мышьяковые и ртуть-еодержащие золотые и полиметаллические руды.  

Основной рудой для добычи ртути является киноварь (HgS) - минерал яркокраеного цвета. По первому способу руды ртути или предварительно обогащенные концентраты подвергаются окислительному обжигу в специальных печах с одновременным восстановлением до металла. При этом ртуть, обладающая низкой температурой кипения (356 9), испаряется и конденсируется в специальных приемниках. Гидроме-таллургическкй способ добычи ртути применяется значительно реже и состоит из выщелачивания сернистым натрием сульфита ртути (HgS) из руд или содержащих ртуть хвостов, получаю - щихся при амальгамации серебряных руд и концентратов, и осаждения ртути действием на раствор металлического алюминия в присутствии щелочи.  

Пласты эти, тянущиеся между Азовскою и Константиновскою дорог [ ами ] имеют падение на юго-запад, следовательно простирание с северо-запада на юго-восток, а отвечающие им пласты, выступающие севернее Азовской дороги, падают на северо-восток, имея почти то же простирание. Притом здесь же и конец подъема, именно как раз около места схождения упомянутых дорог, недалеко от Щерби-новки и мест, арендуемых г-ном Шейерманом. Далее к северо-востоку пластовый выход поворачивает и переходит в тот ряд пластов, который лежит севернее Азовской дороги. В промежуточной полосе угля нет, пласты его разорваны или срезаны природой, здесь выступили нижние породы, и здесь-то найдены долгими личными усилиями горного инженера г-на Миненкова те кварцевые пласты с киноварью, на которых гг. Ауэрбах, Половцев и К основали добычу ртути. Посетив завод, идущий под руководством г-на Ми-яенкова, видев остатки древних разносов, оставшихся на выходе тех же кварцевых пластов, я убедился лично, что здесь прочно оснуется русская добыча ртути, которой вообще на свете мало и которая весьма важна и особенно для извлечения золота и серебра. Южные выходы угольных пластов все усеяны шахтами, и поучительно видеть, как линии расположения шахт тянутся на десятки верст параллельно друг другу все в одном и том же направлении.  

Страницы:      1

Ртуть - элемент побочной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 80. Обозначается символом Hg (лат. Hydrargyrum ).

Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй элемент - бром). В природе находится как в самородном виде, так и образует ряд минералов.

История открытия ртути

Ртуть (англ. Mercury, франц. Mercure, нем. Quecksilber) входит в число семи металлов древности. Она была известна по крайней мере за 1500 лет до н.э., уже тогда ее умели получать из киновари. Ртуть употребляли в Египте, Индии, Месопотамии и Китае; она считалась важнейшим исходным веществом в операциях священного тайного искусства по изготовлению препаратов, продлевающих жизнь и именуемых пилюлями бессмертия. В IV - Ш вв. до н.э. о ртути как о жидком серебре (от греч. вода и серебро) упоминают Аристотель и Теофраст. Позднее Диоскорид описал получение ртути из киновари путем нагревания последней с углем. Ртуть считали основой металлов, близкой к золоту и поэтому называли меркурием (Mercurius), по имени ближайшей к солнцу (золоту) планеты Меркурий. С другой стороны, полагая, что ртуть представляет собой некое состояние серебра, древние люди именовали ее жидким серебром (откуда произошло лат. Hydrargirum). Подвижность ртути вызвала к жизни другое название - живое серебро (лат. Argentum vivum); немецкое слово Quecksilber происходит от нижнесаксонского Quick (живой) и Silber (серебро). Интересно, что болгарское обозначение ртути - живак - и азербайджанское - дживя - заимствованы, вероятно, от славян.

В эллинистическом Египте и у греков употреблялось название скифская вода, что позволяет думать о вывозе ртути в какой-то период времени из Скифии. В арабский период развития химии возникла ртутно-серная теория состава металлов, согласно которой ртуть почиталась матерью металлов, а сера (сульфур) их отцом. Сохранилось множество тайных арабских названий ртути, что свидетельствует о ее значении в алхимических тайных операциях. Усилия арабских, а позднее и западноевропейских алхимиков сводились к так называемой фиксации ртути, т. е. к превращению ее в твердое вещество. По мнению алхимиков, получающееся при этом чистое серебро (философское) легко превращалось в золото. Легендарный Василий Валентин (XVI в.) основал теорию трех начал алхимиков (Tria principia) - ртути, серы и соли; эту теорию развил затем Парацельс. В подавляющем большинстве алхимических трактатов, излагающих способы трансмутации металлов, ртуть стоит на первом месте либо как исходный металл для любых операций, либо как основа философского камня (философская ртуть).

Распространённость ртути в природе

Природные источники, такие как вулканы, составляют примерно половину всех выбросов атмосферной ртути. За оставшуюся половину ответственна деятельность человека. В ней основную долю составляют выбросы в результате сгорания угля главным образом в тепловых электростанциях - 65 %, добыча золота - 11 %, выплавка цветных металлов - 6.8 %, производство цемента - 6.4 %, утилизация мусора - 3 %, производство соды - 3 %, чугуна и стали - 1.4 %, ртути (в основном для батареек) - 1.1 %, остальное - 2 %.

Ртуть относительно редкий элемент в Земной коре со средней концентрацией 83 мг/т. Однако в виду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами.

Наиболее богатые ртутью руды содержат до 2.5 % ртути. Основная форма нахождения ртути в природе – рассеянная и только 0,02% её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути 1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Есть свидетельства существования природного скопления ртути в виде маленького ртутного озера.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути – тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть растворимы в воде даже при отсутствии сильных окислителей, но при их наличии (, озон, перекись водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями.

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2% Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда – шватцит (до 17% Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся прежде всего самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения – терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Физические свойства ртути

Это единственный металл, жидкий при комнатной температуре. Обладает свойствами диамагнетика. Образует со многими металлами жидкие сплавы - амальгамы.

Ртуть в 13,6 раза тяжелее воды.

У него довольно большой коэффициент температурного расширения – всего в полтора раза меньше, чем у воды, и на порядок, а то и два больше, чем у обычных металлов.

Химические свойства ртути

Ртуть - малоактивный металл (см. ряд напряжений).

При нагревании до 300 °C ртуть вступает в реакцию с кислородом: 2Hg + O 2 → 2HgO Образуется оксид ртути(II) красного цвета. Эта реакция обратима: при нагревании выше 340 °C оксид разлагается до простых веществ. Реакция разложения оксида ртути исторически является одним из первых способов получения кислорода.

При нагревании ртути с серой образуется сульфид ртути(II).

Ртуть не растворяется в растворах кислот, не обладающих окислительными свойствами, но растворяется в царской водке и азотной кислоте, образуя соли двухвалентной ртути. При растворении избытка ртути в азотной кислоте на холоде образуется нитрат Hg 2 (NO 3) 2 .

Из элементов IIБ группы именно у ртути появляется возможность разрушения очень устойчивой 6d 10 - электронной оболочки, что приводит к возможности существования соединений ртути (+4). Так, кроме малорастворимого Hg 2 F 2 и разлагающегося водой HgF 2 существует и HgF 4 , получаемый при взаимодействии атомов ртути и смеси неона и фтора при температуре 4К .

Применение ртути

Ртуть применяется в изготовлении термометров, парами ртути наполняются ртутно-кварцевые и люминесцентные лампы. В них ртуть применяется как в чистом виде, так и в виде смесей с газами (в основном, с аргоном), для увеличения светоотдачи. Ртутные лампы используются в качестве источников интенсивного УФ излучения. Ртутные контакты служат датчиками положения. Кроме того, металлическая ртуть применяется для получения целого ряда важнейших сплавов.

Ранее различные амальгамы металлов, особенно амальгамы золота и серебра, широко использовались в ювелирном деле, в производстве зеркал и зубных пломб. В технике ртуть широко применялась для барометров и манометров. Соединения ртути использовались как антисептик (сулема), слабительное (каломель), в шляпном производстве и т.д., но в связи с её высокой токсичностью к концу XX века были практически вытеснены из этих сфер (замена амальгамирования на напыление и электроосаждение металлов, полимерные пломбы в стоматологии).

Также, ртуть широко применяется в производстве термометров. Температура плавления ртути - –38 градусов, кипения - +356.58. Но существуют способы расширить эти границы и производить термометры, работающие как при более низких, так и при более высоких температурах. Для понижения температуры плавления, в ртуть добавляют таллий.

Металлическая ртуть служит катодом для электролитического получения ряда активных металлов, хлора и щелочей, в некоторых химических источниках тока (например, ртутно-цинковых - тип РЦ), в эталонных источниках напряжения (Вестона элемент). Ртутно-цинковый элемент (эдс 1,35 Вольт) обладает очень высокой энергией по объёму и массе (130 Вт/час/кг, 550 Вт/час/дм).

Ртутью иногда легируют другие металлы. Небольшие добавки элемента увеличивают твердость сплава свинца со щелочноземельными металлами. Даже при паянии бывает подчас нужна ртуть: припой из 93% свинца, 3% олова и 4% ртути – лучший материал для пайки оцинкованных труб.

Ртуть используется для переработки вторичного алюминия и добычи золота (см. амальгамная металлургия).

Одна из главных деталей взрывателя для зенитного снаряда – это пористое кольцо из железа или никеля. Поры заполнены ртутью. Выстрел – снаряд двинулся, он приобретает все большую скорость, все быстрее вращается вокруг своей оси, и тяжелая ртуть выступает из пор. Она замыкает электрическую цепь – взрыв.

Ртуть используется в качестве балласта в подводных лодках и регулирования крена и дифферента некоторых аппаратов. Перспективно использование ртути в сплавах с цезием в качестве высокоэффективного рабочего тела в ионных двигателях.

Раньше ртутными красками покрывали днища кораблей, чтобы они не обрастали ракушками. Иначе корабль снижает скорость, расходуется больше топлива. Самая известная из красок такого типа делается на основе кислой ртутной соли мышьяковистой кислоты HgHAsO 4 . Правда, в последнее время для этой цели применяют и синтетические красители, в составе которых ртути нет.

Ртуть-203 (T 1/2 = 53 сек) используется в радиофармакологии. Медицина использует также фосфорнокислые соли ртути, ее сульфат, иодид и другие. В наше время большинство неорганических соединений ртути постепенно вытесняются из медицины ртутными же органическими соединениями, неспособными к легкой ионизации и поэтому не столь токсичными и меньше раздражающими ткани.

Также используются и соли ртути:

  • Иодид ртути используется как полупроводниковый детектор радиоактивного излучения.
  • Фульминат ртути («Гремучая ртуть») издавна применяется в качестве инициирующего ВВ (Детонаторы).
  • Бромид ртути применяется при термохимическом разложении воды на водород и кислород (атомно-водородная энергетика).

Некоторые соединения ртути применяются как лекарства (например, мертиолят для консервации вакцин), но в основном из-за токсичности ртуть была вытеснена из медицины (сулема, оксицианид ртути - антисептики, каломель - слабительное и др.) в середине-конце XX века.

Применение соединений ртути

Амальгамы из ртути

Еще одно замечательное свойство ртути: способность растворять другие металлы, образуя твердые или жидкие растворы – амальгамы. Некоторые из них, например амальгамы серебра и кадмия, химически инертны и тверды при температуре человеческого тела, но легко размягчаются при нагревании. Из них делают зубные пломбы.

Амальгаму таллия, затвердевающую только при –60°C, применяют в специальных конструкциях низкотемпературных термометров.

Старинные зеркала были покрыты не тонким слоем серебра, как это делается сейчас, а амальгамой, в состав которой входило 70% олова и 30% ртути, В прошлом амальгамация была важнейшим технологическим процессом при извлечении золота из руд. В XX столетии она не выдержала конкуренции и уступила более совершенному процессу – цианированию.

Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы.) Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна.

Зато натрий, например, амальгамируется очень легко. Амальгама натрия легко разлагается водой. Эти два обстоятельства сыграли и продолжают играть очень важную роль в хлорной промышленности.

При выработке хлора и едкого натра методом электролиза поваренной соли используют катоды из металлической ртути. Для получения тонны едкого натра нужно от 125 до 400 г элемента №80. Сегодня хлорная промышленность – один из самых массовых потребителей металлической ртути.

Киноварь – красная ртуть

Киноварь HgS. Благодаря ей человек познакомился с ртутью много веков назад. Способствовали этому и ее ярко-красный цвет, и простота получения ртути из киновари. Кристаллы киновари иногда бывают покрыты тонкой свинцово-серой пленкой. Это – метациннабарит, о нем ниже. Достаточно, однако, провести по пленке ножом, и появится ярко-красная черта.

В природе сернистая ртуть встречается в трех модификациях, отличающихся кристаллической структурой. Помимо общеизвестной киновари с плотностью 8,18, существуют еще и черный метациннабарит с плотностью 7,7 и так называемая бета-киноварь (ее плотность 7,2). Русские мастера, приготовляя в старину из киноварной руды красную краску, особое внимание обращали на удаление из руды «искр» и «звездочек». Они не знали, что это аллотропические изменения той же самой сернистой ртути; при нагревании без доступа воздуха до 386°C эти модификации превращаются в «настоящую» киноварь.

Некоторые соединения ртути меняют окраску при изменении температуры. Таковы красная окись ртути HgO и медно-ртутный иодид HgI 2 · 2CuI.

Токсичность ртути

Пары ртути, а также металлическая ртуть очень ядовиты, могут вызвать тяжёлое отравление. Ртуть и её соединения (сулема, каломель, цианид ртути) поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании - дыхательные пути (а проникновение ртути в организм чаще происходит именно при вдыхании её паров, не имеющих запаха). По классу опасности ртуть относится к первому классу (чрезвычайно опасное химическое вещество). Опасный загрязнитель окружающей среды, особенно опасны выбросы в воду, поскольку в результате деятельности населяющих дно микроорганизмов происходит образование растворимой в воде и токсичной метилртути.

В ряде стран каломель используется в качестве слабительного. Токсическое действие каломели проявляется особенно тогда, когда после приема её внутрь не наступает слабительное действие и организм долгое время не освобождается от этого препарата.

Хлорид ртути (II), который называется сулема, является очень токсичным. Токсичность нитрата ртути (II) примерно такая же, как и токсичность сулемы.

Предельно допустимые уровни загрязнённости металлической ртутью и её парами:

  • ПДК в населенных пунктах (среднесуточная) - 0,0003 мг/м³
  • ПДК в жилых помещениях (среднесуточная) - 0,0003 мг/м³
  • ПДК воздуха в рабочей зоне (макс. разовая) - 0,01 мг/м³
  • ПДК воздуха в рабочей зоне (среднесменная) - 0,005 мг/м³
  • ПДК сточных вод (для неорганических соединений в пересчёте на двухвалентную ртуть) - 0,005 мг/мл
  • ПДК водных объектов хозяйственно-питьевого и культурного водопользования, в воде водоемов - 0,0005 мг/л
  • ПДК рыбохозяйственных водоемов - 0,00001 мг/л
  • ПДК морских водоемов - 0,0001 мг/л
  • ПДК в почве - 2,1 мг/кг

Мировое производство ртути

Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс т количественно учтенные запасы - в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшилось более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11 -12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг.

Мировое производство ртути в 2009 году составило уже 3049 т, а

выявленные ресурсы ртути оцениваются в 675 тыс. т (главным образом в

Испании, Италии, Югославии, Киргизии, на Украине и в России).

Крупнейшие производители ртути – Испания (1497 т), Китай (550 т), Алжир

(290 т), Мексика (280 т), Кыргызстан(270т) и др.

История производства ртути в России

Первые сведения об организации ртутного производства в России относятся к 1725 г., согласно которым купец Петр Анисимов завел ртутную фабрику, причем источники сырья он держал в секрете. Добыча ртутной руды (киновари) в России началась в 1759 г. на Ильдиканском месторождении в Забайкалье и в незначительных объемах продолжалась (периодически) до 1853 г. В конце XIX – начале ХХ вв. киноварь в небольших количествах добывалась из аллювиальных россыпей в Амурской области. Примерно в это же время осуществлялась отработка отдельных участков ртутных месторождений Бирксуйского рудного поля (Южная Фергана) и месторождения Хпек (Южный Дагестан). В 1879 г. было открыто Никитовское ртутное месторождение (Донбасс), эксплуатация которого (одновременно с выплавкой металла) началась в 1887 г. В 1887-1908 гг. годовое производство ртути на Никитовском руднике варьировалось в пределах 47,3-615,9 т). Расчеты, основанные на данных, показывают, что с 1887 по 1917 г. здесь было получено 6762 т металлической ртути, существенная часть которой шла на экспорт (с 1889 г. по 1907 г. за границу было вывезено более 5145 т ртути). В начале ХХ в. Россия также импортировала киноварь и ртуть . Например, в 1913 г. в страну было ввезено 56 т киновари и 168 т ртути, в 1914 г. – 41 т киновари и 129 т ртути. В 1900-1908 гг. потребление ртути в России колебалось в пределах 49-118 т/год. В это время ртуть применялась в медицине и фармацевтике, при изготовлении зеркал и красок, при производстве термометров, барометров, манометров и других приборов, использовалась для натирания подушек электрических машин, извлечения золота и серебра амальгамным способом, золочения меди и бронзы, очистки войлока, в золотошвейном деле и лабораторной практике.