Электрическая проводимость различных веществ. Электронная проводимость металлов

Электронная проводимость металлов была впервые экспериментально доказана немецким физиком Э.Рикке в 1901 г. Через три плотно прижатых друг к другу отполированных цилиндра - медный, алюминиевый и снова медный - длительное время (в течение года) пропускали электрический ток. Общий заряд, прошедший за это время, был равен 3.5·10 6 Кл. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то массы цилиндров должны были бы заметно измениться, если бы носителями заряда были ионы. Результаты опытов показали, что масса каждого из цилиндров осталась неизменной. В соприкасающихся поверхностях были обнаружены лишь незначительные следы взаимного проникновения металлов, которые не превышали результатов обычной диффузии атомов в твердых телах. Следовательно, свободными носителями заряда в металлах являются не ионы, а такие частицы, которые одинаковы и в меди, и в алюминии. Такими частицами могли быть только электроны.

Прямое и убедительное доказательство справедливости этого предположения было получено в опытах, поставленных в 1913 г. Л. И. Мандельштамом и Н. Д. Папалекси и в 1916 г. Т. Стюартом и Р. Толменом.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 1). К концам дисков с помощью скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться вдоль проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет существовать короткое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. \(~\Delta q = \frac{q_0}{m}\). Поэтому, измеряя заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение \(~\frac{q_0}{m}\). Оно оказалось равным 1,8·10 11 Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе, найденным ранее из других опытов.

Таким образом, электрический ток в металлах создается движением отрицательно заряженных частиц электронов. Согласно классической электронной теории проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), металлический проводник можно рассматривать как физическую систему совокупности двух подсистем:

  1. свободных электронов с концентрацией ~ 10 28 м -3 и
  2. положительно заряженных ионов, колеблющихся около положения равновесия.

Появление свободных электронов в кристалле можно объяснить следующим образом.

При объединении атомов в металлический кристалл слабее всего связанные с ядром атома внешние электроны отрываются от атомов (рис. 2). Поэтому в узлах кристаллической решетки металла располагаются положительные ионы, а в пространстве между ними движутся электроны, не связанные с ядрами своих атомов. Эти электроны называются свободными или электронами проводимости . Они совершают хаотическое движение, подобное движению молекул газа. Поэтому совокупность свободных электронов в металлах называют электронным газом .

Если к проводнику приложено внешнее электрическое поле, то на беспорядочное хаотическое движение свободных электронов накладывается направленное движение под действием сил электрического поля, что и порождает электрический ток. Скорость движения самих электронов в проводнике - несколько долей миллиметра в секунду, однако возникающее в проводнике электрическое поле распространяется по всей длине проводника со скоростью, близкой к скорости света в вакууме (3·10 8 м/с).

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью .

Электроны под влиянием постоянной силы, действующей со стороны электрического поля, приобретают определенную скорость упорядоченного движения (ее называют дрейфовой). Эта скорость не увеличивается в дальнейшем со временем, так как при столкновении с ионами кристаллической решетки электроны передают кинетическую энергию, приобретенную в электрическом поле, кристаллической решетке. В первом приближении можно считать, что на длине свободного пробега λ (это расстояние, которое электрон проходит между двумя последовательными столкновениями с ионами) электрон движется с ускорением \(~a = \frac{eE}{m}\) и его дрейфовая скорость линейно возрастает со временем\[~\upsilon = at = \frac{eEt}{m}\]. В момент столкновения электрон передает кинетическую энергию кристаллической решетке. Потом он опять ускоряется, и процесс повторяется. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике \(~\mathcal h \upsilon \mathcal i \sim E\) и, следовательно, разности потенциалов на концах проводника, так как \(~E = \frac Ul\), где l - длина проводника.

Известно, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц\[~I = en \mathcal h \upsilon \mathcal i S\], а значит, согласно предыдущему, сила тока пропорциональна разности потенциалов на концах проводника: I ~ U . В этом состоит качественное объяснение закона Ома на основе классической электронной теории проводимости металлов.

Однако в рамках этой теории возникли трудности. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (\(~\rho \sim \sqrt T\)), между тем, согласно опыту, ρ ~ Т . Кроме того, теплоемкость металлов, согласно этой теории, должна быть значительно больше теплоемкости одноатомных кристаллов. В действительности теплоемкость металлов мало отличается от теплоемкости неметаллических кристаллов. Эти трудности были преодолены только в квантовой теории.

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при -269 °С) удельное сопротивление скачком уменьшается (рис. 1) практически до нуля. Это явление обращения электрического сопротивления в нуль Г. Камерлинг-Оннес назвал сверхпроводимостью.

В дальнейшем было выяснено, что более 25 химических элементов - металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама - 0,012 К, самое высокое у ниобия - 9 К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi , Au 2 Bi , PdTe , PtSb и другие.

Вещества в сверхпроводящем состоянии обладают необычными свойствами:

  1. электрический ток в сверхпроводнике может существовать длительное время без источника тока;
  2. внутри вещества в сверхпроводящем состоянии нельзя создать магнитное поле:
  3. магнитное поле разрушает состояние сверхпроводимости. Сверхпроводимость - явление, объясняемое с точки зрения квантовой теории. Достаточно сложное его описание выходит за рамки школьного курса физики.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

В настоящее время в линиях электропередачи на преодоление сопротивления проводов уходит 10 - 15 % энергии. Сверхпроводящие линии или хотя бы вводы в крупные города принесут громадную экономию. Другая область применения сверхпроводимости - транспорт.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре - свыше 100 К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 279-282.

Владимирский промышленно-коммерческий лицей

Реферат

Электрический ток в проводниках и полупроводниках

Выполнил:

Сазанов Сергей

11 “Б” класс

г. Владимир, 2000 г.

I. Введение

Слово «ток» означает движение или течение чего-то. Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Чтобы получить электрический ток в проводнике, надо создать в нем электрическое поле. Чтобы электрический ток в проводнике существовал длительное время, необходимо все это время поддерживать в нем электрическое поле. Электрическое поле в проводниках создается и может длительное время поддерживаться источниками электрического тока. В настоящее время человечество использует четыре основные источника тока: статический, химический, механический и полупроводниковый, но во всяком из них совершается работа по разделению положительно и отрицательно заряженных частиц. Раздельные частицы накапливаются на полюсах источника тока. Один полюс источника тока заряжается положительно, другой - отрицательно.

II. Электрическая проводимость различных веществ

Наряду с металлами хорошими проводниками, т.е. веществами с большим количеством свободных заряженных частиц, являются водные растворы или расплавы электролитов и ионизированный газ – плазма. Эти проводники также широко используются в технике.

Кроме проводников и диэлектриков, имеется группа веществ, проводимость которых занимает промежуточное положение между проводниками и диэлектриками. Эти вещества не настолько хорошо проводят электричество, чтобы их назвать проводниками, и не настолько плохо, чтобы их отнести к диэлектрикам. Поэтому они получили название полупроводников.

До недавнего времени полупроводники не играли заметной практической роли. В электротехнике и радиотехнике применяли исключительно различные проводники и диэлектрики. Положение существенно изменилось, можно даже сказать, что в радиотехнике произошла революция, когда сначала теоретически, а затем экспериментально была открыта и изучена легко осуществимая возможность управления электрической проводимостью полупроводников.

Полупроводники применяют в качестве элементов, преобразующих ток в радиоприемниках, вычислительных машинах и т.д.

III. Электронная проводимость металлов

Носителями свободных зарядов в металлах являются электроны. Их концентрация велика – порядка 10 28 1/м 3 . Эти электроны участвуют в беспорядочном тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка 10 -4 м/с.

Экспериментальное доказательство существования свободных электронов в металлах.

На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга. К концам дисков при помощи скользящих контактов присоединяют гальванометр. Катушку приводят в быстрое движение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы некоторое время движутся относительно проводника по инерции, и, следовательно, в катушке возникает электрический ток. Ток существует незначительное время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Направление тока говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т.е. . Поэтому, измеряя заряд, проходящий через гальванометр за время существования тока в цепи, удалось определить это отношение. Оно оказалось равным Кл/кг. Эта величина совпадает с отношением заряда электрона к его массе , найденным ранее из других опытов.

Движение электронов в металле.

Электроны под влиянием постоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, т.к. со стороны ионов кристаллической решетки на электроны действует некоторая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.

Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти существующую этой энергии температуру по формуле , то получим температуру порядка . Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики.

Экспериментально доказано, что носителями свободных зарядов в металлах являются электроны. Под действием электрического поля электроны движутся с постоянной средней скоростью из-за торможения со стороны кристаллической решетки. Скорость упорядоченного движения прямо пропорциональна напряженности поля в проводнике.

IV. Зависимость сопротивления проводника от температуры

Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.

Если при температуре, равной , сопротивление проводника равно , а при температуре оно равно , то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры: .

Коэффициент пропорциональности называют температурным коэффициентом сопротивления. Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов .

При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры: .

Так как мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис. 1).

Рис. 1
Хотя коэффициент довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов просто необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока более чем в 10 раз.

У некоторых сплавов, например у сплава меди с никелем, температурный коэффициент сопротивления очень мал:

; удельное сопротивление константана велико: . Такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т.е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.

Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве основного рабочего элемента такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Удельное сопротивление металлов растет линейно с увеличением температуры. У растворов электролитов оно уменьшается при увеличении температуры.

V. Сверхпроводимость

Рис. 2
В 1911 г. голландский физик Камерлинг-Оннес открыл замечательное явление – сверхпроводимость. Он обнаружил, что при охлаждении ртути в жидком гелии ее сопротивление сначала меняется постепенно, а затем при температуре очень резко падает до нуля (рис. 2). Это явление было названо сверхпроводимостью. Позже было открыто много других сверхпроводников. Сверхпроводимость наблюдается при очень низких температурах – около .

Если в кольцевом проводнике, находящемся в сверхпроводящем состоянии, создать ток, а затем устранить источник электрического тока, то сила этого тока не меняется сколь угодно долго. В обычном же не сверхпроводящем проводнике электрический ток прекращается.

Сверхпроводники находят широкое применение. Так, сооружают мощные электромагниты со сверхпроводящей обмоткой, которые создают магнитное поле на протяжении длительных интервалов времени без затрат энергии. Ведь выделения теплоты в сверхпроводящей обмотке не происходит.

Однако получить сколь угодно сильное магнитное поле с помощью сверхпроводящего магнита нельзя. Очень сильное магнитное поле разрушает сверхпроводящее состояние. Такое поле может быть создано током в самом сверхпроводнике. Поэтому для каждого проводника в сверхпроводящем состоянии существует критическое значение силы тока, превзойти которое, не нарушая этого состояния, нельзя.

Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным, то была бы решена проблема передачи энергии по проводам без потерь. В настоящее время физики работают над ее решением.

Многие металлы и сплавы при температурах ниже полностью теряют сопротивление, т.е. становятся сверхпроводниками. Недавно была открыта высокотемпературная сверхпроводимость.

VI. Электрический ток в полупроводниках

Рис. 3
Наиболее отчетливо полупроводники отличаются от проводников характеров зависимости электропроводимости от температуры. Измерения показывают, что у ряда элементов (кремний, германий, селен и др.) и соединений (PbS, CdS и др.) удельное сопротивление с увеличением температуры не растет, как у металлов, а, наоборот, чрезвычайно резко уменьшается (рис. 3). Такие вещества и называют полупроводниками.

Строение полупроводников.

Для того чтобы включить транзисторный приемник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала надо познакомиться с механизмом проводимости в полупроводниках. А для этого придется вникнуть в природу связей, удерживающих атомы полупроводникового кристалла друг возле друга. Для примера рассмотрим кристалл кремния.

Кремний – четырехвалентный элемент. Это означает, что во внешней оболочке атома имеются четыре электрона, сравнительно слабо связанные с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Плоская схема структуры кристалла кремния изображена на рисунке 4.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью. В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отщепляют от атомов (коллективизируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.

Парноэлектронные связи кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны прочно привязаны к электрической решетке, и внешнее электрическое поле не оказывает заметное влияние на их движение. Аналогичное строение имеет кристалл германия.

Электронная проводимость.

При нагревании кремния кинетическая энергия валентных электронов повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторенные пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, образуя электрический ток (рис. 5).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью. При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700К число свободных электронов увеличивается от 10 17 до 10 24 1/м 3 . Это приводит к уменьшению сопротивления.

Дырочная проводимость.

При разрыве связи образуется вакантное место с недостающим электроном. Его называют дыркой. В дырке имеются избыточный положительный заряд по сравнению с остальными, нормальными связями.

Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.

Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью.

Мы рассмотрели механизм проводимости идеальных полупроводников. Проводимость при этих условиях называют собственной проводимостью полупроводников.

Проводимость чистых полупроводников (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость).

Список литературы

1. Г. Я. Мякишев, Б. Б. Буховцев: «Физика 10 кл.», Просвещение, М. 1990 г.

Тема занятия: Основные положения электронной теории проводимости металлов.
Электрический ток в электролитах.
Вид занятия ­ смешанный.
Тип занятия комбинированный.
Учебные цели занятия: сформировать у учащихся представление об электронной
проводимости металлов; рассмотреть опыты Мандельштама и Папалекси;
сформулировать закон Ома в свете электронной теории проводимости металлов.
Задачи занятия:
Образовательная:
Установить различия в условиях существования электрического тока в твердых,
жидких, газообразных телах. Сформировать понятие о природе электрического тока в
металлах.
Развивающие. Развивать умение наблюдать, формировать представление о процессе
научного познания.
Воспитательная. Развивать познавательный интерес к предмету, вырабатывать умение
слушать и быть услышанным.
Планируемые образовательные результаты:
способствовать усилению
практической направленности в обучении физики, формировании умений
применять полученные знания в различных ситуациях.
Личностные: способствовать эмоциональному восприятию физических объектов,
умению слушать, ясно и точно излагать свои мысли, развивать инициативу и
активность при решении физических задач, формировать умение работать в группах.
Метапредметные: развивать умение понимать и использовать средства наглядности
(чертежи, модели, схемы). Развитие понимания сущности алгоритмических
предписаний и умений действовать в соответствии с предлагаемым алгоритмом.
Предметные: овладеть физическим языком, умением распознавать соединения
параллельные и последовательные, умение ориентироваться в электрической схеме,
собирать схемы. Умение обобщать и делать выводы.
Ход занятия:
1. Организация начала урока (отметка отсутствующих, проверка готовности студентов
к уроку, ответы на вопросы студентов по домашнему заданию) – 2­5 мин.
Преподаватель сообщает учащимся тему урока, формулирует цели урока и знакомит
учащихся с планом урока. Учащиеся записывают тему урока в тетради. Преподаватель
создает условия для мотивации учебной деятельности.
Освоение нового материала:
Электрический ток в различных средах.
Электрический ток в металлах ­ это упорядоченное движение электронов
электрический ток в растворах (расплавах) электролитов ­ это направленное
перемещение ионов обоих знаков в противоположных направлениях
электрический ток в газах ­ это упорядоченное движение ионов и электронов под
действием электрического поля.

Тело, в котором имеются свободные носители заряда, то есть
электрический ток в вакууме может быть создан упорядоченным движением любых
заряженных частиц (электронов, ионов).
Проводники, диэлектрики, полупроводники, электролиты.
Проводн кии
заряженные частицы, которые могут свободно перемещаться внутри этого тела.
Диэлектрик (изолятор) - вещество, практически не проводящее электрический ток.
Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3.
Основное свойство диэлектрика состоит в способности поляризоваться во внешнем
электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик -
вещество с ширинойзапрещённой зоны больше 3 эВ.
Полупроводн кии
промежуточное место между проводниками и диэлектриками и отличается
от проводников сильной зависимостью удельной проводимости от концентрации
примесей, температуры и воздействия различных видов излучения. Основным
свойством полупроводника является увеличение электрической проводимости с
ростом температуры
Электрол тии
- вещество, расплав или раствор которого проводит электрический
ток вследствие диссоциации на ионы, однако само вещество электрический ток не
проводит. Примерами электролитов могут служить
растворы кислот, солей и оснований. Электролиты - проводники второго рода,
вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов
и обладающие вследствие этого ионной проводимостью.
- материал, который по своей удельной проводимости занимает
Природа электрического тока в металлах.
Металлы обладают электронной проводимостью. Экспериментальные
доказательства:
Опыт К. Рикке: пропускал ток в сотни ампер в течение длительного вре­
мени. Ожидал: в алюминии появится медь. Результат: отрицательный, т.
е. ток не является направленным движением ионов.
Опыт Стюарта­Толмена:
1913 r. - Мандельштам - Папалекси предложили,
1916 г. - Стюарт - Толмен осуществили экспериментально.
Длина l провода=500 м (в катушке). Катушка вращалась с v =500 м/с: при рез­
ком торможении свободные частицы двигались по инерции. По
отклонению стрелки гальванометра определяли удельный заряд, по
направлению отклонения ­ знак заряда.
Электронная теория металлов (П. Друде, Г.А.Лоренц)
1. Свободные электроны в металлах ведут.себя как молекулы идеального
газа. но vэл>> vтепл.
2. Движение свободных электронов в металлах подчиняется законам
Ньютона.
3. Свободные электроны в процессе хаотичного движения сталкиваются
преимущественно с ионами кристаллической решетки.
4. Двигаясь до следующего столкновения с ионами, электроны
ускоряются электрическим полем и приобретают кинетическую
энергию Ек.

Построить удовлетворительную количественную теорию движения
электронов в металле на основе законов классической механики
невозможно. Но можно примерно объяснить закон Ома.
­ зависимость удельного сопротивления металла от
температуры, где ­ температурный коэффициент сопротивления
(табличная величина). Полностью правильно объяснить проводимость
металлов позволяет только квантовая теория.
Сверхпроводимость.
Явление открыто Х.Камерлинг­Оннесом (Голландия) в 1911 г. на ртути и
заключается в том, что при сверхнизких температурах сопротивление
проводника может скачком падать до 0. Т.е. в таких проводниках не
расходуется энергия на нагревание. В 1933 г. В.Мейснер открыл явление,
состоящее в том, что внешнее магнитное поле не проникает в глубь
сверхпроводника, если величина магнитного поля меньше критического
значения
В настоящее время открыты
предсказанные В.Гинзбургом высокотемпературные сверхпроводники
(температуры выше температуры жидкого азота).
(эффект Мейснера).
Основные положения классической теории электронной проводимости.
1). Носителями тока в металлах являются электроны, движение которых подчиняется
законом классической механики.
2). Поведение электронов подобно поведению молекул идеального газа (электронный
газ).
3). При движении электронов в кристаллической решетке можно не учитывать
столкновения электронов друг с другом.
4). При упругом столкновении электронов с ионами электроны полностью передают им
накопленную в электрическом поле энергию.
Скорость упорядоченного движения электронов в металле.
Домашнее задание: Сообщение

Носителями свободного заряда в металлах являются электроны. Эти электроны участвуют в хаотическом тепловом движении. Под действием электрического поля они начинают перемещаться упорядоченно со средней скоростью порядка (см. § 56).

Экспериментальное доказательство существования свободных электронов в металлах. Экспериментальное доказательство того, что проводимость металлов обусловлена движением свободных электронов, было дано в опытах Л. И. Мандельштама и Н. Д. Папалекси (в 1913 г.), Стюартом и Толменом (в 1916 г.).

Схема этих опытов такова. На катушку наматывают проволоку, концы которой припаивают к двум металлическим дискам, изолированным друг от друга (рис. 165). К концам дисков при помощи скользящих контактов присоединяют гальванометр.

Катушку приводят в быстрое вращение, а затем резко останавливают. После резкой остановки катушки свободные заряженные частицы будут некоторое время двигаться относительно проводника по инерции, и, следовательно, в катушке возникнет электрический ток. Ток будет длиться небольшое время, так как из-за сопротивления проводника заряженные частицы тормозятся и упорядоченное движение частиц, образующее ток, прекращается.

Наблюдения показали, что в цепи после остановки катушки некоторое время существует ток. Направление его говорит о том, что он создается движением отрицательно заряженных частиц. Переносимый при этом заряд пропорционален отношению заряда частиц, создающих ток, к их массе, т. е. Поэтому, измеряя

заряд, проходящий через гальванометр за все время существования тока в цепи, удалось определить отношение Оно оказалось равным Эта величина совпадает с отношением заряда к массе для электрона, найденным ранее из других опытов.

Движение электронов в металле. Электроны под влиянием постоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, так как со стороны ионов сталлической решетки на электроны действует некоторая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде. В результате средняя скорость упорядоченного движения электронов пропорциональна напряженности электрического поля в проводнике , следовательно, разности потенциалов на концах проводника, так как где - длина проводника.

Мы знаем, что сила тока в проводнике пропорциональна скорости упорядоченного движения частиц (см. формулу 9.2). Поэтому можем сказать, что сила тока пропорциональна разности потенциалов на концах проводника В этом состоит качественное объяснение закона Ома на основе электронной теории проводимости металлов.

Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения. Наиболее наглядно это видно из следующего примера. Если экспериментально определить среднюю кинетическую энергию теплового движения электронов в металле при комнатной температуре и найти соответствующую этой энергии температуру по формуле то получится температура порядка Такая температура существует внутри звезд. Движение электронов в металле подчиняется законам квантовой механики (законы классической механики Ньютона в этом случае неприменимы).

1. Перечислите вещества, являющиеся хорошими проводниками электрического тока. 2. Катушка в опыте, изображенном на рисунке 165, вращалась по часовой стрелке, а затем была резко заторможена. Определите направление электрического тока в катушке в момент торможения.

3. Как скорость упорядоченного движения электронов в металлическом проводнике зависит от напряжения на концах проводника?

ЭЛЕКТРОПРОВОДНОСТЬ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ

Электропроводность металлов

Соответствующий квантовомеханический расчет дает, что в случае идеальной кристаллической решетки электроны проводимости не испытывали бы при своем движении никакого сопротивления и электропроводность металлов была бы бесконечно большой. Однако кристаллическая решетка никогда не бывает совершенной. Нарушения строгой периодичности решетки бывают обусловлены наличием примесей или вакансий (т.е. отсутствие атомов в узле), а также тепловыми колебаниями в решетке. Рассеяние электронов на атомах примеси и на фотонах приводит к возникновению электросопроти-вления металлов. Чем чище металл и ниже температура, тем меньше это сопротивление.

Удельное электрическое сопротивление металлов можно представить в виде

где кол - сопротивление, обусловленное тепловыми колебаниями решетки, прим - сопротивление, обусловленное рассеянием электронов на примесных атомах. Слагаемое кол уменьшается с понижением температуры и обращается в нуль при T = 0K . Слагаемое прим при небольшой концентрации примесей не зависит от температуры и образует так называемое остаточное сопротивление металла (т.е. сопротивление, которым металл обладает при 0K).

Пусть в единице объема металла имеется n свободных электронов. Назовем среднюю скорость этих электронов дрейфовой скоростью . По определению

В отсутствие внешнего поля дрейфовая скорость равна нулю, и электрический ток в металле отсутствует. При наложении на металл внешнего электрического поля дрейфовая скорость становится отличной от нуля - в металле возникает электрический ток. Согласно закону Ома дрейфовая скорость является конечной и пропорциональной силе
.

Из механики известно, что скорость установившегося движения оказывается пропорциональной приложенной к телу внешней силе F в том случае, когда, кроме силы - F , на тело действует сила сопротивления среды, которая пропорциональна скорости тела (примером может служить падение маленького шарика в вязкой среде). Отсюда заключаем, что кроме силы
, на электроны проводимости в металле действует сила "трения", среднее значение которой равно

(r -коэффициент пропорциональности).

Уравнение движения для "среднего" электрона имеет вид

,

где m * - эффективная масса электрона. Это уравнение позволяет найти установившееся значение .

Если после установления стационарного состояния выключить внешнее поле , дрейфовая скорость начнет убывать и по достижении состояния равновесия между электронами и решеткой обращается в нуль. Найдем закон убывания дрейфовой скорости после выключения внешнего поля. Положив в
, получим уравнение

Уравнение такого вида нам хорошо знакомо. Его решение имеет вид

,

где
-значение дрейфовой скорости в момент выключения поля.

Из следует, что за время

значение дрейфовой скорости уменьшается в e раз. Таким образом, величина представляет собой время релаксации, характеризующее процесс установления равновесия между электронами и решеткой, нарушенного действием внешнего поля .

С учетом формула может быть написана следующим образом:

.

Установившееся значение дрейфовой скорости можно найти, приравняв нулю сумму силы
и силы трения:

.

.

Установившееся значение плотности тока получим, умножив это значение на заряд электрона -e и плотность электронов n :

.

Коэффициент пропорциональности между
представляет собой удельную электропроводность . Таким образом,

.

Классическое выражение для электропроводности металлов имеет вид

,

где  - среднее время свободного пробега электронов, m - обычная (не эффективная) масса электрона.

Из сравнения формул и вытекает, что время релаксации совпадает по порядку величины с временем свободного пробега электронов в металле.

Исходя из физических соображений, удается произвести оценку величин, входящих в выражение, и тем самым вычислить по порядку величины проводимость . Полученные таким способом значения находятся в хорошем согласии с опытными данными. Также в согласии с опытом получается, что изменяется с температурой по закону 1/T . Напомним, что классическая теория дает, что обратно пропорциональна
.

Отметим, что выкладки, приведшие к формуле, одинаково пригодны как при классической трактовке движения электронов проводимости в металле, так и при квантовомеханической трактовке. Различие этих двух трактовок заключается в следующем. При классическом рассмотрении предполагается, что все электроны возмущаются внешним электрическим полем, в соответствии с чем каждое слагаемое в формуле получает добавку в направлении,

противоположном . При квантовомеханической трактовке приходится принимать во внимание, что возмущаются полем и изменяют свою скорость лишь электроны, занимающие состояния вблизи уровня Ферми. Электроны, находящиеся на более глубоких уровнях, полем не возмущаются, и их вклад в сумму не изменяется. Кроме того, при классической трактовке в знаменателе формулы должна стоять обычная масса электронаm , при квантовомеханической трактовке вместо обычной массы должна быть взята эффективная масса электрона m * . Это обстоятельство является проявлением общего правила, согласно которому соотношения, полученные в приближении свободных электронов, оказываются справедливыми и для электронов, движущихся в периодическом поле решетки, если в них заменить истинную массу электрона m эффективной массой m * .

Сверхпроводимость

При температуре порядка нескольких кельвин электрическое сопротивление ряда металлов и сплавов скачком обращается в нуль-вещество, переходит в сверхпроводящее состояние . Температура, при которой происходит этот переход, носит название критической температуры и обозначается T k . Наибольшее наблюдавшееся значение T k составляет  20 К.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь звено из сверхпроводника. В момент перехода в сверхпроводящее состояние, разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Открывший явление сверхпроводимости голландский ученый Г.Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствии уменьшения тока в течение двух с половиной лет.

Кроме отсутствия электрического сопротивления, для сверхпроводящего состояния характерно то, что магнитное поле не проникает в толщу сверхпроводника. Это явление называется эффектом Мейсснера . Если сверхпроводящий образец охлаждается, будучи помещенным в магнитное поле, в момент перехода в сверхпроводящее состояние поле выталкивается из образца, а магнитная индукция в образце обращается в нуль. Формально можно сказать, что сверхпроводник обладает нулевой магнитной проницаемостью ( = 0). Вещества с < 1 называются диамагнетиками. Таким образом, сверхпроводник является идеальным диамагнетиком.

Достаточно сильное внешнее магнитное поле разрушает сверхпроводящее состояние. Значение магнитной индукции, при котором это происходит, называется критическим полем и обозначается B k . Значение B k зависит от температуры образца. При критической температуре B k = 0, с понижением температуры значение B k возрастает, стремясь к - значению критического поля при нулевой температуре. Примерный вид этой зависимости показан на рис.1

Если усиливать ток, текущий через сверхпроводник, включенный в общую цепь, то при значении силы тока I k сверхпроводящее состояние разрушается. Это значение силы тока называется критическим током . Значение I k зависит от температуры. Вид этой зависимости аналогичен зависимости B k от T (см. рис.1).

Сверхпроводимость представляет собой явление, в котором квантовомеханические эффекты обнаруживаются не в микроскопических, а в крупных, макроскопических масштабах. Теория сверхпроводимости была создана в 1957 г. Дж. Бардиным, Л. Купером и Дж. Шриффером. Ее называют кратко теорией БКШ. Эта теория очень сложна. Поэтому мы вынуждены ограничиться изложением ее на уровне научно-популярных книг, что, по-видимому, не сможет полностью удовлетворить взыскательного читателя.

Разгадка сверхпроводимости заключается в том, что электроны в металле, кроме кулоновского отталкивания, испытывают особый вид взаимного притяжения, которое в сверхпроводящем состоянии преобладает над отталкиванием. В результате электроны проводимости объединяются в так называемые куперовские пары . Электроны, входящие в такую пару, имеют противоположно направленные спины. Поэтому спин пары равен нулю, и она представляет собой бозон. Бозоны склонны накапливаться в основном энергетическом состоянии, из которого их сравнительно трудно перевести в возбужденное состояние. Следовательно, куперовские пары, придя в согласованное движение, остаются в этом состоянии неограниченно долго. Такое согласованное движение пар и есть ток сверхпроводимости.

Поясним сказанное более подробно. Электрон, движущийся в металле, деформирует (поляризует) состоящую из положительных ионов кристаллическую решетку. В результате этой деформации электрон оказывается окруженным "облаком" положительного заряда, перемещающимся по решетке вместе с электроном. Электрон и окружающее его облако представляют собой положительно заряженную систему, к которой будет притягиваться другой электрон. Таким образом, ионная решетка играет роль промежуточной среды, наличие которой приводит к притяжению между электронами.

На квантовомеханическом языке притяжение между электронами объясняется как результат обмена между электронами квантами возбуждения решетки - фононами. Электрон, движущийся в металле, нарушает режим колебаний решетки - возбуждает фононы. Энергия возбуждения передается другому электрону, который поглощает фонон. В результате такого обмена фононами возникает дополнительное взаимодействие между электронами, которое имеет характер притяжения. При низких температурах это притяжение у веществ, являющихся сверхпроводниками, превышает кулоновское отталкивание.

Взаимодействие, обусловленное обменом фононами, наиболее сильно проявляется у электронов, обладающих противоположными импульсами и спинами. В результате два таких электрона объединяются в куперовскую пару. Эту пару не следует представлять себе как два слипшихся электрона. Напротив, расстояние между электронами пары весьма велико, оно составляет примерно 10 -4 см, т.е. на четыре порядка превышает межатомные расстояния в кристалле. Примерно 10 6 куперовских пар заметно перекрываются, т.е. занимают общий объем.

В куперовские пары объединяются не все электроны проводимости. При температуре T , отличной от абсолютного нуля, имеется некоторая вероятность того, что пара будет разрушена. Поэтому всегда наряду с парами имеются "нормальные" электроны, движущиеся по кристаллу обычным образом. Чем ближе T и T k , тем доля нормальных электронов становится больше, обращаясь в 1 при T = T k . . Следовательно, при температуре выше T k сверхпроводящее состояние возможно.

Образование куперовских пар приводит к перестройке энергетического спектра металла. Для возбуждения электронной системы, находящиеся в сверхпроводящем состоянии, надо разрушить хотя бы одну пару, на что требуется энергия, равная энергии связи E св электронов в паре. Эта энергия представляет собой минимальное количество энергии, которое может воспринять система электронов сверхпроводника. Следовательно, в энергетическом спектре электронов, находящихся в сверхпроводящем состоянии, имеется щель ширины E св, расположенная в области уровня Ферми. Значения энергии, принадлежащие этой щели, запрещены. Существование щели было доказано экспериментально.

Итак, возбужденное состояние электронной системы, находящейся в сверхпроводящем состоянии, отделено от основного состояния энергетической щелью ширины E св. Поэтому квантовые переходы этой системы не всегда будут возможными. При малых скоростях своего движения (отвечающих силе тока, меньшей I k) электронная система ее будет возбуждаться, а это и означает движение без трения, т.е. без электрического сопротивления.

Ширина энергетической щели E св с ростом температуры уменьшается и обращается в нуль при критической температуре T k . Соответственно все куперовские пары разрушаются, и вещество переходит в нормальное (несверхпроводящее) состояние.

Из теории сверхпроводимости следует, что магнитный поток Ф, связанный со сверхпроводящим кольцом (или цилиндром), по которому циркулирует ток, должен быть целым кратным величины
, гдеq - заряд носителя тока

.

Величина

представляет собой квант магнитного потока .

Квантование магнитного потока было экспериментально обнаружено в 1961 г. Дивером и Фейрбэнком и независимо от них Доллом и Небауэром. В опытах Дивера и Фейрбэнка образцом служил поясок олова, нанесенный на медную проволоку диаметром около 10 -3 см. Проволока играла роль каркаса и в сверхпроводящее состояние не переходила. Измеренные значения магнитного потока в этих опытах, как и в опытах Долла и Небауэра, оказались целыми кратными величины, в которой в качестве q надо взять удвоенный заряд электрона (q = - 2e ) . Это служит дополнительным подтверждением правильности теории БКШ, согласно которой носителями тока в сверхпроводнике являются куперовские пары, заряд которых равен суммарному заряду двух электронов, т.е. - 2e .

Полупроводники

Полупроводниками являются кристаллические вещества, у ко­торых валентная зона полностью заполнена электронами, а ширина запрещенной зоны невелика (у собственных полупроводников не более 1 эВ). Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и диэлектриками. Однако характерным для них является не величина проводимости, а то, что их проводимость растет с повышением температуры (напомним, что у металлов она уменьшается).

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники. Электрические свойства примесных полупроводников определяются имеющимися в них искусственно вводимыми примесями.

При рассмотрении электрических свойств полупроводников большую роль играет понятие "дырок". Остановимся на выяснении физического смысла этого понятия.

В собственном полупроводнике при абсолютном нуле все уровни валентной зоны полностью заполнены электронами, а в зоне проводимости электроны отсутствуют (рис.2,a). Электрическое поле не может перебросить электроны из валентной зоны в зону проводимости. Поэтому собственные полупроводники ведут себя при абсолютном нуле как диэлектрики. При температурах, отличных от 0 К, часть электронов с верхних уровней валентной зоны переходит в результате теплового возбуждения на нижние уровни зоны проводимости (рис.2,б). В этих условиях электрическое поле получает возможность изменять состояние электронов, находящихся в зоне проводимости. Кроме того, вследствие образования вакантных уровней в валентной зоне электроны этой зоны также могут изменять свою скорость под воздействием внешнего поля. В результате электропроводность полупроводника ста­новится отличной от нуля.

Оказывается, что при наличии вакантных уровней поведение электронов валентной зоны может быть представлено как движение положительно заряженных квазичастиц, получивших название "дырок". Из равенства нулю проводимости полностью заполненной валентной зоны вытекает, что сумма скоростей всех электронов такой зоны равна нулю

Выделим из этой суммы скорость k -го электрона

Из полученного соотношения вытекает, что, если k -й электрон в валентной зоне отсутствует, то сумма скоростей оставшихся электронов оказывается равной
. Следовательно, все эти электроны создадут ток, равный
. Таким образом, возникший ток оказывается эквивалентным току, который создавала бы частица с зарядом +e , имеющая скорость отсутствующего электрона. Это воображаемая частица и есть дырка.

К понятию дырок можно прийти также следующим путем. Вакантные уровни образуются у потолка валентной зоны. Как было показано, эффективная масса электрона, находящегося у потолка энергетической зоны, является отрицательной. Отсутствие частицы с отрицательным зарядом (-e ) и отрицательной массой m * эквивалентно наличию частицы с положительным зарядом (+e ) и положительной массой | m * | т.е. дырки.

Итак, по своим электрическим свойствам валентная зона с небольшим числом вакантных состояний эквивалентна пустой зоне, содержащей небольшое число положительно заряженных квазичастиц, называемых дырками.

Подчеркнем, что движение дырки не есть перемещение какой-то реальной положительно заряженной частицы. Представление о дырках отображает характер движения всей многоэлектронной системы в полупроводнике.

Собственная проводимость полупроводников

Собственная проводимость возникает в результате перехода электронов с верхних уровней валентной зоны в зону проводимости. При этом в зоне проводимости появляется некоторое число носителей тока - электронов, занимающих уровни вблизи дна зоны, одновременно в валентной зоне освобождается такое же число мест на верхних уровнях, в результате чего появляются дырки

Распределение электронов по уровням валентной зоны и зоны проводимости описываются функцией Ферми-Дирака. Это распределение можно сделать очень наглядным, изобразив, как это сделано на рис. график функции распределения совместно со схемой энергетических зон.

Соответствующий расчет дает, что у собственных полупроводников отсчитанное от потолка валентной зоны значение уровня Ферми равно

,

где E - ширина запрещенной зоны, а m д * и m э * - эффективные массы дырки и электрона, находящегося в зоне проводимости. Обычно второе слагаемое пренебрежимо мало, и можно полагать
. Это означает, что уровень Ферми лежит посредине запрещенной зоны, Следовательно, для электронов, перешедших в зону проводимости, величинаE - E F мало отличается от половины ширины запрещенной зоны. Уровни зоны проводимости лежат на хвосте кривой распределения. Поэтому вероятность их заполнения электронами можно находить по формуле (1.23) предыдущего параграфа. Положив в этой формуле
, получим, что

.

Количество электронов, перешедших в зону проводимости, а следовательно и количество образовавшихся дырок, будет пропорционально вероятности. Эти электроны и дырки являются носителями тока. Поскольку проводимость пропорциональна числу носителей, она также должна быть пропорциональна выражению. Следовательно, электропроводность собственных полупроводников быстро растет с температурой, изменяясь по закону

,

где  E - ширина запрещенной зоны, 0 - величина, изменяющаяся с температурой гораздо медленнее, чем экспонента, в связи с чем ее можно в первом приближении считать константой.

Если на графике откладывать зависимость ln от T , то для собственных полупроводников получается прямая линия, изображен­ная на рис.4. По наклону этой прямой можно определить ширину запрещенной зоны  E .

Типичными полупроводниками являются элементы IV группы периодической системы Менделеева - германий и кремний. Они образуют решетку типа алмаза, в которой каждый атом связан ковалентными (парно-электронными) связями с четырьмя равноотстоящими от него соседними атомами. Условно такое взаимное расположение атомов можно представить в виде плоской структуры, изображенной на рис. 5. Кружки со знаком обозначают положительно заряженные атомные остатки (т.е. ту часть атома, которая остается после удаления валентных электронов), кружки со знаком- валентные электроны, двойные линии - ковалентные связи.

При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон. Покинутое электроном место перестает быть нейтральным, в его окрестности возникает избыточный положительный заряд , т.е. образу­ется дырка (на рис.5 она изображена пунктирным кружком). На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон.

При встрече свободного электрона с дыркой они рекомбинируют (соединяются). Это означает, что электрон нейтрализует избыточный положительный заряд, имеющийся в окрестности дырки, и теряет свободу передвижения до тех пор, пока снова не получит от кристаллической решетки энергию, достаточную для своего высвобождения. Рекомбинация приводит к одновременному исчезновению свободного электрона и дырки. На схеме уровней процессу рекомбинации соответствует переход электрона из зоны проводимости на один из свободных уровней валентной зоны.

Итак, в собственном полупроводнике идут одновременно два процесса: рождение попарно свободных электронов и дырок и рекомбинация, приводящая к попарному исчезновению электронов и дырок. Вероятность первого процесса быстро растет с температурой. Вероятность рекомбинации пропорциональна как числу свободных электронов, так и числу дырок. Следовательно, каждой температуре соответствует определенная равновесная концентрация электронов и дырок, которая изменяется с температурой пропорционально выражению.

Когда внешнее электрическое поле отсутствует, электроны проводимости и дырки движутся хаотически. При включении поля на хаотическое движение накладывается упорядоченное движение: электронов против поля и дырок - в направлении поля. Оба движения- и дырок, и электронов - приводит к переносу заряда вдоль кристалла. Следовательно, собственная электропроводность обусловливается как бы носителями заряда двух знаков - отрицательными электронами и положительными дырками.

Отметим, что при достаточно высокой температуре собственная проводимость наблюдается во всех без исключения полупроводниках. Однако в полупроводниках, содержащих примесь, электропроводность слагается из собственной и примесной проводимостей.

Примесная проводимость полупроводников

Примесная проводимость возникает, если некоторые атомы данного полупроводника заменить в узлах кристаллической решетки атомами, валентность которых отличается на единицу от валентности основных атомов. На рис.6 условно изображена решетка германия с примесью пятивалентных атомов фосфора. Для образования ковалентных связей с соседями атому фосфора достаточно четырех электронов. Следовательно, пятый валентный электрон оказывается как бы лишним и легко отщепляется от атома за счет энергии теплового движения, образуя странствующий свободный электрон.

В отличие от случая, рассмотренного в предыдущем параграфе, образование свободного электрона не сопровождается нарушением ковалентных связей, т.е. образованием дырки. Хотя в окрестности атома примеси возникает избыточный положительный заряд, но он связан с этим атомом и перемещаться по решетке не может.

Благодаря этому заряду атом примеси может захватить приблизив­шийся к нему электрон, но связь захваченного электрона с атомом будет непрочной и легко нарушается вновь за счет тепловых колебаний решетки.

Таким образом, в полупроводнике с примесью, валентность которой на единицу больше валентности основных атомов, имеется только один вид носителей тока-электроны. Соответственно говорят, что такой полупроводник обладает электронной проводимостью или является полупроводником n - типа (от слова negativ - отрицательный). Атомы примеси, поставляющие электроны проводимости называются донорами .