Тропические циклоны, ураганы, тайфуны. Атмосферы циркуляция

Проявления

Вихревое движение жидкостей и газов широко распространено в природе. Вихри на воде и в воздухе видел каждый. Однако даже полноценное определение этого движения трудно дать для неспециалиста, а неизученных особенностей в нём столько, что хватит ещё не одному поколению учёных. Метеорологи, занимаясь прогнозом погоды, постоянно имеют дело с гигантскими атмосферными вихрями.

Атмосферный вихрь – это атмосферное образование с вращательным движением около некоторого центра. Если к центру давление воздуха уменьшается, то такой вихрь называется циклоном. Циклоны умеренных широт являются главными виновниками нашей плохой погоды. Но самый грозный и опасный класс атмосферных вихрей – тропические циклоны. В разных регионах тропической зоны эти вихри называют по-разному. «Ареалы обитания», а также их местные названия показаны на рис. 1. Нашей стране угрожают только тайфуны – тропические циклоны Тихого океана, поэтому наши метеорологи часто все тропические циклоны называют тайфунами. В этой статье мы также будем придерживаться этой терминологии. Эффектнее всего тайфуны выглядят на спутниковых снимках.

Рис. 1. «Ареалы обитания» тропических циклонов и их местные названия

Ввиду того, что каждый отдельный тайфун потенциально очень опасен, метеорологи внимательно следят за ними с момента зарождения, обмениваясь полученной информацией. При таком обмене важно кратко и точно обозначить объект, поэтому ещё во время Великой Отечественной войны американские военные синоптики стали называть тайфуны короткими женскими именами в алфавитном порядке. Но тропических циклонов на Земле каждый год бывает более сотни, причём только около 60% из них именно тайфуны. Возникают они почти весь год – летом, осенью и зимой (в соотношении примерно 20: 10: 1), – поэтому возникли дополнительные требования к удобству хранения и каталогизации информации. Сейчас идентификация тропических циклонов каждого региона ведётся по строгим правилам с использованием стандартных списков имён, принятых Всемирной метеорологической организацией.

Все тропические циклоны и особенно тайфуны (обычно самые большие из них) страшны, если они выходят на населённое побережье. Обратимся к рис. 2, где схематично показано, как обычно движется тайфун в Северном полушарии. От места возникновения он перемещается на запад, постепенно отклоняясь к северу. Угол поворота бывает разным, поэтому тайфун может с примерно равной вероятностью либо пройти вдоль побережья и устремиться на северо-восток, чтобы в умеренных широтах превратиться в обычный циклон (рис. 2 а ), либо выйти на побережье (рис. 2 б ), и там, превратив всю свою мощь в разрушения, затухнуть, либо уйти в океан и постепенно исчезнуть там. Именно прогноз траектории тайфуна и представляет особую важность и сложность.

Рис. 2. Схема движения тайфуна в Северном полушарии

Ветер – это первый опасный фактор. На рис. 2, а короткими стрелочками показан ветер в движущемся тайфуне. Там, где они сгущаются, скорость ветра возрастает. Он так силён, что метеорологические приборы ломаются, и максимальные скорости ветра в большинстве случаев определены именно по характеру разрушений. Только в центральной части – «глазе» – ветер вдруг стихает. Но эта часть обычно очень мала по сравнению с диаметром самого тайфуна.

Волнение – это второй опасный фактор. На рис. 2, б показаны три зоны волнения океана в тайфуне. Поскольку энергия волн черпается из энергии ветра, то волнение затухает в зоне I, откуда тайфун уходит и где ветер ослабевает. Там направление перемещения циклона противоположно направлению ветра, вращающегося вокруг центра против часовой стрелки (в Северном полушарии). В зоне II, которая смещается вместе с тайфуном, ветер силён, а волны могут разгоняться, далеко опережая сам тайфун. Самые высокие и опасные волны в зоне III, где ветер наиболее силён из-за сложения скоростей вращательного и поступательного движений. Именно правая тыловая четверть тайфуна наиболее опасна для моряков.

Третий фактор угрозы тайфуна, помимо ветра и волн, – это ливневые дожди с грозой и градом. Вследствие того, что передняя часть перемещающегося циклона оказывается всегда теплее, чем тыловая, которую сам циклон и охлаждает, ливни, грозы и град сильнее всего именно там. Зона ливней для тайфуна, перемещающегося слева направо, схематически показана на рис. 2, г . Этот рисунок сам по себе интересен, т.к. построен японскими метеорологами по уникальным гидрометеорологическим наблюдениям, сделанным японскими военными моряками в 1935 г., когда одна из эскадр японского флота попала в тайфун и понесла большие потери в людях и кораблях. Более 20 лет эти материалы были военной тайной и ещё долгое время после оставались единственными массовыми наблюдениями за погодой внутри тайфуна.

Опираясь на сказанное, можно представить себе, что случается, когда тайфун выходит на побережье. Для большей наглядности нужно обратиться к рис. 2, в , на котором условно изображена зона затопления волнами. За несколько часов до прихода тайфуна к берегу добегают волны из зоны II, вызывая сгонно-нагонные изменения уровня воды, показанные штриховой линией.

Затем приходят мощные кучевые облака, и начинаются ливни с грозой и градом. Они продолжаются всё время, пока тайфун движется над районом. Передняя зона ливней уже уходит в глубь побережья и вызывает там паводковые волны в текущих к берегу океана реках. Но на смену ей на побережье приходят волны из зоны III, ещё более сильные грозы и ливни как из ведра, которые могут продолжаться, пока тропический циклон не уйдёт, т.е. несколько часов и даже суток. При этом дует очень сильный ветер. В это время по рекам, впадающим в океан в этом районе, проходят паводковые волны. Берег оказывается атакованным водой не только со стороны океана, но и со стороны рек. А если в это время наступает ещё и прилив, то возникают катастрофические наводнения.

Особенно ужасные события происходят, если выход тайфуна приходится на низкий равнинный берег. Такие географические условия характерны для Бангладеш, страны, на 90% представляющей собой болотистую равнину в дельте двух многоводных рек – Ганга и Брахмапутры. Перепады уровня воды в их низовьях только за счёт дождей доходят до 10–12 м. Тропический циклон 1970 г. погубил в Бангладеш более 300 000 человек.

Физика

Тайфун представляет собой самоорганизующуюся структуру в движущемся атмосферном потоке. Физика его очень сложна и далеко ещё не полностью изучена. «На пальцах» можно объяснить только самые основные особенности строения и образования этого вихря. Главное, чтобы в средней части тропосферы образовалась более тёплая, чем обычно, область. Этому особенно благоприятствует конвекция над огромными пятнами воды, имеющими температуру на 1–2 °С выше окружающей. Такие пятна иногда возникают и долго сохраняются в океане.

Поскольку в тёплом воздухе давление с высотой падает более медленно, чем в соседних районах, над тёплым ядром в верхней тропосфере образуется область повышенного давления, а под ним, у поверхности Земли (океана), давление оказывается пониженным. Под влиянием силы градиента давления в верхних слоях начинается отток воздуха от центра к периферии, а это приводит к потере массы воздуха в атмосферном столбе, и, в свою очередь, вызывает ещё большее понижение давления у поверхности под тёплой областью. Так у поверхности океана возникает сила барического градиента, направленная к центру области прогрева.

На вращающейся Земле силу барического градиента стремится уравновесить сила Кориолиса, и под действием этих сил около области пониженного давления возникает криволинейное движение воздуха по концентрическим траекториям, направленное (в Северном полушарии) против часовой стрелки. В таком движении возникает центробежная сила, возрастающая к центру. Баланс этих трёх сил возможен только на определённом расстоянии от центра. На этом расстоянии и формируется зона сильнейших круговых ветров. Более близкие к центру воздушные частицы отбрасываются центробежной силой к этой зоне изнутри. Более далёкие от центра, расположенные там, где центробежные силы меньше, чем сила градиента давления, подталкиваются к зоне сильных ветров.

Поскольку зона равновесия становится областью, куда стремится воздух с обеих сторон, втянутый туда поток начинает подниматься и охлаждаться. Водяной пар, содержащийся в притянутом воздухе, конденсируется и образует кольцо кучево-дождевой облачности и осадков вокруг центра тропического циклона. Так возникает стена облаков, окружающая глаз тайфуна. Скрытая теплота конденсации создаёт дополнительный нагрев, необходимый для дальнейшего понижения давления в нижних слоях тропосферы. В области центра, по краям которой воздух втягивается в стену, возникают компенсационные нисходящие токи, также способствующие дополнительному нагреву и дальнейшему падению давления. Давление по области глаза выравнивается, сила барического градиента уменьшается, и ветер стихает. Так формируется глаз тайфуна.

Воздух, втягиваемый в стену глаза от периферийной части тайфуна, собирает с поверхности океана испаряющуюся воду и приносит её к зонам подъёма, где она отдаёт тепло в процессе подъёма и конденсации. Так возникает почти неисчерпаемый источник энергии тайфуна. После конденсации воздух, поднявшийся в стене, оказывается высоко над центральными областями тайфуна, в области высокого давления. Оттуда он растекается по верхним слоям атмосферы, унося избыточное тепло.

Важнейшие стадии эволюции тайфуна – от начала до максимального развития – показаны на рис. 3: вертикальные разрезы облачности (слева), изобары приземного давления (в средней части) и изобары на высоте верхней части тайфуна (справа). Это очень упрощённое описание можно дополнить, используя многочисленные материалы, помещаемые в интернете, которые несложно найти на русском и особенно на английском языках.

Рис. 3. Развитие тайфуна, начиная от его зарождения (стадия I, верхний ряд рисунков) до максимума (стадия IV, нижний ряд): вертикальные разрезы облачности (левая колонка), изобары приземного давления (средняя колонка), изобары в верхней части циклона (правая колонка)

На уровне, доступном школьникам, трудно сделать хорошие количественные оценки параметров тайфунов. Как показал акад. Г.С.Голицын, даже определение запасов энергии в них требует высочайшей квалификации. Тем не менее некоторые интересные расчёты можно сделать, представив небольшой тайфун в виде вращающегося цилиндра радиусом основания R = 3 10 5 м и высотой h = 12 км. Полезно отметить, что площадь основания такого цилиндра S 0 = 3 10 11 м 2 , а боковой поверхности S b = 3 10 10 м 2 , т.е. он напоминает блин. Эта форма характерна для всех крупномасштабных атмосферных вихрей.

Метеорологи обычно используют в качестве параметра не высоту, а давление (в гектопаскалях), связанное с высотой законом гидростатики р = g h . Произведение средней плотности слоя атмосферы на высоту h представляет собой массу m атмосферного столба площадью сечения 1 м 2 . Давление на нижней границе тайфуна можно принять равным р 0 = 1000 гПа, а на верхней р h = 200 гПа (это соответствует высоте 12 км). Тогда масса единичного столба в тайфуне вычисляется по формуле m = (р 0 – р h )/g и равна примерно 8 10 3 кг/м 2 (не забывайте переводить давление в паскали и округлять результаты до целых единиц!). Теперь можно вычислить массу тайфуна M = S 0 m 2 10 15 кг.

Зная массу, можно вычислить момент инерции тайфуна I по отношению к вертикальной оси симметрии. Для цилиндра I = MR 2 /2 10 25 кг м 2 . По результатам наблюдений за радиусами областей с заданным значением скорости ветра в тайфуне можно оценить угловую скорость вращения воздуха = /R 5 10 –4 c –1 . Это примерно на порядок больше, чем значение вертикальной составляющей вектора угловой скорости вращения Земли в этих широтах 4 10 –5 c –1 . Таким образом, момент количества движения тайфуна I 5 10 21 кг м 2 /c.

Теперь можно оценить кинетическую энергию тайфуна E. Используя формулу для тела вращения, получим E = I 2 /2 10 18 Дж 10 12 кВт ч. Для сравнения полезно привести прогнозируемое значение энергопотребления всего мира в 2025 г.: 25 10 12 кВт ч.

Если принять полученную акад. Г.С.Голицыным оценку характерного времени восстановления запаса кинетической энергии в тайфуне (1 сутки, или 10 5 с), то мощность тайфуна можно принять равной 10 13 Вт. (Для сравнения: мощность одного агрегата Ленинградской АЭС равна 10 9 Вт.)

Можно оценить и источники энергии тайфуна – потоки явного и скрытого тепла от поверхности океана Q s и через боковую поверхность Q b . Первый источник оценим по охлаждению за сутки (T = 2 °C) верхнего слоя океана толщиной h s = 50 м. Учитывая теплоёмкость C в = 4 10 3 Дж кг/град и плотность воды в = 10 3 кг/м 3 , получим Q s = в C в h s T 4 10 8 Дж/м 2 за сутки. Это значит, что у основания выбранный тайфун имеет источник питания мощностью 4000 Вт/м 2 , т.е. получает за сутки примерно 10 20 Вт. Это больше, чем поступает на ту же площадь от Солнца.

Второй источник энергии тайфуна оценим, считая, что через боковую поверхность S b с радиальной скоростью r = sin 12 м/с ( = 50 м/с – скорость ветра, 15° – примерный угол втекания) поступает масса водяного пара. Пусть q – средняя плотность водяного пара в воздухе тайфуна, примерно равная 6 10 –3 кг/м 3 . Тогда поток массы приблизительно равен E b = S b q r 10 9 кг/с. Если этот пар сконденсируется, а дождь равномерно распределится по основанию цилиндра, то скорость выпадения дождя составит E b /(S 0 в) 20 мм/ч (1 мм слоя осадков – это 1 кг воды). Это сильный ливень. При конденсации пара выработается мощность LE b 10 15 Вт (L – скрытая теплота конденсации водяного пара), а за сутки тайфун получит энергию Q b = 10 20 Дж, т.е. примерно столько же, сколько и от поверхности, несмотря на то, что площадь основания значительно больше боковой поверхности. Это потому, что скорость испарения во много раз меньше скорости горизонтального переноса пара в воздухе. Если сравнить поступающую энергию с кинетической, то можно видеть, что КПД тайфуна как тепловой машины низок. Это также характерно для других атмосферных систем, в которых большие потоки энергии рассеяны, а механическая работа по сравнению c ними очень мала.

Можно ли управлять тайфуном? Люди постоянно стремятся направленно воздействовать на опасные явления природы и, в частности, на тропические циклоны. Например, предлагали подрывать их водородными бомбами. Но, даже не говоря об экологической недопустимости, подобные действия в конечном счёте могут быть абсолютно бессмысленными ввиду огромных энергетических запасов тропических циклонов.

Гораздо более интересными являются проекты тонких воздействий. К ним относятся рассеивание облаков, покрытие поверхности океана специальной тонкой биологически разлагающейся плёнкой для сокращения испарения, охлаждение поверхности океана айсбергами. Наконец, существуют проекты облучения эпицентра урагана микроволнами из космоса или рассеивания реагентов в ионосфере ракетами.

Однако, прежде чем приступить к управлению ураганами, необходимо научиться точно прогнозировать их маршрут и определять физические параметры, влияющие на поведение атмосферных вихрей. Пока мы ещё в самом начале пути, но успехи компьютерного моделирования реакции тайфунов на мельчайшие изменения их первоначального состояния оказались весьма обнадёживающими.

Так, Росс Хоффман с коллегами (фирма «Исследования атмосферы и окружающей среды», США) провёл компьютерное моделирование разрушительных ураганов, неистовствовавших в 1992 г. Когда один из них, «Иники», прошёл прямо над гавайским островом Кауаи, погибли несколько человек, был нанесён огромный материальный ущерб, и целые лесные массивы сровнялись с землёй.

Если учесть несовершенство существующих методов прогнозирования, первый эксперимент моделирования имел неожиданный успех. Чтобы изменить путь «Иники», учёные выбрали место, в котором должен был оказаться тайфун через определённое время. Затем составили изменённые данные возможных наблюдений в этом месте (в 100 км западнее острова) и загрузили эту информацию в компьютерную модель. Программа должна была рассчитать мельчайшие изменения основных параметров первоначального состояния урагана, которые модифицировали бы его маршрут нужным образом.

Оказалось, что самые значительные преобразования коснулись первоначальных значений температуры и ветра. Типичные изменения температуры по всей сети координат составили десятые доли градуса, но самые заметные (повышение на 2 °С) оказались в нижнем слое к западу от центра циклона. Согласно расчётам, изменения скорости ветра составили 3,2–4,8 км/ч. В некоторых местах скорость ветра изменилась на 32 км/ч в результате незначительной переориентации направления ветра вблизи центра тайфуна.

Хотя обе компьютерные версии урагана «Иники», первоначальная и с внесёнными возмущениями, казались идентичными по структуре, небольших изменений ключевых переменных было достаточно, чтобы виртуальный ураган развернулся за 6 ч на запад, а потом двинулся прямо на север, оставив остров Кауаи нетронутым. Относительно малые искусственные преобразования начальной стадии тайфуна были обсчитаны с помощью системы нелинейных уравнений, описывающих его деятельность, – через 6 ч ураган «пришёл» в назначенное место.

О тропических циклонах написано очень много. Существует несколько очень хороших научно-популярных книг; есть учебные, демонстрационные сайты в интернете. Желающие могут найти множество сведений, не упомянутых здесь.

Игорь Николаевич Русин – выпускник Ленинградского гидрометеорологического института 1968 г. (диплом с отличием). Занимался вопросами моделирования климата в проблемной лаборатории взаимодействия океана и атмосферы ЛГМИ. В 1974 г. защитил диссертацию на звание к.ф.-м.н. Вёл научно-исследовательскую работу по оценке последствий переброски вод северных рек на юг, читал курсы лекций «Современные методы метеорологических прогнозов», разработал курс «Гидродинамические методы динамических прогнозов». Автор шести учебников и монографий, а также программ, использовавшихся для решения задач прогноза погоды. В 2000 г. защитил диссертацию на соискание степени доктора географических наук. С 2002 г. – профессор по кафедре климатологии и мониторинга окружающей среды СПбГУ, читает курсы «Метеорология и климатология», «Динамическая метеорология», «Стихийные бедствия и природные катастрофы». Ученое звание – профессор по кафедре климатологии и мониторинга окружающей среды. Ведёт активную научную работу в областях динамической метеорологии и климатологии, связанных с исследованием горных районов и опасных явлений природы. В семье профессора три дочери и четыре внука. Хобби – на фото.

Циклоны средних широт, тропические циклоны

(ураганы, тайфуны)

Тропические циклоны (тайфуны) отличаются от среднеширотных меньшими размерами, меньшим давлением в центре, большим запасом влаги, более сильными ветрами. Циклоны тропические образуются, как правило, над теплыми тропическими океанами (в обе стороны от экватора), а среднеширотные – также и на континентальной части планеты. Время существования циклонов средних широт составляет 3–4 недели, а диаметр их достигает порядка 1 тыс. км (максимум 4 тыс. км), скорость 30–40 км/ч.

Таблица 13

Классификация (шкала) скорости ветров

Баллы Скорость ветра Характеристика ветра (название ветрового режима) Признаки
м/с км/ч
Штиль (полное затишье) Дым идет прямо
0,9 3,24 Тихий Дым изгибается
2,4 8,64 Легкий Листья шевелятся
4,4 15,84 Слабый Листья двигаются
6,7 24,12 Умеренный Листья и пыль летят
9,3 33,48 Свежий Тонкие деревья качаются
12,3 43,30 Сильный Качаются толстые ветки
15,5 55,80 Крепкий Тоже
19,1 68,80 Буря Стволы деревь­ев изгибаются
22,9 79,41 Шторм, буря Ветви ломаются
26,4 95,00 Сильный шторм Черепица и трубы срываются
30,5 110,00 Жестокий шторм Деревья вырываются с корнем
34,8 122,00 Ураган Везде повреждения
39,2 145,00 Сильный ураган Большие разрушения
43,8 158,00 Тоже Тоже
48,6 175,00 Жестокий ураган - » -
53,6 193,00 Тоже - » -
>58 >200 - » - -» -

Ураган – ветер большой разрушительной силы и значительной продолжительности, чаще зарождается в Атлантическом океане. Это атмосферные вихри боль­ших размеров со скоростью ветра до 160 км/ч, а в приземном слое до 200 км/ч. Ежесекундно выделя­ется энергия, эквивалентная взрыву пяти атомных бомб хи­росимского типа. Скорость ветра является важной характеристикой урагана, которая для удобства выражается в баллах (табл.13). Ураганы бывают слабые (со скоростью ветра до 145 км/ч), сильные (до 200 км/ч) и экстремальные (свыше 200 км/ч). Радиус ветров ураганной силы достигает 300 км, при этом образуется пояс в 300 тыс. км 2 , в котором действуют разрушительные силы урагана при его продвижении вперед. Как правило, ураган зарождается в том случае, если, воздух в каком-то месте сильно прогревается, становится легче обычного и поэтому поднимется вверх. На его место устремляется более холодный воздух. Восходящие потоки приводят к конденсации значительных масс водяного пара, при этом вновь выделяется энергия, температура еще поднимается и т.д. А в центре урагана формируется относительно спокойная область, ее называют «глаз тайфуна ». В центре тайфуна (циклон в Тихом океане) небо чаще всего ясное, в то время как вокруг ревет и свищет ураганный ветер. Сюда, в область низкого давления, со всех сторон несутся волны. Многие исследователи пытались проникнуть в глаз тайфуна. И для большинства из смельчаков экспедиция закончилась трагически. В 1959 году впервые француз Пьер-Андре Молэн достиг глаза тайфуна «Вера». С тех пор он стал «охотником за тайфунами» – исследователем законов возникновения, развития и гибели тайфунов.

Ураганы – явление сезонное, как правило, они возникают с июля по сентябрь. Над океаном зарождается много сотен циклонов, но развивается в ураган только один из десяти (10 %). Одна из причин этого – недостаточный прогрев воздуха над океаном: требуемая температура поверхности воды должна составлять не менее 27 °С. Еже­годно возникает в среднем около 50 тропических циклонов, достигающих ураганной силы, в том числе около 20 – в запад­ной части Тихого океана с движением к восточным берегам Азии, вплоть до Камчатки, 14 – в Индийском океане с дви­жением к южным берегам Азии и восточным берегам Аф­рики, 7–8 – в Атлантике с движением к берегам Централь­ной Америки и США, вплоть до полуострова Лабрадор, 6 – в восточной части Тихого океана с движением к западным берегам США, остальные – восточнее Австралии с движе­нием к этому континенту и к Новой Зеландии. От года к году число тропических циклонов, зарождающихся в каждом районе, колеблется в пределах 50 %, среднее – в пределах 30 % повторяются приблизительно с 11-летней ритмичностью.

В США все виды чрезвычайных ситуаций, связанных с урагана­ми, занимают первое место среди других причин чрезвычайных ситуаций по среднему многолетнему числу жертв и третье место (после наводнений и морозов) по величине прямого экономичес­кого ущерба (вставка 11). Наиболее опасны циклоны в зимнее время, когда они сопровож­даются большими снегопадами. Продолжительность штормовых и ураганных ветров над некоторой точкой побережья – от немногих часов до 4 суток.

Территории России разрушительные циклоны Атлантики дос­тигают относительно редко. Наиболее сильное воздействие за­падных циклонов проявляется в обильных осадках, ливневых на­воднениях, буранах, снегозаносах и ощущается преимущественно в европейской части страны. В России ураганы распространены на Дальнем Востоке, в Калининградской области и в северо-западных областях страны. На Камчатке, Сахалине, Курильских островах, в Приморье сильные тайфуны (зарождаются в Тихом океане) бывают раз в несколько лет, слабые – до 2–4 раз в год. Рекордная скорость ветра во Владивостоке – 65 м/с, довольно частая – более 40 м/с.

Основными разрушительны­ми факторами урагана являются высокая скорость ветра, скоростной напор воздушного потока, его сила и продолжи­тельность.

Вставка 11

Описание встречи с ураганом Колумба в 1492 году . «Никогда не видел моря столь вздыбленным, столь ужасным, настолько покрытым пеной. Поверхность моря казалась кипящей, словно вода в котле на большом огне. Ужас вселяла в нас эта буря, вода казалась багрово-красной, кровавой. Небо и море пылали, словно вокруг был ад, огненные искры раскалывали все небо. Люди были настолько изнурены, что предпочитали смерть. Корабли теряли шлюпки, якоря, управление…».

Одним из наиболее трагических, зафиксированных в XX столе­тии считается циклон, развившийся среди ночи 12 ноября 1970 го­да в Бангладеш. От 30 до 50 тыс. человек были убиты совме­стными усилиями воды и ветра. Ветры промчались со скоростью 240 км/час. Циклонический ветер гнал приливную волну высотой 6 м, гребни волн местами достигали 50 м, залито водой более 2/3 площади стра­ны.



Число разру­шенных жилищ достигает десятков тысяч в Бангладеш, Ин­дии, Китае, Индонезии, на Филиппинах. В июне 1991 г. в Бангладеш бездомной осталась почти 1/10 часть населения страны. Разовый прямой экономический ущерб в этих стра­нах – более 100 млн долл. (1,5 млрд долл. в июне 1991 г. в Бангладеш).

Таким образом, поражающие факторы ураганасильные ветры, штормовые нагоны, морские волны, ливни (табл. 32).

Таблица 32

Поражающие факторы урагана

Скорость ветра урагана, несущего большие массы воды, грязи и песка может достигнуть 400 км/час (табл. 31). Они разрушают здания, приводят к гибели людей, переносят по воздуху тяжелые предметы. Ве­лика разрушительная сила от ударов предметов, уносимых ураганным ветром. Ураганы сопровождаются сильными затяжными дождями, выпадает до

2500 мм осадков, поэтому любая территория может оказаться затопленной. К наводнению приводят штормовые нагоны, которые могут на несколько метров поднять уровень океана у берегов. Нагоны могут держаться от 6 часов до нескольких дней и затапливать участки шириной до 30 км. Разрушения и человеческие жертвы, свя­заны также со штормовыми волнами, обрушивающимися на прибрежные участки суши. Штормы и ураганы в Западной Европе (Франция, Англия, Гол­ландия, ФРГ и др.) срывают крыши, валят деревья, разбивают ав­томашины и автобусы, рвут ЛЭП, оставляя без электричества до сотен тысяч человек. На величину ущерба оказывают большое влияние огромные массы приливных вод на морском побережье и про­должительные ливневые дожди, вызывающие обширные на­воднения.

Силу урагана определяют совместное действие ветра и воды. Наибольшую силу имеют тропические ураганы, у которых наблюдается небольшой диаметр воронки и наибольшие скорости ветра. Циклоны средних широт (распространены в Европе), характеризуются большим диаметром «глаза», меньшей скоростью ветров и большей повторяемостью. Разрушительная сила у них значительно меньше. Но количество осадков весьма значительно, и наводнение занимает обширные территории (до сотен км 2). Сила урагана определяется перепадом давления вокруг глаза и в центре глаза: часто оно уменьшается с 996 до 948 мбар. Установлено, что перепад давления менее чем на 50 мм рт. ст. значительно снижает силу давления (на 2 млн. т), оказываемое атмосферой на одну квадратную милю (2.6 км 2).

Ураганы занимают второе место в мире после навод­нений по числу чрезвы­чайных ситуаций и величине экономического ущерба.

7.2. Шквальные бури и смерчи (торнадо)

Штормовые ветры – наиболее распространённое природное стихийное бедствие. Шквальные бури (штормы смерчи (торнадо ) – это вихри, возникающие в теплое время года на мощных атмосферных фронтах, но иногда и при особо интенсивной местной цирку­ляции. Наименьшая по размерам и наибольшая по скорости вращения форма вихревого вращения воздуха называется смерч (в Америке – торнадо ). Смерчи могут сформироваться над сушей и над поверхностью воды.

Шквалы – горизонтальные вихри под краем наступаю­щей полосы мощных кучево-дождевых облаков. Ширина шквала отвечает ширине атмосферного фронта и достигает сотен километров. Скорость движения воздуха в вихре скла­дывается со скоростью движения фронта и местами бывает ураганной (до 60–80 м/с). Их ширина – несколько километров, редко до 50 км, длина пути 20–200 км, длительность в каждой точке пути – от нескольких до 30 минут. Они сопро­вождаются мощными ливнями и грозами. Шквалы и мест­ные шквальные бури характерны для всех территорий, охва­тываемых циклонической деятельностью. Например, в России (Нижегородская область) сезон шквальных бурь определён в апреле – сентябре, максимальная повторяемость (более одного дня из пяти) – с 26 мая по 10 июня; число дней за сезон со шквалами больше 15 м/с – 18,1; 20 м/с –9,3; 25 м/с –2,4; более 30 м/с – 0,8 дня.

Смерч (торнадо ) – это восходящий вихрь, состоящий из чрез­вычайно быстро вращающегося воздуха, а также частиц влаги, песка, пыли и других взвесей. Он представляет собой быстро вращающуюся воронку, свисающую из кучево-дождевого облака и ниспадающую, как воронкообразное облако. Чаще всего смерч хорошо виден со стороны. Среднее время существования смерча – 10–30 мин. Смерч – это наимень­шая по размерам (в по­перечнике от нескольких метров до нескольких сотен мет­ров) и наибольшая по скорости вращения (до 200 м/с) фор­ма вихревого движения воздуха. Кроме этого, существует резкий перепад давления на расстоянии в несколько метров. Удар вращающей­ся стенки (давление – до десятков тонн на 1 м 2) способен разрушить капитальные строения. Перепад давления вызы­вает «взрывы» зданий, к которым прикасается смерч.

Начальные условия для образования смерча – мощное грозовое облако и обильные осадки из него – обычно дости­гаются при комбинировании тепловой конвекции и подня­тии теплого воздуха подтекающим под него клином холод­ного. Поэтому 90 % смерчей связаны с холодными фронта­ми, остальные – с экстремально сильной внутримассовой конвекцией.

Смерчи образуются во многих областях земного шара, как над водной поверхностью, так и над сушей, возникая чаще всего вдоль фронта встречи двух воздушных течений: тепло­го и холодного (на Русской равнине, Черном море, Центрально-Черноземном районе, Молдавии, Белоруссии, Прибалтики и т.д.). Анализируя случаи возникновения смерчей, можно сде­лать вывод о том, что наиболее благоприятны для образова­ния смерчевых облаков обширные равнины, над которыми происходит встреча теплых и холодных воздушных течений.

Торнадо (смерч в Северной Америке) – мощные сконцентрированные спиральные вихри с вертикальной осью вращения, порождаемые грозовыми облаками высотой до 12–15 км. Из них начинается выпадение дождя и града в кольце вокруг восходящей вертикальной струи. В некото­рый момент завеса дождя закручивается в спираль в форме цилиндра или конуса, касающегося земли. Смерч достигает земли и движется по ней, принося большие разрушения. Вос­ходящий поток воздуха (скорость до 70–90 м/с) способен поднять и перенести на значительные расстояния частицы почвы, а также людей, животных, автомашины, крупнейшие деревья и т. д., «бомбардировка» поднятыми смерчем пред­метами опасна. Большая разность дав­ления между периферией и внутренней частью воронки в свя­зи с возникновением огромной центробежной силы вызывает эффект мощного всасывания всего, что находится на пути смерча способны приподнимать железнодорожные вагоны массой до 13 т).

Смерчи (торнадо) – вид чрезвычайных ситуа­ций в США. Здесь ежегодно отмечается от 450 до 1500 торнадо (в Канаде в среднем 30 за год). Из них 1/3 – на «аллее торнадо», протянувшейся от Техаса к северу через Оклахому и Канзас. Здесь они возможны круглый год, в основном в марте – августе (в январе отмечается в среднем около 10 смерчей, в мае – 150–200) (вставка 12).

Вставка 12

Самый мощный из американских торнадо – Ирвингский. Он, проходя по территории США, скрутил в аккуратный сверток железнодорожный мост длиной 75 метров и весом 115 тонн и утопил его в реке.

Рассказ очевидца : «В тот страшный день 3 апреля 1973 года телетайпы отстучали сообщение: сообщаем о прохождении торнадо недалеко от Ирвингтона (США). Самый страшный смерч, описав дугу, ринулся на город. Приближалась черная воронкообразная туча, послышался грохот, напоминающий шум поезда. Торнадо разметал половину жилых домов, давя как виноград автомобили. Пройдя по территории завода, торнадо скрутил в узлы заводские трубы. А затем был вечер – холодный и дождливый. По кучам развалин бродили бездомные люди. Выли собаки. В отупении сидели старики, разом потерявшие все, ради чего трудились всю жизнь. Они не хотели ни есть, ни спать. Они не хотели начинать всё с начала».

Летом 1948 года смерч под Тулой (Россия) перенес на 200 метров деталь весом в 500 кг. В Ростове в 1927 г. смерч сбросил с ж/д груженые вагоны. «Наши смерчи» поражают своими странностями: налетая на поселок, смерч разрушает дом, но переносит на новое место буфет, не разбив не одной чашки. Подняв высоко обезумевших от страха людей, он может бережно опустить их где-нибудь на землю. При прохождении смерча взрываются самые невероятные предметы: консервные банки, автомобильные камеры. Пролетев однажды над птичником, но оставил после себя живых, но полностью ощипанных кур. В 1904 году смерч пронесся над Москвой. Коровы при этом летали по воздуху. На Немецком рынке в центр смерча попал городовой, он вознесся в небо и затем, избитый градом и совсем раздетый, был опущен на землю. Московский смерч прошел полосой 40 км длиной и шириной 400 м. Уже в двух шагах от границы смерча все стояло нетронутым.

Буря – длительный, очень сильный ветер со скоростью более 20 м/с, наблюдающийся при прохождении циклона и сопровождающийся сильным волнением на море и разрушениями на суше. Бури разновидность ураганов и штормов. Длительность действия – от нескольких часов до нескольких суток. В табл. 14 приведена классификация бурь по следующим классификационным признакам: а) в зависимости от времени года и состава вовлеченных в воздух частиц; б) по цвету и составу пыли; в) по происхождению, по времени действия; в) по температуре и влажности.

Таблица 14

Классификация бурь

Классификационные признаки Вид бури
В зависимости от времени года и состава вовлеченных в воздух частиц – пыльные; – беспыльные; – снежные (пурга, буран, метель); – шквальные
По цвету и составу пыли – черные (чернозем); – бурые, желтые (суглинки, супеси); – красные (суглинки с окислами железа); – белые (соли)
По происхождению – местные; – транзитные; – смешанные
По времени действия – кратковременные (минуты) с небольшим ухудшением видимости; – кратковременные (минуты) с сильным ухудшением видимости; – длительные (часы) с сильным ухудшением видимости
По температуре и влажности – горячие; – холодные; – сухие; – влажные

Разрушительное воздействие шквалов определяется скоростью ветра, а также грозами и ливневыми наводне­ниями.

Таблица 15

Поражающие факторы смерчей

На европейской части России одним шквалом могут быть повреждены посевы на площади до нескольких десят­ков тысяч гектаров, десятки домов и хозяйственных постро­ек и т. д. Поражающие факторы смерчей разделены на две группы: первичные и вторичные и приведены в табл. 15.

Поражающие факторы бурь приведены в табл. 16.

Таблица 16

Поражающие факторы бурь в зависимости от вида бури

Вид бури Первичные Вторичные
Шторм – высокая скорость ветра; – сильное волнение вод моря или океана – разрушение зданий и сооружений; – разрушение, размыв побережья
Пыльная буря (суховей) – высокая скорость ветра; – высокая температура воздуха при крайне низкой относительной влажности; – потеря видимости, пыль. – разрушение строений; – иссушение почв, гибель с/х растений; – вынос плодородного слоя почвы (дефляция, эрозия); – потеря для человека ориентации в пространстве
Снежная буря (буран, пурга, метель) – высокая скорость ветра; – низкая температура; – потеря видимости, снег. – разрушение объектов; – переохлаждение; – обморожение; – потеря для человека ориентации в пространстве
Шквал – высокая скорость ветра (в течение 10 мин. скорость ветра возрастает с 3 до 30 м/с) – разрушение строений; – бурелом в лесу

Содержание статьи

АТМОСФЕРЫ ЦИРКУЛЯЦИЯ. Основными факторами, влияющими на формирование климата Земли, является солнечная радиация, циркуляция атмосферы и характер подстилающей поверхности. При их совместном влиянии формируется климат в различных районах земного шара. Количество поступающего солнечного тепла зависит от ряда факторов. Определяющим является угол падения солнечных лучей. Поэтому на низких географических широтах поступает значительно больше солнечной энергии, чем на средних и тем более высоких широтах.

Общей циркуляцией атмосферы называют замкнутые течения воздушных масс в масштабах полушария или всего земного шара, приводящие к широтному и меридиональному переносу вещества и энергии в атмосфере. Главной причиной возникновения воздушных течений в атмосфере служит неравномерное распределение тепла на поверхности Земли, что приводит к неодинаковому нагреванию почвы и воздуха в различных поясах земного шара. Таким образом, солнечная энергия является первопричиной всех движений в воздушной оболочке Земли. Кроме притока солнечной энергии к важнейшим факторам, вызывающим возникновение ветра, относятся также вращение Земли вокруг своей оси, неоднородность подстилающей поверхности и трение воздуха о почву. В земной атмосфере наблюдаются воздушные движения самых различных масштабов – от десятков и сотен метров (местные ветры) до сотен и тысяч километров (циклоны, антициклоны, муссоны, пассаты, планетарные фронтальные зоны). Простейшая схема глобальной циркуляции атмосферы была составлена более 200 лет назад. Ее основные положения не потеряли своего значения и до сих пор.

Современные принципы классификации форм атмосферной циркуляции северного полушария Вангенгейма – Гирса. Воздушные массы постоянно перемещаются вокруг земного шара. На скорость их движения влияет неравномерность поступления солнечной радиации и поглощение ее различными участками подстилающей поверхности и атмосферы, вращение Земли, термическое и динамическое взаимодействие атмосферы с подстилающей поверхностью, в том числе и взаимодействие с океаном.

Основной причиной атмосферных движений является неоднородность нагревания различных участков поверхности Земли и атмосферы. Подъем теплого и опускание холодного воздуха на вращающейся Земле сопровождается формированием циркуляционных систем различного масштаба. Совокупность крупномасштабных атмосферных движений получила название общей циркуляции атмосферы.

Атмосфера получает тепло путем поглощения солнечной радиации, за счет конденсации водяного пара и благодаря теплообмену с подстилающей поверхностью. Поступление скрытой теплоты в атмосферу зависит от подъема влажного воздуха. Так тропическая зона Тихого океана является мощным источником тепла и влаги для атмосферы. Значительная теплопередача от поверхности океана происходит зимой там, где холодные воздушные массы приходят в районы теплых морских течений.

Одним из наиболее крупномасштабных звеньев общей циркуляции атмосферы является циркумполярный вихрь. Его формирование обусловлено очагами холода в полярной области и очагами тепла в тропической зоне. Циркумполярное движение и его проявление – западный перенос – являются устойчивой и характерной особенностью общей атмосферной циркуляции. В 1930-е были начаты обстоятельные исследования общей циркуляции атмосферы путем деления всех синоптических процессов на элементарные (ЭСП) и обобщение их в трех формах циркуляции: западной (W), восточной (Е) и меридиональной (С). Процессы западной формы (W) характеризуются развитием зональных составляющих циркуляции и быстрым смещением с запада на восток барических образований. При развитии меридиональных форм циркуляции, когда формируются стационарные волны большой амплитуды, наблюдаются процессы формы Е и С. Распределение воздушных течений на земном шаре тесно связано с распределением давления, температуры и характером циклонической деятельности. Следовательно, в распределении ветра у Земли должна быть определенная зональность. Но фактические направления ветров зимой и летом отличаются от реальных ветров в зональной схеме. Наиболее четкую зональность имеют ветры в приэкваториальной зоне. В северном полушарии зимой и летом преобладают ветры северо-восточного направления, а в южном – ветры юго-восточного направления – пассаты. Яснее всего пассаты выражены над Тихим океаном. Над материками и вблизи них пассаты нарушаются другой системой течений – муссонами, которые возникают из-за циклонической деятельности, связанной с большим перепадом температуры между морем и сушей. Зимой муссон направлен с континента на океан, а летом – с океана на континент. Муссонный перенос воздушных масс представлен в прибрежных районах Восточной Азии и, в частности, в Приморье. Воздушные массы перемещаются как у поверхности Земли, так и на больших высотах от Земли и не только в горизонтальном направлении, но и в вертикальном. Несмотря на то, что вертикальные скорости движения воздуха малы, они играют важную роль в обмене воздуха по вертикали, образовании облаков, осадков и других погодных явлений. Есть и другие особенности в распределении вертикальных движений. Анализ синоптических карт показал, что температурные контрасты полюс – экватор неравномерно распределены по широте. Наблюдается сравнительно узкая зона, где сконцентрирована значительная часть энергии атмосферной циркуляции. Здесь отмечаются максимальные значения барических градиентов, а следовательно, и скоростей ветра. Для таких областей было введено понятие высотной фронтальной зоны (ВФЗ), а связанные с ней сильные западные ветры стали называть струйными течениями или струями. Обычно скорость ветра вдоль оси струи превышает 30 м/с, вертикальный градиент скорости ветра превышает 5 м/с на 1 км, а горизонтальный градиент скорости достигает 10 м/с и более на 100 км. ВФЗ занимает большие географические пространства: ширина ее 800–1000 км, высота 12–15 км и длина 5–10 тыс. км. ВФЗ включает в себя обычно один или несколько фронтов и является местом возникновения подвижных фронтальных циклонов и антициклонов, перемещающихся по направлению основного (ведущего) потока. В периоды сильного развития меридиональности процессов ВФЗ как бы «извивается», огибая высотные гребни с севера и ложбины с юга.

Общая циркуляция атмосферы представляет собой систему крупномасштабных воздушных течений над земным шаром. Эта система доступна изучению с помощью ежедневных синоптических карт, а также находит отображение на средних многолетних картах для земной поверхности и тропосферы.

Воздушные течения.

С планетарным распределением давления связана сложная система воздушных течений. Некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору, и муссоны в средних широтах преобладают воздушные течения западного направления (с Запада на Восток), в которых возникают крупные вихри – циклоны и антициклоны, обычно простирающиеся на сотни и тысячи километров. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т.н. тропические циклоны). В верхней тропосфере и нижней стратосфере часто возникают сравнительно узкие (в сотни километров шириной) струйные течения, с резко очерченными границами, в пределах которых ветер достигает больших скоростей до 100–150 м/с.

Пассаты

(немецкий, единственное число Passat, вероятно, от испанского viento de pasade) – ветер, благоприятствующий переезду), устойчивые на протяжении года воздушные течения в тропических широтах над океанами. В Северном полушарии направление пассатов преимущественно северо-восточное, в Южном – юго-восточное. Между пассатами Северного и Южного полушарий – внутритропическая зона конвергенции; над пассатами в противоположном им направлении дуют антипассаты.

Муссоны

– система воздушных течений, в которой в одном сезоне преобладают ветры одного направления, а в другом – прямо противоположного или близкого к нему. Слово муссон происходит от арабского маусим, что значит сезон. В течение многих столетий арабские моряки называли этим словом систему ветров над Аравийским морем и Бенгальским заливом. В летние месяцы там дуют ветры с юго-запада, а в зимние – с северо-востока. О муссонах жители Ближнего Востока и Индии знали очень давно. Еще в 4–3 вв. до н.э. индийские и персидские мореплаватели использовали закономерности смены ветров при плавании в Аравийском море. В 1 и 2 вв. н.э. сложился великий муссонный путь от берегов Индии в Южно-Китайское море и Китай. Индийские, малайские и китайские мореплаватели летом вели по нему свои парусные суда на восток, а зимой на – запад. Внимание, которое в течение столетий в разных частях мира уделяется муссонам, связано не только с сезонной сменой преобладающих ветров, но и с закономерностями выпадения дождей в период муссона. Отсутствие муссонных дождей приводит к засухам, потере урожая, обмелению рек. В то же время слишком интенсивный муссон с бурными, продолжительными ливнями вызывает наводнения. Специфические признаки муссона – его устойчивость в течение сезона и смена от одного полугодия к другому, т.е. именно его сезонность. Причины муссонных ветров и смена их направления по сезонам связаны с годовым ходом Солнца и приходом солнечного излучения на земную поверхность.

Муссоны распространены в тропиках на огромных территориях от Западной Африки до Юго-Восточной Азии и Индонезии. Муссонная составляющая общей циркуляции атмосферы оказывает существенное влияние и на формирование климата восточных районов азиатского побережья России. Наиболее четко такой муссонный перенос и смена материкового и морского влияния выражены на юге Дальнего Востока и особенно в Приморском крае. В этих широтах муссон можно разделить на две фазы – зимнюю и летнюю: Азия «выдыхает» воздух зимой и «вдыхает» летом. Зимой наиболее ярко проявляется влияние континента. По мере остывания Евразийского материка над ним все чаще формируются области высокого атмосферного давления. Преобладание таких областей ведет к тому, что на картах атмосферного давления при осреднении за зимние месяцы здесь прослеживается огромная область высокого давления, названная сибирским или азиатским антициклоном. В это время здесь формируется мощный северо-западный поток континентального воздуха, с вертикальной мощностью до 4 км – зимний муссон. Летом муссонный перенос в данных широтах обычно возникает вследствие взаимодействия дальневосточной депрессии (области пониженного давления, формирующейся главным образом в бассейне Амура) и областями повышенного давления над окраинными морями (Японским и Охотским) и северо-западной частью Тихого океана. Максимум циклонической деятельности в южных районах Дальнего Востока приходится на лето и весну, минимум – на зиму и осень. Прогрев материка в летний период, меридиональное расположение горных хребтов, в частности, Сихоте-Алиня, образование антициклонов над окраинными морями приводит к тому, что циклоны, смещающиеся с западных районов, замедляют здесь свое движение, блокируются. Эти причины способствуют формированию летней дальневосточной депрессии. Основной особенностью климата южной части российского Дальнего Востока является выпадение осадков преимущественно в теплое время года: с июня по сентябрь выпадает более 60% их годового количества, причем характерной особенностью муссонного климата является то, что в самый дождливый месяц года выпадает осадков почти в 50 раз больше, чем в самый сухой. В континентальном климате это соотношение едва достигает четырех.

Циклон

(от греческого kyklon – кружащийся) – область пониженного давления в атмосфере с минимумом в центре. Поперечник циклона – несколько тысяч километров. Характеризуется системой ветров, дующих против часовой стрелки в Северном полушарии и по часовой – в Южном. Погода при циклонах преобладает пасмурная с сильными ветрами. Это связано с особенностями распределения давления и характером циркуляции воздуха.

Под влиянием трения в нижних слоях атмосферы в циклоне наблюдается, помимо кругового движения воздуха, еще и движение от периферии к центру, и поэтому возникает постоянное вертикальное, восходящее, движение воздуха и его охлаждение по мере подъема. Воздух, охлаждаясь, становится влагонасыщенным, в нем образуются облака, дающие осадки. В циклонах, особенно вблизи их центров, всегда велика разность давления между центром и периферией (т.е. велики так называемые горизонтальные градиенты давления) и, следовательно, постоянно наблюдаются сильные порывистые ветры (вихри). По своему происхождению вихри разделяются на две основные группы: тропические (ураганы, тайфуны) и циклоны умеренных широт.

Тропические циклоны.

Родина тропических вихрей – океанские просторы в приэкваториальной области примерно между 10–15° северной и южной широт, их диаметр – несколько сотен километров, а высота – от 5 до 15 км. Тропические циклоны могут возникать в любое время года в тропических частях всех океанов, за исключением юго-восточной части Тихого океана и южной части Атлантики. Наиболее часто (в 87% случаев) тропические циклоны возникают между широтами 5° и 20°. В более высоких широтах они возникают лишь в 13% случаев. Никогда не отмечалось возникновение циклонов севернее 35° северной широты и южнее 22° южной широты. Тропические циклоны, достигшие значительной интенсивности, в каждом районе имеют свое название. В восточной части Тихого океана и в Атлантике их называют ураганами (от испанского слова «уракан» или английского «харикейн»), в странах полуострова Индостан – циклонами или штормами, на Дальнем Востоке – тайфунами (от китайского слова «тай», что означает сильный ветер). Есть и менее распространенные местные названия: «вилли-вилли» – в Австралии, «вилли-вау» – в Океании и «багио» – на Филиппинах. Тайфунам Тихого океана и ураганам Атлантики присваивают имена согласно установленным спискам. Для тайфунов используются четыре списка имен, для ураганов установлен один. Каждому тайфуну или урагану, образовавшемуся в данном календарном году, кроме имени присваивается порядковый номер двухзначная цифра года: например, 0115, что означает пятнадцатый по счету номер тайфуна в 2001.

Чаще всего они образуются в северной части тропической зоны Тихого океана: здесь, в среднем, за год прослеживается около 30 циклонов. В умеренные широты тропические циклоны выходят в период с конца июня по начало октября, а наиболее активны в августе-октябре. Отличительной особенностью циклонов этой группы является то, что они термически однородны (т.е. нет температурных контрастов между различными частями вихря), в них сосредоточено колоссальное количество энергии, они приносят с собой штормовые ветры и сильные осадки.

Тропические циклоны образуются там, где наблюдается высокая температура поверхности воды (выше 26°), а разность температур вода-воздух более 2°. Это приводит к усилению испарения, увеличению запасов влаги в воздухе, что, в известной степени, определяет накопление тепловой энергии в атмосфере и способствует вертикальному подъему воздуха. Появляющаяся мощная тяга увлекает все новые и новые объемы воздуха, нагревшиеся и увлажнившиеся над водной поверхностью. Вращение Земли придает подъему воздуха вихревое движение, и вихрь становится подобным гигантскому волчку, энергия которого грандиозна. Центральную часть воронки называют «глазом бури». Это феноменальное явление, которое поражает особенностями своего «поведения». Когда глаз бури хорошо выражен, на его границе осадки внезапно прекращаются, небо проясняется, а ветер значительно ослабевает, иногда до штиля. Форма глаза бури может быть самой разной, она постоянно меняется. Иногда встречается даже двойной глаз. Средний диаметр глаза бури в хорошо развитых циклонах равен 10–25 км, а в разрушительных он составляет 60–70 км.

Тропические циклоны в зависимости от их интенсивности:

1. Тропическое возмущение – скорости ветра небольшие (менее 17 м/с).

2. Тропическая депрессия – скорость ветра достигает 17–20 м/с.

3. Тропический шторм – скорость ветра до 38 м/с.

4. Тайфун (ураган) – скорость ветра превышает 39 м/с.

В жизненном цикле тропического циклона выделяют четыре стадии:

1. Стадия формирования. Начинается с появления первой замкнутой изобары (изобара – линия равного давления). Давление в центре циклона опускается до 990 гПа. Лишь около 10% тропических депрессий получает дальнейшее развитие.

2. Стадия молодого циклона или стадия развития. Циклон начинает быстро углубляться, т.е. отмечается интенсивное падение давления. Ветры ураганной силы образуют вокруг центра кольцо радиусом 40–50 км.

3. Стадия зрелости. Падение давления в центре циклона и увеличение скорости ветра постепенно прекращаются. Область штормовых ветров и интенсивных ливней увеличивается в размерах. Диаметр тропических циклонов в стадии развития и в зрелой стадии может колебаться от 60–70 км до 1000 км.

4. Стадия затухания. Начало заполнения циклона роста давления в его центре). Затухание происходит при перемещении тропического циклона в зону более низких температур поверхности воды или при переходе на сушу. Это связано с уменьшением притока энергии (тепла и влаги) с поверхности океана, а при выходе на сушу еще и с увеличением трения о подстилающую поверхность.

Двигаясь в сторону умеренных широт, тропические циклоны постепенно теряют свою силу и затухают.


Тайфуны.

К числу наиболее мощных и разрушительных тропических циклонов относятся тайфуны, они возникают над океаном к северо-востоку от Филиппин. Средняя продолжительность существования тайфуна составляет 11 дней, а максимальная – 18 дней. Минимальное давление, наблюдавшееся в таких тропических циклонах, колеблется в широких пределах: от 885 до 980 гПа. Максимальные суточные суммы осадков достигают 400 мм, а скорость ветра – 20–35 м/с. Основной сезон выхода тайфунов в умеренные широты с июля по сентябрь.

Торнадо.

Сильные штормы на Земле могут вызвать появление необычных, небольших по размерам, но неистовых облаков. Торнадо кружатся со скоростью сотен километров в секунду, а когда они достигают поверхности Земли, сметают практически все на своем пути вдоль длинной и узкой полосы следования. Как правило, торнадо длятся не более нескольких минут, но самые сильные и опасные из них могут продолжаться часами.

Циклоны умеренных широт.

Циклоны умеренных широт менее опасны, они возникают преимущественно в зонах атмосферных фронтов, где встречаются две различные воздушные массы. В северном полушарии самые обширные циклоны обычно наблюдаются над акваториями Атлантического и Тихого океанов. Повторяемость их зависит от времени года и географического района. В среднем, в северном полушарии циклоны над европейской частью континента более часты зимой, над Азиатской – летом. Циклоны имеют диаметр порядка 2–3 тыс. км и более.

Погода в циклоне внетропических широт неоднородна: различают переднюю и тыловую части циклона, левую и правую – по отношению к направлению его движения. В передней части циклона преобладают сплошная слоистообразная облачность теплого фронта, обложные осадки с ветрами южной четверти горизонта. В тылу циклона, за холодным фронтом, погода отличается неустойчивостью, с выпадением осадков ливневого типа, порывистым ветром северо-западной и северной четвертей; облачность может быть с разрывами и даже с кратковременными прояснениями, а летом – конвективного типа. Левая (чаще всего северная) часть циклона характеризуется условиями погоды, которые можно назвать промежуточными между передней и тыловой частями циклона; преобладают ветры восточной и северо-восточной четверти, облака сплошные, осадки обложные, выпадающие с перерывами и постепенно переходящие в кратковременные ливневого типа. Правая южная часть циклона некоторый период его жизни является «теплым сектором» – она заполнена теплой воздушной массой, которая со временем вытесняется наверх. Здесь, в зависимости от сезона и типа воздушной массы, погода может быть разнообразной, но преимущественно без существенных осадков, с туманами или низкой тонкой слоистой облачностью, нередко безоблачная и всегда теплая, с ветрами южной и юго-западной четверти.

Антициклон

– область повышенного давления в атмосфере с максимумом в центре (на уровне моря 1050–1070 гПа). Поперечник антициклона – порядка тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном, малооблачной и сухой погодой и слабыми ветрами.

В зависимости от географического района зарождения различают внетропические и субтропические антициклоны. Возникновение и развитие антициклонов тесно связано с развитием циклонов, практически это единый процесс. В одном районе создается дефицит массы, а в соседнем – избыток. Антициклоны занимают площади, сравнимые с размером материков, над которыми они лучше развиваются зимой,а над океанами – летом. В среднем, повторяемость антициклонов в 2,5–3 раза меньше, чем циклонов.

Годовой ход выражен довольно слабо, но подвижных антициклонов над континентами немного больше, чем над океанами. Есть районы, в которых антициклоны чаще всего становятся малоподвижными и существуют длительное время. От центра антициклона воздух оттекает во все стороны, что исключает возможность сближения и взаимодействия разнородных воздушных масс. В связи с нисходящими движениями воздуха в центральных частях антициклонов преобладает малооблачная погода. Однако при значительной влажности воздуха в холодную половину года в центральной части антициклона могут наблюдаться сплошные облака, а туманы наблюдаются как зимой, так и летом.

В каждом антициклоне погода существенно меняется в различных секторах. На окраинах антициклонов условия погоды, в общих чертах, сходны с условиями погоды в примыкающих секторах соседних циклонов.

Северная окраина антициклона обычно непосредственно связана с теплым сектором соседнего циклона. Здесь в холодное полугодие часто наблюдается сплошная облачность, иногда идут слабые осадки. Нередко отмечаются туманы. Летом в этом секторе антициклона облачность небольшая, в дневные часы могут развиваться кучевые облака.

Западная окраина антициклона примыкает к передней части области низкого давления. В холодное полугодие в этой части антициклона часто отмечаются слоисто-кучевые облака, из которых выпадают слабые осадки. Зона осадков довольно обширная и перемещается вдоль изобар, огибая антициклон по часовой стрелке и претерпевая некоторые изменения. Летом на западной окраине антициклона при высокой температуре воздуха и значительной влажности нередко развиваются кучевые облака и гремят грозы.

Южная окраина антициклона примыкает к северной части циклона. Здесь нередко наблюдаются слоистые облака, из которых зимой выпадают осадки. В этой части антициклона создаются большие перепады давления, поэтому нередко усиливается ветер и возникают метели.

Восточная окраина антициклона граничит с тыловой частью циклона. Летом при неустойчивой воздушной массе в дневные часы здесь образуются облака кучевых форм, выпадают ливневые дожди и гремят грозы. Зимой может наблюдаться безоблачная погода или не сплошная слоистая облачность.

В разных антициклонах наблюдаются значительные различия в погоде, что обусловливается в каждом случае свойствами воздушных масс и зависит от сезона. Поэтому для прогноза погоды свойства каждого антициклона исследуется индивидуально.


Цунами – длинные морские волны, образующиеся в океанах и морях под действием землетрясений, вулканических извержений, а также в результате резкого перепада атмосферного давления, либо при падении с берега в воду масс грунта и льда.

Основным районом, где возникает цунами, является Тихий океан. Из 400 действующих сегодня на земле вулканов 330 расположены в бассейне Тихого океана, здесь наблюдается более 80% всех землетрясений.

«Цунами» в переводе с японского языка означает «волна в гавани». И хотя этот перевод звучит несколько экзотически и носит описательный характер, указанный термин как нельзя лучше характеризует суть явления. Основная природа возникновения цунами – сейсмическая. В участках земной коры, находящихся под дном океана, происходят разрывы, проявляющиеся в виде землетрясений. В случаях, когда эпицентр землетрясений располагается на глубине более 50 км, цунами, как правило, не образуется. Существует и иная трактовка причин образования цунами – это извержение наземных и подводных вулканов. Иногда возникают цунами метеорологического происхождения. Такие «метеоцунами» связаны с выходами на морские акватории тайфунов и ураганов.

Упрощенная схема образования цунами.

Чаще всего волны цунами бывают сейсмического происхождения, при землетрясениях образуются разломы поверхности земной коры – трещины и, как следствие – сбросы, сдвиги и надвиги, приводящие к опусканию или поднятию значительных районов дна. При этом в толще воды происходят мгновенные изменения объема и давления, вызывающие появление волн сжатия и разрежения, которые, достигая поверхности океана, вызывают ее колебания и формируют цунами. Период образовавшихся волн составляет от 2 до 20 мин, т.е. это длинные волны. В открытом море эти волны не заметны, но они несут огромную энергию. Скорость смещения волн цунами на глубокой воде составляет 500–700 км/час. При движении энергия цунами расходуется на преодоление сил вязкости и трения о дно. Интенсивность цунами связана с силой землетрясения. В России для определения интенсивности землетрясения используется 12-ти бальная шкала, в Японии единицей землетрясения служит магнитуда, представляющая собой величину, пропорциональную логарифму максимальной амплитуды горизонтального смешения почвы (дна) на расстоянии 100 км от очага землетрясения. Самые сильные землетрясения имеют магнитуду 8,5.

Основным методом предсказания цунами является сейсмический, основанный на существовании разницы между скоростью распространения сейсмических волн в земной коре и скоростью распространения в океане волн цунами. Сейсмические волны достигают побережья в 50–80 раз быстрее, чем волны цунами. Сейсмическая служба регистрирует землетрясение, определяет его параметры, цунамигенность и передает эту информацию оперативной службе Центра морской гидрометеорологии.

Свыше 99% волн цунами вызываются подводными землетрясениями. При землетрясении под водой образуется вертикальная трещина и часть дна опускается. Дно внезапно перестает поддерживать столб воды, лежащий над ним. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, – среднему уровню моря, – и порождает серию волн.

Ветер

– движение воздуха относительно земной поверхности (горизонтальная составляющая этого движения), иногда говорят о восходящем или о нисходящем ветре, учитывая и его вертикальную составляющую.

Скорость ветра.

Оценка скорости ветра в баллах, так называемая шкала Бофорта , по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т.п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т.е. полное отсутствие ветра. Ветер в 4 балла, по Бофорту называется умеренным и соответствует скорости 5–7 м/сек; в 7 баллов – сильным, со скоростью 12–15 м/сек; в 9 баллов – штормом, со скоростью 18–21 м/сек; наконец, ветер в 12 баллов по Бофорту – это уже ураган, со скоростью свыше 29 м/сек. У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4–8 м/сек и редко превышают 12–15 м/сек. Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек. В тропических ураганах скорости ветра доходят до 65 м/сек, а отдельные порывы – до 100 м/сек. В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек. В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70–100 м/сек. Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10–15 м над земной поверхностью.

Таблица 2. СИЛА ВЕТРА.
Шкала Бофорта для определения силы ветра
Баллы Визуальные признаки на суше Скорость ветра, км/ч Термины, определяющие силу ветра
0 Спокойно; дым поднимается вертикально Менее 1,6 Штиль
1 Направление ветра заметно по отклонению дыма, но не по флюгеру 1,6–4,8 Тихий
2 Ветер ощущается кожей лица; шелестят листья; поворачиваются обычные флюгеры 6,4–11,2 Легкий
3 Листья и мелкие веточки находятся в постоянном движении; развеваются легкие флаги 12,8–19,2 Слабый
4 Ветер поднимает пыль и бумажки; раскачиваются тонкие ветви 20,8–28,8 Умеренный
5 Качаются покрытые листвой деревья; появляется рябь на водоемах суши 30,4–38,4 Свежий
6 Качаются толстые ветви; слышен свист ветра в электропроводах; трудно удерживать зонт 40,0–49,6 Сильный
7 Качаются стволы деревьев; трудно идти против ветра 51,2–60,8 Крепкий
8 Ломаются ветви деревьев; практически невозможно идти против ветра 62,4–73,6 Очень крепкий
9 Небольшие повреждения; ветер срывает дымовые колпаки и черепицу с крыш 75,2–86,4 Шторм
10 На суше бывает редко. Деревья выворачиваются с корнями. Значительные разрушения строений 88,0–100,8 Сильный шторм
11 На суше бывает очень редко. Сопровождается разрушениями на большом пространстве 102,4–115,2 Жестокий шторм
12 Сильные разрушения (Баллы 13–17 были добавлены Бюро погоды США в 1955 и применяются в шкалах США и Великобритании) 116,8–131,2 Ураган
13 132,8–147,2
14 148,8–164,8
15 166,4–182,4
16 184,0–200,0
17 201,6–217,6

Направление ветра.

Под направлением ветра подразумевают направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. И 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад. Шестнадцать румбов, указывающих направление, откуда дует ветер, имеют сокращенные обозначения:

Таблица 3.
С N В E Ю S 3 W
CCB NNE ВЮВ ESE ЮЮЗ SSW ЗСЗ WNW
CB NE ЮВ SE ЮЗ SW СЗ NW
BCB ENE ЮЮВ SSE ЗЮЗ WSW ССЗ NNW
N – норд, E – ост, S – зюйд, W – вест

Эдвард Кононович

Литература:

Eris Chaisson, Steve McMillan Astronomy today. Prentice-Hall, Inc. Upper Saddle River, 2002
Интернет-ресурсы: http://ciencia.nasa.gov/
http://spaceweather.com



Тайфун - так называются сильные бури Китайского моря и его берегов, от китайских слов “тай” -- большой и “фун (фен, фын)” -- ветер. Однако, метеорологи и моряки называют тайфуном не все бури, а лишь бури циклонического характера, бывающие в данных странах с мая по половину ноября нового стиля. Всего чаще они бывают в августе, сентябре и октябре, т. е. в конце дождливого муссона Восточной Азии, притом в более северной части области тайфуна они бывают чаще в начале этого периода, в более южных -- в конце.

По времени наибольшего распространения, небольшим горизонтальным размерам, величине градиентов, силе ветров и ливней тайфуны очень сходны с антильскими ураганами. Точно так же как и в последних, тайфуны движутся в тропиках с востока на запад или юго-востока на северо-запад.

Большинство тайфунов возникает вероятно около Филиппинских островов или на Тихом океане к востоку от них. Центры движутся медленно в тропиках, иногда около суток совершенно неподвижны. Тайфуны очень опасны потому, что моря, в которых они бывают, усеяны островами, рифами и мелями. Они опасны и для прибрежных жителей, жителей низовьев рек, так как сопровождаются большими и быстрыми подъемами воды.

В области наибольшей силы тайфуна находятся первоклассные метеорологические обсерватории: в Маниле (остров Гонконг) и Цикавей близ Шанхая. Они очень много сделали для изучения тайфунов. Велики в этом отношении заслуги и японского центрального метеорологического бюро. Северные части тайфуна захватывают русский Южно-Уссурийский край и Порт-Артур с его окрестностями.

Механизм возникновения тайфуна

В земной атмосфере находятся пары воды, которые с воздушными потоками перемещаются в магнитном поле Земли, и, как следствие этого, в атмосфере образуются вихри разных размеров. Наиболее интересны и характерны из них, а также наиболее разрушительны тропические циклоны, или тайфуны, диаметры которых составляют сотни километров.

У всех тайфунов есть общая черта: в Cеверном полушарии они закручены против часовой стрелки, а в Южном -- наоборот, по часовой. Тропические циклоны зарождаются в штилевой зоне над океанами (преимущественно между широтами 5--25°) как в Северном, так и в Южном полушарии, но полностью отсутствуют в экваториальной зоне, ограниченной приблизительно 5° северной широты и 5° южной широты.

Тропический циклон представляет собой систему очень сильных ветров, дующих вокруг безветренного центра, называемого глазом, вблизи которого скорость ветра может достигать 300--400 км/ч. Тропические циклоны характеризуются мощными восходящими потоками влажного воздуха вокруг глаза и нисходящими потоками воздуха в глазе тайфуна.

Попробуем объяснить механизм образования тропических циклонов.

Земля -- гигантский намагниченный шар. Его поле совпадает с полем магнитного диполя, расположенного вблизи центра земного шара со смещением около 400 километров в сторону Тихого океана и наклонённого примерно на 12° к оси вращения Земли. Силовые линии этого гигантского магнита выходят из северного магнитного полюса в Южном полушарии и устремляются к южному магнитному полюсу в Северном полушарии. Они огибают земной шар и распространяются на многие тысячи километров в околоземном космическом пространстве.

Магнитное поле Земли в каждой точке пространства характеризуется величиной и направлением. Из всех его характеристик в плане образования циклона нас интересует вектор магнитной индукции В и магнитное наклонение I, то есть угол между горизонтальной плоскостью и вектором магнитной индукции. Картина магнитного поля Земли очень сложна, она периодически меняется, вызывая существенные отклонения от средней величины в данной местности. Однако несложные расчёты показывают, что взаимодействие движущихся вверх молекул воды с магнитным полем Земли в первую очередь зависит от величины магнитной индукции В, то есть от магнитной широты (которая мало отличается от географической широты места). Момент количества движения молекул, а значит, и скорость их вращения в тайфуне максимальны на широтах 16°. То есть именно на этих широтах вероятность возникновения тайфуна наиболее велика. Это хорошо согласуется с результатами наблюдений за погодой. Но для его возникновения поднимающийся воздушный поток должен также иметь высокую влажность, которую могут обеспечить только обширные водные пространства с хорошо прогретой поверхностью (по данным некоторых авторов, не менее 27 градусов Цельсия). И тайфуны действительно образуются вблизи от экваториальной зоны (10--25° широты), над океаном, поверхностные воды которого хорошо прогреты, а восходящий поток имеет практически стопроцентную влажность. Как следствие этого, появление тайфунов носит ярко выраженный сезонный характер.

За 79-летний период, тайфуны в северной части тропической зоны Атлантического океана возникали 636 раз, то есть практически по 8 тайфунов в год. Из них 504 тайфуна, или почти 80%, приходятся на август, сентябрь и октябрь -- период, когда поверхностные воды Атлантики прогрелись, но зато в январе, когда они остыли, за 79 лет не было ни одного тайфуна.

Как отмечалось выше, реальное магнитное поле Земли отличается от магнитного поля идеального магнитного диполя. А поскольку именно величина индукции магнитного поля играет важную роль в механизме образования тайфуна, районы океана с её повышенным уровнем наиболее тайфуногенны. К ним относятся районы между Южной и Северной Америками, к востоку от побережья Австралии, районы Японских островов и Индонезии. Во всех этих местах индукция магнитного поля составляет 40--50 микротесл. А в районах западного и восточного побережий Южной Америки и в Южной Атлантике, где тайфунов не бывает, уровень индукции магнитного поля Земли не превышает 25--30 микротесл.

В целом картина возникновения тайфуна такова. Хорошо прогретая поверхность океана обеспечивает мощный восходящий поток влажного воздуха, насыщенного молекулами воды, которые, поднимаясь, начинают вращаться вследствие взаимодействия с магнитным полем Земли.

Чтобы понять роль молекул воды в образовании тайфуна, представим себе ёмкость, заполненную воздухом, в которую опустили вентилятор. Его лопасти вращаются, вовлекая во вращение воздух. Если теперь мысленно уменьшить размеры лопастей вдвое, одновременно увеличив число вентиляторов в два раза, скорость вращения воздуха в ёмкости сохранится. Если последовательно продолжать мысленный процесс уменьшения размеров вентиляторов с одновременным увеличением их числа, в пределе можно дойти до лопастей размером с молекулу. Образно говоря, в процессе образования тайфуна каждая молекула воды играет роль миниатюрного вентилятора, так как она совершает вращательное движение в результате пересечения ею силовых линий магнитного поля Земли. И посредством многочисленных соударений каждая молекула воды передаёт собственный момент количества движения другим молекулам, не имеющим дипольного момента. Постепенно во вращательное движение вовлекается всё больше молекул влажного воздуха. Такая спиновая поляризация воздушного пространства со временем приводит к суммированию моментов количества движения отдельных молекул, что и служит основой образования вихря гигантских размеров.

Что такое «глаз тайфуна»? В центре каждого тропического циклона образуется область очень низкого давления с высокой температурой. Это и есть “глаз тайфуна”. Его диаметр составляет 10-30 км. Здесь тихо, а вокруг, вращаясь по часовой стрелке, бушуют ураганные ветры. “Глаз тайфуна”, или “глаз бури”, вводит порой в заблуждение людей, попавших туда из зоны, где свирепствует сбивающий с ног ветер и вздымаются огромные валы. Пологая, что опасность миновала, неопытные моряки расслабляются, покидают свои убежища, забывая о мерах предосторожности. Беспечность им дорого обходится. Вихрь движется и вновь обрушивается на несчастных, сносит их с палубы. Как и землетрясения, тайфуны и ураганы особенно опасны, когда они разыгрываются над водой. Приближаясь к берегу, ураган гонит перед собой огромные массы воды и обрушивает их на сушу. Сопровождаемый обычно продолжительными ливнями и смерчами, штурмовой вал в бешенстве накатывает на берег и сметает всё живое. Один из сильнейших ураганов уничтожил 8 сентября 1900 г. американский портовый городок Галвестон, стоявший на длинной, узкой косе Галвестон-Бэй в Мексиканском заливе. Самая высокая его точка лежала всего 1.4 м над уровнем моря С материком косу соединяли два моста. Почему большинство тайфунов называют женскими именами. Тайфуны обычно называют человеческими именами. Вначале это были только женские имена, теперь, когда их стало не хватать, в ход пошли мужские. Эта традиция возникла в начале 40-х годов нашего столетия. Поначалу это была неофициальная терминология у метеорологов ВВС и ВМС США, применявшаяся для удобства обмена информацией об ураганах, обнаруживаемых на картах погоды, и облегчения передачи такой информации при прослеживании движения ураганов,- это помогало избежать путаницы и сокращало текст радио-и телеграфных передач. В последующем присвоение ураганам женских имен вошло в систему и было распространено на другие тропические циклоны - на тихоокеанские тайфуны, штормы Индийского океана, Тиморского моря и северо-западного побережья Австралии. Пришлось упорядочить и самую процедуру присвоения имен. Так, первый ураган года стали называть женским именем, начинающимся с первой буквы алфавита, второй - со второй и т. д. Имена выбирались краткие, которые легко произносятся и легко запоминаются. Для тайфунов существовал список из 84 женских имен. С 1979 года тропические циклонам начали присваивать и мужские имена.

Большинство районов зарождения тропических циклонов находится в пассатной зоне, между 10 и 20-м градусами широты в обоих полушариях Земли над теплыми участками поверхности океана, где температура воды достигает 28°С. Ниже 5° широты тропические циклоны не встречаются - вблизи экватора практически отсутствует отклоняющая сила вращения Земли, воздействие которой необходимо для устойчивого кругового движения воздуха, характерного для циклонов.

В среднем на Земле возникает в год около 120 тропических циклонов. Эта цифра еще четверть века назад показалась бы невероятной: в прошлом, когда не было метеорологических искусственных спутников Земли, более половины тропических циклонов оставались не замеченными, так как возникают они по большей части над открытым океаном, где лишь изредка встречаются острова и нет развитой сети метеорологических станций, фиксирующих каждый случай их возникновения.

Представление о распределении тропических циклонов над различными участками океанов в обоих полушариях Земли дает таблица, данные которой следует рассматривать как приблизительные - от года к году в разных районах повторяемость тропических циклонов может колебаться в широких пределах, хотя общее их количество ежегодно остается примерно одинаковым.

Чаще всего тропические циклоны возникают в начале осени или в самом конце лета, когда температура воды на поверхности океана самая высокая. Они редко бывают зимой и практически не встречаются весной. Приблизительно соотношение между количеством тропических циклонов, возникающих осенью, летом и зимой, может быть выражено соответственно цифрами 20:10:1. Другими словами, осенью тропические циклоны возникают примерно в два раза чаще, чем летом, а зимой - в десять раз реже, чем летом.

В 80-е годы тропических циклонов было немало. Так, в 1980 году только в течение августа и сентября 1980 года в северном полушарии было отмечено четыре случая развития тропических циклонов и в южном полушарии - один случай, из них два - ураганы в Карибском море и три - тайфуны в Тихом океане.

Ураган Аллеи отмечен в начале августа у берегов Гаити и Ямайки. Скорость ветра в нем достигала 70 м/с. Второй ураган, Эрмина, наблюдался в 20-х числах сентября у северного побережья Гондураса, а также у берегов Мексики и Гватемалы. Скорость ветра в нем достигала 30 м/с.

Тайфун Орхид возник в западной части Тихого океана и 11-12 сентября пронесся над Японскими островами и Южной Кореей, причинив там значительные разрушения и вызвав наводнения. Влияние этого тайфуна сутками позже стало ощутимым в Хабаровском и Приморском краях и на Сахалине. Наблюдались сильные дожди и ветер, скорость ветра местами достигала ураганной (33 м/с). Примерно через месяц, в середине октября, еще один тайфун пришел на Японские острова Кюсю и Сикоку с юга, нарушив временно не только воздушное, но и железнодорожное сообщение.

Действия во время тайфунов-Как и во время землетрясений, когда случается тайфун, необходимо соблюдать правила безопасности. По телевидению сообщают, насколько сильный и опасный ожидается тайфун, и в соответствии с этим может быть объявлено официальное предупреждение об опасности -- кэйхо:. Их бывает несколько: первое -- просто информация о том, что близится тайфун, второе -- совет оставаться дома, третье -- запрет на покидание помещений. Особенно последнего предупреждения ждут школьники и студенты, так как оно означает, что им разрешается не идти в школу. В любом случае, самое лучшее укрытие -- в помещении. Но если вы уж оказались на улице, старайтесь держаться подальше от вывесок магазинов, крыш домов, автоматов по продаже напитков и мусорных баков. Все это имеет тенденцию падать, и во время тайфунов самый большой процент увечий как раз и приходится на травмы от подобных предметов. Лучше не пользоваться велосипедом - его сносит порывами ветра гораздо сильнее, чем пешего человека. Избежать дождя, находясь на улице, не удастся, поэтому, оказавшись дома, рекомендуется принять меры, чтобы не простудиться. Вообще, когда во время тайфуна находишься в доме, испытываешь ощущение, будто сидишь на крошечном клочке земли посреди бушующего океана, и вся Вселенная охвачена стихиями воды и ветра. Иногда все вокруг затихает, и это значит, что вы оказались в «глазу тайфуна» -- тайфу.-но мэ, области в самой сердцевине циклона, где ветер спадает. Если тайфун особенно сильный, к примеру, около 30-40 метров в секунду, то его «глаз» может простираться на целую сотню километров.

тайфун тропический циклон буря