Характеристика ядерного оружия: виды, поражающие факторы, излучение. Поражающие факторы ядерного оружия, и их краткая характеристика

Введение

1. Последовательность событий при ядерном взрыве

2. Ударная волна

3. Световое излучение

4. Проникающая радиация

5. Радиоактивное заражение

6. Электромагнитный импульс

Заключение

Выделение огромного количества энергии, происходящее в ходе цепной реакции деления, приводит к быстрому разогреву вещества взрывного устройства до температур порядка 10 7 К. При таких температурах вещество представляет собой интенсивно излучающую ионизированную плазму. На этом этапе в виде энергии электромагнитного излучения выделяется около 80% энергии взрыва. Максимум энергии этого излучения, называемого первичным, приходится на рентгеновский диапазон спектра. Дальнейший ход событий при ядерном взрыве определяется в основном характером взаимодействия первичного теплового излучения с окружающей эпицентр взрыва средой, а также свойствами этой среды .

В случае если взрыв произведен на небольшой высоте в атмосфере, первичное излучение взрыва поглощается воздухом на расстояниях порядка нескольких метров. Поглощение рентгеновского излучения приводит к образованию облака взрыва, характеризующегося очень высокой температурой. На первой стадии это облако растет в размерах за счет радиационной передачи энергии из горячей внутренней части облака к его холодному окружению. Температура газа в облаке примерно постоянна по его объему и снижается по мере его увеличения. В момент, когда температура облака снижается до примерно 300 тысяч градусов, скорость фронта облака уменьшается до величин, сравнимых со скоростью звука. В этот момент формируется ударная волна, фронт которой "отрывается" от границы облака взрыва. Для взрыва мощностью 20 кт это событие наступает примерно через 0.1 м/сек после взрыва. Радиус облака взрыва в этот момент составляет около 12 метров.

Интенсивность теплового излучения облака взрыва целиком определяется видимой температурой его поверхности. На некоторое время воздух, нагретый в результате прохождения взрывной волны, маскирует облако взрыва, поглощая излучаемую им радиацию, так что температура видимой поверхности облака взрыва соответствует температуре воздуха за фронтом ударной волны, которая падает по мере увеличения размеров фронта. Через примерно 10 миллисекунд после начала взрыва температура во фронте падает до 3000 °С и он вновь становится прозрачным для излучения облака взрыва. Температура видимой поверхности облака взрыва вновь начинает расти и через примерно 0.1 сек после начала взрыва достигает примерно 8000 °С (для взрыва мощностью 20 кт). В этот момент мощность излучения облака взрыва максимальна. После этого температура видимой поверхности облака и, соответственно, излучаемая им энергия быстро падает. В результате, основная доля энергии излучения высвечивается за время меньшее одной секунды.

Формирование импульса теплового излучения и образование ударной волны происходит на самых ранних стадиях существования облака взрыва. Поскольку внутри облака содержится основная доля радиоактивных веществ, образующихся в ходе взрыва, дальнейшая его эволюция определяет формирование следа радиоактивных осадков. После того как облако взрыва остывает настолько, что уже не излучает в видимой области спектра, процесс увеличения его размеров продолжается за счет теплового расширения и оно начинает подниматься вверх. В процессе подъема облако увлекает за собой значительную массу воздуха и грунта. В течение нескольких минут облако достигает высоты в несколько километров и может достичь стратосферы. Скорость выпадения радиоактивных осадков зависит от размера твердых частиц, на которых они конденсируются. Если в процессе своего формирования облако взрыва достигло поверхности, количество грунта, увлеченного при подъеме облака, будет достаточно велико и радиоактивные вещества оседают в основном на поверхности частиц грунта, размер которых может достигать нескольких миллиметров. Такие частицы выпадают на поверхность в относительной близости от эпицентра взрыва, причем за время выпадения их радиоактивность практически не уменьшается.

В случае если облако взрыва не касается поверхности, содержащиеся в нем радиоактивные вещества конденсируются в гораздо меньшие частицы с характерными размерами 0.01-20 микрон. Поскольку такие частицы могут достаточно долго существовать в верхних слоях атмосферы, они рассеиваются над очень большой площадью и за время, прошедшее до их выпадения на поверхность, успевают потерять значительную долю своей радиоактивности. В этом случае радиоактивный след практически не наблюдается. Минимальная высота, взрыв на которой не приводит к образованию радиоактивного следа, зависит от мощности взрыва и составляет примерно 200 метров для взрыва мощностью 20 кт и около 1 км для взрыва мощностью 1 Мт .

Основные поражающие факторы - ударная волна и световое излучение - аналогичны поражающим факторам традиционных взрывчатых веществ, но значительно мощнее.

Ударная волна, формирующаяся на ранних стадиях существования облака взрыва, представляет собой один из основных поражающих факторов атмосферного ядерного взрыва. Основными характеристиками ударной волны являются пиковое избыточное давление и динамическое давление во фронте волны. Способность объектов выдерживать воздействие ударной волны зависит от множества факторов, таких как наличие несущих элементов, материал постройки, ориентация по отношению ко фронту. Избыточное давление в 1 атм (15 фунтов/кв. дюйм), возникающее на расстоянии 2.5 км от наземного взрыва мощностью 1 Мт, способно разрушить многоэтажное здание из железобетона. Радиус области, в которой при взрыве в 1 Мт создается подобное давление составляет около 200 метров.

На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления .

Так, при взрыве 20-килотонного ядерного боеприпаса ударная волна за 2 секунды проходит 1000 м, за 5 секунд – 2000 м, за 8 сек – 3000 м. Передняя граница волны называется фронтом ударной волны. Степень поражения УВ зависит от мощности и положения на ней объектов. Поражающее действие УВ характеризуется величиной избыточного давления.

Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

Световое излучение - это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва - нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном - полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °С. Когда температура снижается до 1700°C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения - максимальная интенсивность солнечного света 0,14 Вт/см²).

Поражающие факторы ядерного оружия, и их краткая характеристика.

Особенности поражающего действия ядерного взрыва и главный поражающий фактор определяются не только типом ядерного боеприпаса, но и мощностью взрыва, видом взрыва и характером объекта поражения (цели). Все эти факторы учитываются при оценке эффективности ядерного удара и разработке содержания мероприятий по защите войск и объектов от ядерного оружия.

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии и поэтому в зоне протекания ядерных реакций температура повышается до нескольких миллионов градусов, а максимальное давление достигает миллиардов атмосфер. Высокие температура и давление вызывают мощную ударную волну.

Наряду с ударной волной и световым излучением взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и g-квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха.

Неравномерное движение электрических зарядов в воздухе, возникающих под воздействием ионизированных излучений, приводит к образованию электромагнитного импульса (ЭМИ).

Поражающие факторы ядерного взрыва:

1) ударная волна;

2) световое излучение;

3) проникающая радиация;

4) радиоактивное излучение;

5) электромагнитный импульс (ЭМИ).

1) Ударная волна ядерного взрыва – один из основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – воздухе, воде или грунте, - ее называют соответственно воздушной волной, ударной волной (в воде) и сейсмовзрывной волной (в грунте).

Ударная волна представляет собой область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражение людям, разрушать различные сооружения, вооружение, военную технику и другие объекты на значительных расстояниях от места взрыва.

Основными параметрами ударной волны являются избыточное давление во фронте волны, время действия и ее скоростной напор.

2) Под световым излучением ядерного взрыва понимается электромагнитное излучение оптического диапазона в видимой, ультрафиолетовой и инфракрасной области спектра.

Источником светового излучения является святящаяся область взрыва, состоящего из нагретых до высокой температуры веществ ядерного боеприпаса, воздуха и частиц грунта, поднятых взрывом с земной поверхности. Форма светящейся области при воздушном взрыве имеет вид шара; при наземных взрывах она близка к полусфере; при низких воздушных взрывах шаровая форма деформируется отраженной от земли ударной волной. Размеры светящейся области пропорциональны мощности взрыва.

Световое излучение при ядерном взрыве делится всего несколько секунд. Длительность свечения зависит от мощности ядерного взрыва. Чем больше мощность взрыва, тем длительнее свечение. Температура светящейся области от 2000 до 3000 0 С. Для сравнения укажем, что температура поверхностных слоев Солнца составляет 6000 0 С.

Основным параметром, характеризующим световое излучение на различных расстояниях от центра ядерного взрыва, является световой импульс. Световым импульсом называется количество световой энергии, падающей на единицу площади поверхности, перпендикулярной направлению излучения за все время свечения источника. Световой импульс измеряется в калориях на 1 квадратный сантиметр (кал/см 2).

Световое излучение в первую очередь воздействует на открытые участки тела – кисти рук, лицо, шею, а также глаза, вызывая ожоги.

Различают четыре степени ожогов:

Ожог первой степени – представляет собой поверхностное поражение кожи, внешне проявляющееся в ее покраснении;

Ожог второй степени – характеризуется образованием пузырей;

Ожог третьей степени – вызывает омертвение глубоких слоев кожи;

Ожог четвертой степени – обугливается кожа и подкожная клетчатка, а иногда и более глубокие ткани.

3) Проникающая радиация представляет собой поток g-излучения и нейтронов, испускаемых в окружающую среду из зоны и облака ядерного взрыва.

g-излучение и нейтронное излучение различны по своим физическим свойствам, могут распространяться в воздухе во все стороны на расстояние от 2,5 до 3 км.

Продолжительность действия проникающей радиации составляет всего несколько секунд, но тем не менее она способна нанести личному составу тяжелые поражения, особенно если он открыто расположен.

g-лучи и нейтроны, распространяясь в любой среде, ионизируют ее атомы. В результате ионизации атомов, входящих в состав живых тканей, нарушаются различные жизненные процессы в организме, что приводит к лучевой болезни.

Кроме того, проникающая радиация может вызвать потемнение стекла, засвечивание светочувствительных фотоматериалов и выводить из строя радиоэлектронную аппаратуру, особенно содержащую полупроводниковые элементы.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от дозы излучения и времени, прошедшего после взрыва.

Поражающее действие проникающей радиации характеризуется дозой излучения.

Различают экспозиционную дозу и поглощённую дозу.

Экспозиционная доза ранее измерялась внесистемными единицами – рентгенами (Р). Один рентген – это такая доза рентгеновского или g-излучения, которая создаёт в одном кубическом сантиметре воздуха 2,1 10 9 пар ионов. В новой системе единиц СИ экспозиционная доза измеряется в Кулонах на килограмм (1 Р=2,58 10 -4 Кл/кг).

Поглощённая доза измеряется в радианах (1 Рад= 0,01 Дж/кг= 100 эрг/г поглощённой энергии в ткани). Единицей измерения поглощённой дозы в системе СИ является Грей (1 Гр=1 Дж/кг=100 Рад). Поглощенная доза более точно определяет воздействие ионизирующих излучений на биологические ткани организма, имеющие различный атомный состав и плотность.

В зависимости от дозы излучений различают четыре степени лучевой болезни:

1) Лучевая болезнь первой степени (легкая) возникает при суммарной дозе излучения 150-250 Рад. Скрытый период продолжается 2-3 недели, после чего появляются недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание белых кровяных шариков. Лучевая болезнь первой степени излечима.

2) Лучевая болезнь второй степени (средняя) возникает при суммарной дозе излучения 250-400 Рад. Скрытый период длится около недели. Признаки заболевания выражены более ярко. При активном лечении выздоровление наступает через 1,5-2 месяца.

3) Лучевая болезнь третьей степени (тяжелая), наступает при дозе излучения 400-700 Рад. Скрытый период составляет несколько часов. Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6-8 месяцев.

4) Лучевая болезнь четвертой степени (крайне тяжелая), наступает при дозе облучения свыше 700 Рад, которая является наиболее опасной. При дозах, превышающих 500 Рад личный состав утрачивает боеспособность через несколько минут.

4) Радиоактивное заражение местности , приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва.

Основным источником радиоактивного заражения при ядерных взрывах являются радиоактивные продукты ядерной радиации – осколки деления ядер урана и плутония. Распад осколков сопровождается испусканием гамма-лучей и бета-частиц.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него.

Наиболее сильное заражение местности происходит при наземных ядерных взрывах, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией.

На местности, подвергшейся радиоактивному заражению при ядерном взрыве, образуются два участка: район взрыва и след облака. В свою очередь в районе взрыва различают наветренную и подветренную стороны.

По степени опасности зараженную местность по следу облака взрыва принято делить на четыре зоны:

1. зона А – умеренного заражения. Дозы излучения до полного распада радиоактивных веществ на внешней границе зоны Д ¥ =40 Рад, на внутренней границе Д ¥ =400 Рад. Ее площадь составляет 70-80% площади всего следа.

2. зона Б – сильного заражения. Дозы излучения на границах Д ¥ =400 Рад и Д ¥ =1200 Рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

3. зона В – опасного заражения. Дозы излучения на ее внешней границе за период полного распада радиоактивных веществ Д ¥ =1200 Рад, а на внутренней границе Д ¥ =4000 Рад. Эта зона занимает примерно 8-10% площади следа облака взрыва.

4. зона Г – чрезвычайно опасного заражения. Дозы излучения на ее внешней границе за период полного распада радиоактивных веществ Д ¥ =4000 Рад, а в середине зоны Д ¥ =7000 Рад.

Уровни радиации на внешних границах этих зон через 1 час после взрыва составляют соответственно 8; 80; 240 и 800 Рад/ч, а через 10 часов – 0,5; 5; 15 и 50 Рад/ч. Со временем уровни радиации на местности снижаются ориентировочно в 10 раз через отрезки времени, кратные 7. Например, через 7 часов после взрыва мощность дозы уменьшается в 10 раз, а через 49 часов – в 100 раз.

5) Электромагнитный импульс (ЭМИ). Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

При наземном или низком воздушном взрыве g-кванты, испускаемые из зоны протекания ядерных взрывов, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения g-квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля ЭМИ.

При наземном и низком воздушном взрыве поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (высота более 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20-40 км от поверхности.

Поражающее действие ЭМИ проявляется прежде всего по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении, военной технике и других объектах.

Если ядерные взрывы произойдут вблизи линий энергоснабжения, связи, имеющих большую протяженность, то наведенные в них напряжения могут распространяться по проводам на многие километры и вызывать повреждение аппаратуры и поражение личного состава, находящегося на безопасном удалении по отношению к другим поражающим факторам ядерного взрыва.

ЭМИ представляет опасность и при наличии прочных сооружений (укрытых командных пунктов, ракетных стартовых комплексов), которые рассчитаны на устойчивость к воздействию ударных волн наземного ядерного взрыва, произведенного на расстоянии несколько сот метров. Сильные электромагнитные поля могут повредить электрические цепи и нарушить работу неэкранированного электронного и электротехнического оборудования, так что потребуется время для его восстановления.

Высотный взрыв способен создать помехи в работе средств связи на очень больших площадях.

Защита от ядерного оружия является одним из важнейших видов боевого обеспечения. Она организуется и осуществляется с целью не допустить поражение войск ядерным оружием, сохранить их боеспособность и обеспечить успешное выполнение поставленной задачи. Это достигается:

Ведением разведки средств ядерного нападения;

Использованием средств индивидуальной защиты, защитных свойств техники, местности, инженерных сооружений;

Искусными действиями на заражённой местности;

Проведением контроля радиоактивного облучения, санитарно- гигиенических мероприятий;

Своевременной ликвидацией последствий применения противником оружия массового поражения;

Основные способы защиты от ядерного оружия:

Разведка и уничтожение пусковых установок с ядерными боеголовками;

Радиационная разведка районов взрыва ядерных боеприпасов;

Оповещение войск об опасности ядерного нападения противника;

Рассредоточение и маскировка войск;

Инженерное оборудование районов расположения войск;

Ликвидация последствий применений ядерного оружия.

Учебные вопросы:

  1. Ядерное оружие и его поражающие факторы. Краткая характеристика очага ядерного поражения, возможная величина и структура санитарных потерь.
  2. Химическое оружие, классификация и краткая характеристика очагов химпоражения.
  3. Бактериологическое (биологическое) оружие, краткая характеристика.
  4. Краткая характеристика очага комбинированного поражения.
  5. Новые виды оружия и их поражающее действие

Введение

Последнее время произошел поворот военных теоретиков и историков к разработке новой концепции войны, новым формам и способам вооруженной борьбы. Они исходят из того, что при качественно новых средствах вооруженной борьбы, создаваемых на базе новейших технологий, в том числе высокоточного оружия и оружия, основанного на новых физических принципах, неизбежно изменится характер войны, когда существенно уменьшится массовая гибель гражданского населения (по Югославии соотношение погибших военных к гражданскому населению составил 1:15). Однако опасность ракетно-ядерной войны и войн с применением других видов оружия массового поражения является актуальной и в сегодняшние дни.

Вопрос № 1

Ядерное оружие (ЯО), поражающие факторы. Краткая характеристика очага ядерного поражения, возможная величина и структура санитарных потерь

ЯО - называются боеприпасы (боевые головки ракет и торпед, ядерные бомбы, артиллерийские снаряды, др.), поражающее действие которых основано на использовании внутриядерной энергии, высвобождающейся при взрывных ядерных реакциях.

Ядерные боеприпасы в зависимости от способа получения энергии подразделяются на три вида:

1. собственно ядерные (атомные), в которых используется энергия, выделяю-щаяся в результате деления ядер тяжелых элементов (урана, плутония и др.);

2. термоядер-ные, использующие энергию, выделяющуюся при синтезе легких элементов (водорода, дейтерия, трития);

3. нейтронные - разновидность боеприпасов с термоядерным заря-дом малой мощности, отличающимся высоким выходом нейтронного излучения.

Ядерное оружие - самое мощное средство массового уничтожения. В массовом количестве оно стало поступать на вооружение ряда государств с середины 50-х годов.

Характер поражающего действия ЯО зависит в основном от :

  1. ощности боеприпаса.имощности боеприпаса,
  2. вида взрыва,
  3. типа боеприпаса.

Мощность ядерного взрыва измеряется тротиловым эквива-лентом, который измеряется в тоннах, тысячах тонн - килотоннах (кт) и миллионах тонн - мегатоннах (мт).

По мощности ядерные боеприпасы условно подразделяются на сверхмалые (мощность взрыва до 1 кт), малые (мощность взрыва 1-10 кт), средние (мощность взрыва 10 - 100кт), крупные (мощность взрыва 100 кт - 1 мт) и сверхкрупные (мощ-ность взрыва более 1 мт).

Ядерные взрывы могут осуществляться на поверхности земли (воды), под зем-лей (водой) или в воздухе на различной высоте. В связи с этим принято различать следующие виды ядерных взрывов : наземный, подземный, подводный, надводный, воздушный и высотный.

К поражающим факторам ядерного взрыва относятся : ударная волна, световое из-лучение, проникающая радиация (ионизирующее излучение), радиоактивное загрязне-ние местности, электромагнитный импульс и сейсмические (гравитационные) волны.

Ударная волна - наиболее мощный поражающий фактор ядерного взры-ва. На ее образование расходуется около 50% всей энергии взрыва. Она представляет собой зону рез-кого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. С увеличением расстояния скорость быстро пада-ет, а волна ослабевает. Источником возникновения ударной волны является высокое давление в центре взрыва, достигающее миллиардов атмосфер. Наи-большее давление возникает на передней границе зоны сжатия, которую при-нято называть фронтом ударной волны. Продолжительность действия на человека 0,3 - 0,6 сек.

Поражающее действие ударной волны определяется избыточным давлением, Оно измеряется в килопаскалях (кПа) или килограммах-силы на 1 см 2 (кгс/см 2).

Ударная волна может нанести незащищенным людям травматические пораже-ния, контузии или быть причиной их гибели. Поражения могут быть непосредствен-ными или косвенными.

Непосредственное поражение ударной волной возникает в результате воздейст-вия:

Избыточного давления,

И скоростого напора воздуха.

Косвенные поражения люди могут получить в результате ударов обломками раз-рушенных зданий и сооружений, осколками стекла, камнями, деревьями и другими предметами, летящими с большой скоростью.

Воздействуя на людей, ударная волна вызывает травмы различной тяжести:

Легкие поражения возникают при избыточном давлении 0,2-0,4 кгс/см 2 . Они характеризуются скоропроходящими нарушениями функций орга-низма (звон в ушах, головокружение, головная боль). Возможны вывихи, ушибы;

Поражения средней тяжести возникают при избыточном давлении 0,4-0,6 кгс/см 2 . При этом могут быть контузии, повреждения органов слуха , кровотечения из ушей и носа, переломы и вывихи;

Тяжелые поражения возможны при избыточном давлении 0,6-1,0 кгс/см 2 ., характеризуются сильными контузиями всего организма, потерей сознания , множественными травмами, переломами, кровотечениями из носа, ушей; возможны повреждения внутренних органов и внутренние кровотечения;

Крайне тяжелые поражения возникают при избыточном давлении более 1 кгс/см 2 . Отмечаются разрывы внутренних органов , переломы, внут-ренние кровотечения, сотрясение мозга, длительная потеря сознания. Разры-вы наблюдаются в органах, содержащих большое количество крови (печень, селезенка, почки), наполненных жидкостью (желудочки головного мозга, мо-чевой и желчный пузыри).

Световое излучение представляет собой поток - видимых, инфракрасных и ультрафиолетовых лучей, исходящих от светящейся области. На его образование расходуется 30-35% всей энергии взрыва боеприпасов среднего калибра. Продолжительность светового излучения зависит от мощно-сти и вида взрыва и может продолжаться до десяти и более секунд.

Наибольшим поражающим действием обладает инфракрасное излучение. Ос-новным параметром, характеризующим световое излучение, является световой им-пульс. Световой импульс измеряется в калориях на 1 см 2 (кал/см) или килоджоулях на 1 м 2 (кДж/м 2) поверхности.

Световое излучение ядерного взрыва при непосредственном воздействии вызы-вает ожоги, в том числе и сетчатки глаз. Возможны вторичные ожоги, возникающие от пламени го-рящих зданий, сооружений, растительности.

В городах Хиросима и Нагасаки примерно 50% всех смертельных случаев было вызвано ожогами, из них 20-30% - непосредственно световым излучением и 70-80% - ожогами от пожаров.

В зависимости от величины светового импульса различают четыре степени ожо-га: ожог I степени вызывает световой импульс величиной 100-200 кДж/м 2 (2-6 кал/см 2); II - 200-400 кДж/м 2 (6-12 кал/см 2); III - 400-600 кДж/м 2 (12-18 кал/см 2); IV степени - более 600 кДж/м 2 (более 18 кал/см 2).

Проникающая радиация (ионизирующее излучение) представляет со-бой мощный поток γ - лучей и нейтронов, выделяющихся в момент ядерного взрыва. На ее долю расходуется около 5% общей энергии ядерного взрыва. Поражающее действие γ - лучей продолжается около нескольких секунд, а нейтронов - в тече-ние долей секунды.

Нейтроны и γ - лучи обладают большой проникающей способностью. В результате воздействия проникающей радиации ядерного взрыва у человека может развиться луче-вая болезнь.

Радиоактивное загрязнение местности, воды и воздуха возникает в ре-зультате выпадения радиоактивных веществ (РВ) из облака ядерного взрыва,на его долю приходится до 10-15% всей энергии на-земного ядерного взрыва.

Основные источники радиоактивности при ядерных взрывах :

Продукты деления ядер веществ, составляющих ядерное горючее (200 радиоактивных изотопов 36 химических элементов);

Наведенная активность, возникающая в результате воздействия потока ней-тронов ядерного взрыва на некоторые химические элементы, входящие в состав грунта (натрий, кремний и др.);

Некоторая часть ядерного горючего, которая не участвует в ре-акции деления и попадает в виде мельчайших частиц в продукты взрыва.

Радиоактивное загрязнение местности имеет ряд особенностей , отличающих его от других поражающих факторов ядерного взрыва это:

  1. большая пло-щадь поражения - тысячи квадратных километров;
  2. длительность со-хранения поражающего действия (дни, месяцы и более);
  3. невозмож-ность обнаружения радиоактивных веществ без использования специальных приборов (скрытность действия).

Радиоактивное загрязнение наиболее выражено при наземном и низком воздуш-ном взрывах, когда в грибо-видное облако вовлекается огромное количество пыли. При этом грунт, поднятый с облаком, перемешивается с РВ и происходит их выпадение, как в районе взрыва, так и по пути движения облака с образованием так называемого радиоактивного следа.

Местность считается загрязненной РВ при уровнях радиации 0,5 Р/ч и выше. Уровень радиации на загрязненной территории постоянно снижается за счет превра-щения короткоживущих изотопов в нерадиоактивные вещества.

При каждом семикратном увеличении времени, прошедшего после взрыва, уровень радиации на местности снижается в 10 раз . Особенно быстро уровень радиации падает в первые часы и дни после взрыва, а затем остаются вещества с длительным периодом полураспада, и снижение уровня радиации происходит медленно. Так, если через 1 ч после взрыва уровень радиации принять за исходный, то через 7 ч он снизится в 10 раз, через 49 ч (около 2 сут) в 100, а через 14 сут - в 1000 раз по сравнению с первоначальным.

Поражающее действие РВ на людей обусловлено двумя факторами: внешним воз-действием γ -излучения и Б -частицами при попадании их на кожу или внутрь организма.

Электромагнитный импульс обусловливает возникновение электрических и магнитных полей в результате воздействия γ -излучения ядерного взрыва на атомы объектов окружающей среды и образования потока электронов и положительно заря-женных ионов. Воздействие электромагнитного импульса может привести к выведе-нию из строя чувствительных электронных и электрических элементов, т. е. нарушается работа аппаратов связи, электронно-вычислительной техники и т.п., что от-рицательно скажется на работе штабов и других органов управления. Электромагнит-ный импульс не оказывает выраженного поражающего действия на людей.

Одной из разновидностью ЯО, является нейтронное оружие . В нейтронных боеприпасах малого и сверхмалого калибров действие ударной волны и светового излучения ограничено радиусом 140 - 300м , а действие ней-тронного излучения доведено до такого же уровня, как и при взрыве термоядерных боеприпасов большой мощности, или даже несколько повышено (в условиях низкого воздушного взрыва).

В некоторых нейтронных боеприпасах до 80% энергии может уноситься проникаю-щей радиацией и лишь 20% расходоваться на ударную волну, световое излучение и ра-диоактивное загрязнение местности. Люди будут погибать от действия потока нейтронов (80-90%) и у-лучей (10-20%) или получать тяжелую форму острой лучевой болезни.

Очагом ядерного поражения называется территория, в пределах кото-рой в результате воздействия поражающих факторов ядерного взрыва про-изошли массовые поражения людей, сельскохозяйственных животных и расте-ний, разрушения и повреждения зданий, сооружений, пожары и радиоактивное загрязнение местности.

Размеры очага зависят от мощности примененного боеприпаса, вида взрыва, ха-рактера застройки, рельефа местности и др.

Внешней границей очага считается ус-ловная наружная линия на местности, где избыточное давление во фронте ударной волны не превышает 0,1 кгс/см 2 . Условно очаг ядерного поражения делят на четыре круговые зоны: полных, сильных, средних и слабых разрушений.

Зона слабых разрушений характеризуется избыточным давлением во фронте ударной волны 0,1-0,2 кгс/см 2 . На ее долю приходится до 62% пло-щади всего очага. В пределах этой зоны здания получают слабые разрушения (тре-щины, разрушения перегородок, дверных и оконных заполнений). От светового излучения возникают от-дельные пожары .

Люди, находящиеся в этой зоне вне укрытий, могут получить травмы от падаю-щих обломков и бьющегося стекла, ожоги. В укрытиях потери отсутствуют. Могут воз-никнуть вторичные поражения от пожаров, взрывов емкостей с горючими и смазочны-ми материалами, загрязненности территории АОХВ и т.д.

Общие потери среди населения в этой зоне составляют 15%, все они будут санитарными.

Основные спасательные работы в этой зоне проводятся с целью тушения пожа-ров и спасения людей из частично разрушенных и горящих зданий. Условия для ра-боты медицинских формирований относительно благоприятны .

Зона средних разрушений характеризуется избыточным давлением во фронте ударной волны 0,2-0,3 кгс/см 2 и занимает около 15% очага.

В этой зоне деревянные здания будут сильно или полностью разрушены, каменные - полу-чат средние и слабые разрушения . Убежища и укрытия подвального типа сохраняют-ся. На улицах образуются отдельные завалы. От светового излучения могут возник-нуть массовые пожары (более 25% горящих зданий).

Характерны массовые санитарные потери среди незащищенного населения, которые могут составить 40%, из которых, 10% составят безвозвратные. Это погибшие и безвести пропавшие.

Спасательные и другие неотложные работы заключаются в тушении пожаров, спасении людей из-под завалов, разрушенных и горящих зданий. Условия работы спасательных формирований по оказанию первой медицинской помощи ограничены и возможны лишь после работы противопожарных и инженерных формирований. Ус-ловия для работы сандружин неблагоприятны, для медотрядов невозможны .

Зоны очага ядерного поражения

Зона сильных разрушений образуется при избыточном давлении во фронте ударной волны 0,3-0,5 кгс/см 2 и составляет около 10% всей площа-ди очага. В этой зоне наземные здания и сооружения получают сильные поврежде-ния, разрушаются части стен и перекрытий. Убежища, большинство укрытий под-вального типа и подземные сети коммунально-энергетического хозяйства, как прави-ло, сохраняются. В результате разрушения зданий образуются сплошные или местные завалы . От светового излучения возникают сплошные пожары (90% горящих зданий). Люди, находящиеся на открытой ме-стности, от ударной волны получают повреждения средней тяжести. На них может воздействовать световой импульс, что часто приводит к возникновению ожогов III-IV степени. В этой зоне возможно отравление людей угарным газом, характерны мас-совые безвозвратные потери среди незащищенного населения. Общие потери могут составить 50% из которых 15% безвозвратные потери.

Зона полных разрушений возникает при избыточном давлении во фронте удар-ной волны 0,5 кгс/см 2 и более . На ее долю приходится около 13% всей пло-щади очага поражения. В этой зоне полностью разрушаются жилые, промышленные здания, противорадиационные укрытия и до 25% убежищ, разрушаются и поврежда-ются подземные сети коммунально-энергетического хозяйства, образуются сплош-ные завалы . Пожары не возникают , так как пламя сбивается ударной волной. Воз-можны единичные очаги горения и тления в завалах.

У незащищенных людей возникают тяжелые и крайне тяжелые травмы и ожоги. При на-земном ядерном взрыве отмечается также сильное радиоактивное загрязнение местности.

Для этой зоны характерны массовые потери среди незащищенного населения. Общие потери могут составить до 90% из которых, 80% безвозвратные.

Непо-раженными останутся люди, находящиеся в хорошо оборудованных и достаточно заглуб-ленных убежищах. Характер поражений и разрушений определяет основное содержание спасательных работ. Условия для работы медицинских формирований крайне неблаго-приятны, а для медицинских формирований госпитального типа - исключаются.

В очаге ядерного поражения медицинские формирования могут приступить к работе, как правило, после тушения пожаров, расчистки завалов и вскрытия убежищ и подвалов. Пострадавшие, находящиеся в разрушенных убежищах, укрытиях и под-валах, имеют травматические повреждения преимущественно закрытого характера, вне укрытий - комбинированные повреждения в виде ожогов и открытых травм, воз-можно воздействие на них ионизирующего излучения. В местах выпадения радиоак-тивных веществ вероятны лучевые поражения.

Знание характеристики зон разрушения в очаге ядерного поражения позволяет начальнику медслужбы ГО (МСГО) произвести ориентировочный расчет вероятных санитарных по-терь в очаге поражения, потребности в количестве сил МСГО, необходимых для ока-зания медицинской помощи пораженным, и правильно организовать эту помощь.

При одновременном воздействии на человека нескольких поражающих факто-ров ядерного взрыва наблюдаются так называемые комбинированные поражения. Различают следующие комбинации:

Механическая травма и ожоги;

Механическая травма и лучевое поражение;

Ожоги и лучевое поражение;

Механическая травма, ожоги и лучевое поражение.

Комбинированные поражения имеют ряд особенностей, главными из них являются следующие:

1. Наличие так называемого синдрома взаимного отягощения , который прояв-ляется в том, что у облученных ухудшаются течение и исходы механических травм и ожогов. Вместе с тем сокращается скрытый период лучевой болезни, а сама она протекает в тяжелой форме.

2. Развитие шока и вторичной инфекции вследствие ослабления защитных свойств организма после облучения.

3. Понижение регенеративной способности облученных клеток и тканей, в ре-зультате чего заживление ран и ожогов или срастание переломов происходит замедленно и с различными осложнениями.

Все эти особенности комбинированных поражений следует учитывать при ока-зании медицинской помощи и лечении.

Зоны радиоактивного заражения местности.

След радиоактивного облака (размеры которого зависят от мощности взрыва и скорости ветра) на равнинной местности при неменяющихся направ-лениях и скорости ветра имеет форму вытянутого эллипса и условно делится на четыре зоны : умеренного, сильного, опасного и чрезвычайно опасного заражения.

Границы этих зон определяются экспозиционной дозой до полного распада (Р) или (для удобства решения задач по оценке радиационной обстановки) уровнем ра-диации на заданное время (Р/ч).

Зона умеренного загрязнения (зона А) занимает около 60% всей площади следа. На внешней границе этой зоны экспозиционная доза излучения за время полного рас-пада составит 40 Р, а на внутренней границе - 400 Р. Уровень радиации через час после взрыва на внешней границе этой зоны составит 8 Р/ч, через 10 ч - 0,5 Р/ч. В течение первых суток пребывания в этой зоне незащищенные люди могут получить дозу облу-чения выше допустимых норм, а 50% из них - заболеть лучевой болезнью . Работы на объектах, как правило, не прекращаются. Работы на открытой местности, расположен-ной в середине зоны или у ее внутренней границы, должны быть прекращены.

Зона сильного загрязнения (зона Б) занимает около 20% всей площади следа. Экспозиционная доза за время полного распада на внешней границе зоны будет равна 400 Р, а на внутренней - 1200 Р. Уровень радиации через 1 ч после взрыва составит на внешней границе зоны 80 Р/ч, через 10 ч - 5 Р/ч. Опасность поражения незащищенных людей в этой зоне сохраняется до 3 сут. Потери в этой зоне среди незащищенного насе-ления составят 100%. Работы на объектах прекращаются на срок до 1 суток, рабочие и служащие укрываются в защитных сооружениях, подвалах или других укрытиях.

Зона опасного загрязнения (зона В) занимает около 13% всей площади следа. На внешней границе этой зоны экспозиционная доза до полного распада составит 1200 Р, а на внутренней - 4000 Р. Уровень радиации через 1 ч после взрыва на ее внешней грани-це составит 240 Р/ч, через 10 ч - 15 Р/ч. Тяжелые поражения людей возможны даже при их кратковременном пребывании в этой зоне . Работы на объектах прекращаются на срок от 1 до 3-4 сут, рабочие и служащие укрываются в защитных сооружениях.

Зона чрезвычайно опасного загрязнения (зона Г) занимает около 7% площади следа. На внешней границе экспозиционная доза излучения за время полно-го распада будет равна 4000 Р, а в середине этой зоны - до 10 000 Р. Уровень радиа-ции через час после взрыва на внешней границе зоны составит 800 Р/ч, через 10ч-50 Р/ч. Поражения людей могут возникнуть даже при их пребывании в противорадиа-ционных укрытиях. В зоне работы на объектах прекращаются на 4 сут и более, рабочие и служащие укрываются в убежищах. По истечении указанного срока уровень радиации на территории объекта спадает до значений, обеспечивающих безопасную деятельность рабочих и служащих в производственных помещениях.

В зонах радиоактивного загрязнения в значительной мере усложняются условия работы медицинских формирований. Поэтому должны соблюдаться режимы проти-ворадиационной защиты, чтобы не допустить переоблучения людей.

При передвижении формирований по загрязненной местности принимаются меры по защите личного состава от облучения: выбираются маршруты с наименьшим уров-нем радиации, движение автотранспорта осуществляется на повышенных скоростях, используются радиозащитные препараты, респираторы и другие средства защиты.

Личный состав санитарных дружин должен принимать все меры по защите себя от воздействия проникающей радиации. Работа санитарных дружин на загрязненной РВ местности планируется исходя из возможной дозы облучения (мах. 0,5 грея). Необходимо предусмотреть прием личным составом перед входом в указанные зоны радиозащитного средства, содержащегося в индивидуальной аптеч-ке. После окончания работы личный состав сан дружин обязательно должен пройти специальную обработку.

Сроки работы санитарных дружин на загрязненной местности устанавливают старшие начальники ГО в соответствии с принятыми безопасными дозами облуче-ния. Для осуществления индивидуального дозиметрического контроля санитарным дружинникам перед вводом на загрязненную местность выдают индивидуальные или групповые дозиметры. По окончании работы эти дозиметры собирают и в специаль-ном журнале регистрируют дозы облучения.

Для развертывания функциональных подразделений медицинского отряда (ОПМ) используются укрытия и помещения на местности, не загрязненной РВ, или (в край-нем случае) на загрязненной местности с уровнем радиации не более 0,5 Р/ч.

Формирования МСГО, в частности ОПМ, находящиеся за пределами очага по на-правлению движения радиоактивного облака, необходимо своевременно, до его подхо-да, вывести из этого района, сохранив их для последующего ввода в очаг поражения.

Персонал учреждений медицинской службы необходимо своевременно укрыть в про-тиворадиационных укрытиях на срок, определяемый условиями конкретной обстановки.

Размеры санитарных потерь будут зависеть от:

  1. мощности и устройства ядерного боеприпаса;
  2. вида взрыва;
  3. количества населения, оказавшегося в очаге поражения;
  4. обеспеченности населения индивидуальными и коллективными средствами защиты;
  5. рельефа местности;
  6. характера застройки и пла-нировки города;
  7. состояния погоды;
  8. времени суток и т.д.
Возможная структура сан. потерь при ядерном взрыве мощностью 20 Кт

Поражающие факторы

Поражения

характер

частота встречае-мости, %

Ударная волна

Механические повреждения

Световое излучение

Термические ожоги

Проникающая радиация и радиоактив-ное загрязнение

Радиационные поражения

Одновременное воздействие всех пора-жающих факторов

Комбинированные поражения

МТХ очагов при применении ЯО (Ю.М. Полумисков, И.В. Воронцов, 1980)

Вид боеприпаса

Калибр боеприпаса

Санитарные потери, %

Тип ядерного очага

от комбини-рованных поражений

от свето-вого из-лучения

от прони-кающей радиации

Нейтронный Атомный

Сверхма-лый, малый

Очаги с преимуще-ственно радиаци-онными потерями

Боеприпас деления

Очаги с комбини-рованными пора-жениями

Термоядер-ный боепри-пас

Крупный, сверхкруп-ный

Очаги с преимуще-ственно термиче-скими поражениями

При внезапном применении ядерного оружия общие людские потери в очаге ядерного поражения могут достигать 50-60% от численности населения города. При использовании средств защиты потери снижа-ются вдвое и более. Считается, что из общего числа людских потерь 1/3 приходится на безвозвратные (погибшие) и 2/3 - на санитарные потери (потерявшие трудоспособность). Из числа санитарных потерь около 20-40% будут составлять легкопораженные и 60-80% - пораженные средней и тяже-лой степени тяжести. С шоком может быть 20 - 25 % пораженных. В госпитализации нуждаться будут 65 - 67% пораженных.

Вопрос № 2

Химическое оружие, классификация и краткая характеристика ОВ. Проблемы хранения и уничтожения запасов ОВ

Химическое оружие (ХО) - это вид оружия массового поражения, пора-жающее действие которого основано на использовании боевых токсических химических веществ (БТХВ).

К боевым токсическим химическим веществам (ХО) относятся:

Отравляющие ве-щества (ОВ),

Токсины,

Фитотоксиканты, которые могут применяться в военных целях для поражения различных видов растительности.

В качестве средств доставки химического оружия к объектам поражения ис-пользуются авиация, ракеты, артиллерия, средства инженерных и химических войск (генераторы аэрозолей, дымовые шашки, гранаты).

Особенности химического оружия:

ХО вызывает мас-совые и одномоментные поражения людей на большой территории;

ХО способно создавать очаги хим поражения на об-ширных площадях;

Применение ХО не сопровождается разрушением матери-альных ценностей, но может привести к длитель-ному опасному загрязнению окружающей среды;

Многие БТХВ обладают высокой стойкостью, токсичностью и быстротой действия на организм человека;

БТХВ вызывают преимущественно тяжелые поражения и поражения средней тяжести;

Применение химического оружия вызывает необходимость использования индивидуальных средств защиты, проведение специальной обработки;

Пораженные нуждаются в оказании первой помощи в кратчай-шие сроки.

Во всех случа-ях необходима быстрейшая эвакуация из очага для оказания медпомощи.

Видами боевого состояния БТХВ являются: пар, аэрозоль и капли. Поражения лю-дей в результате непосредственного воздействия частиц БТХВ называются первичны-ми, а поражения в результате контакта с загрязненной поверхностью - вторичными.

Отравляющие вещества (ОВ) - химические соединения, обладающие определенными токсическими и физико-химическими свойствами, способные при их боевом применении поражать людей, животных и растения, загрязнять воздух, одежду, технику и местность.

ОВ составляют основу химического оружия. Находясь в боевом состоянии, ОВ поражают организм, проникая через: органы дыхания, кожные покровы и раны с осколками химических боеприпасов. Кроме того, поражения могут наступать в результате употребления загрязненных продуктов питания и воды.

В настоящее время приняты следующие виды классификации ОВ.

1. По тактическому назначению:

Смертельного действия:VX, зоман, зарин, иприт, синиль-ная кислота, фосген

Временно выводящие живую силу из строя: BZ;

Раздражающие: хлорацетофенон, адамсит, CS, CR.

2. По продолжительности сохранения поражающего действия:

Стойкие, поражающее действие сохраняется на длительные сроки - дни, недели и даже месяцы (иприт, VX);

Нестойкие поражающее действие сохраняется от нескольких де-сятков минут до 2-4 ч (синильная кислота, хлорциан, фосген, дифосген, зарин).

  1. 3. По быстроте наступления поражающего действия:

Быстродействующие (зарин, зоман, VX, синильная кислота, CS, CR);

Медленнодействующие (иприты, BZ, фосген, дифосген).

4. По вероятности применения:

Табельные (VX, зарин, BZ, CS, CR);

Запасные табельные (азотистый иприт, люизит);

Ограниченно-табельные (сернистый иприт, синильная кислота, хлорциан).

5. По ведущему клиническому симптому поражения (токсикологическая классификация):

Нервно-паралитического действия или нейротоксиканты (зарин, зоман, VX);

Кожно-нарывного действия или цитотоксического действия (иприт, азотистый иприт, люизит);

Общеядовитого действия (синильная кислота, хлорциан);

Удушающего действия или пульмотоксиканты (фосген, дифосген);

Раздражающего действия - лакриматоры и стерниты (хлорацетофенон, хлор-пикрин, CS, CR);

Психотомиметического действия (BZ).

В результате применения химического оружия образуется зона химического за-грязнения, внутри которой возникает очаг химического поражения.

Зона химического загрязнения включает: зону применения химического оружия и территорию на которую распространилось облако, загрязненное ОВ в поражающих концентрациях.

Очагом химического поражения называется территория, в пределах ко-торой в результате воздействия химического оружия произошли массовые по-ражения людей, сельскохозяйственных животных и растений.

Размер, характер очага химического поражения зависят от вида и количества ОВ, способов его боевого применения, метеорологических условий, рельефа местно-сти, плотности застройки населенных пунктов и др.

Величина потерь зависит от степени внезапности, масштаба, способов примене-ния ОВ и их свойств, плотности населения, степени его защиты, обеспеченности СИЗ и умения пользоваться ими.

Санитарные потери при быстродействующих ОВ формируются в сроки от 5 до 40 мин; если первая медицинская помощь не оказывается своевременно, отмечается высокая смертность. При применении медленнодействующих ОВ санитарные потери формируются в течение 1-6 ч.

Очаг химического поражения

Протоксины и фитотоксикантывы узнаете в курсе токсикологии.

Вопрос № 3

Бактериологическое (биологическое) оружие, краткая характеристика

БО (биологическое) - это патоген-ные микроорганизмы со средствами доставки предназначенные для массового поражения людей, сельскохозяйственных животных и растений.

В качестве БО могут использоваться представители всех классов микроорганизмов которые искусственно распространяются во внешнюю среду.

Для поражения людей применяются возбудители следующих инфекционных за-болеваний:

Вирусы - возбудители натуральной оспы, желтой лихорадки, многих видов энцефалитов (энцефаломиелитов), геморрагических лихорадок и др.;

Бакте-рии - возбудители сибирской язвы, туляремии, чумы, бруцеллеза, сапа, мелиоидоза и др.;

Риккетсий - возбудители Ку-лихорадки, сыпного тифа, лихорадки цуцугаму-ши, лихорадки Денге, пятнистой лихорадки Скалистых гор и др.;

Грибки - возбудители кокцидиомикоза, гистоплазмоза, бластомикоза и дру-гих глубоких микозов.

Для поражения сельскохозяйственных животных в качестве БС могут использо-ваться возбудители заболеваний, опасные в равной степени для животных и человека (сибирской язвы, ящура, лихорадки долины Рифт и др.), или поражающие только жи-вотных (чумы крупного рогатого скота, африканской чумы свиней и других эпизо-отических заболеваний).

Поражающее действие биологического оружия проявляется не сразу, а спустя оп-ределенное время (инкубационный период), зависящее как от вида и количества попав-ших в организм болезнетворных микробов, так и от физического состояния организма.

Особенности биологического оружия:

  1. Высокая потенциальная эффективность.
  2. Наличие скрытого периода (инкубационный период).
  3. Контагиозность (способность передаваться от человека человеку).
  4. Продолжительность действия.
  5. Трудность обнаружения.
  6. Избирательность.
  7. Дешевизна производства.
  8. Сильное психологическое воздействие.
  9. Возможное применение нескольких заразных агентов.
  10. Бесшумность.

По эпидемиологической опасности инфекционные агенты делятся на:

  1. Высококонтагиозные (возбудители чумы, холеры, натуральной оспы, гемморагические лихорадки и т.д.)
  2. Контагиозные (брюшной тиф, сальманелез, шигелиоз, сибирская язва и т.д.)
  3. Малоконтгиозные (менингоэнцефалит, малярия, туляремия и т.д.)
  4. Неконтагиозные (бруциллез, ботулизм и др.).

Исходя из этого будут зависеть эпидемиологические особенности очага поражения, а следовательно, и характер про-тивоэпидемических мероприятий, порядок размещения инфицированного населения. Наконец, вид примененного возбудителя определяет общую систему карантинных или обсервационных мероприятий и сроки их отмены.

Способы боевого применения БС:

Распыление биологических рецептур а приземном слое воздуха частицами аэрозоля - аэрозольный способ. Приводит к сплошной заболеваемости. В виде эпидемиологического взрыва;

Рассеивание искусственно зараженных биологическими сред-ствами переносчиков - трансмиссивный способ. Заболеваемость растет постепенно. Очаг имеет неправильные формы;

Заражение биологическими средствами воздуха и воды в замкнутых про-странствах (объемах) при помощи диверсионного снаряжения - диверсион-ный способ.

В качестве быстродействующих БС, обладающих относительно коротким инку-бационным периодом, и приводящих к высокой летально-сти, могут быть применены возбудители сибирской язвы, сапа, мелиоидоза, пятни-стой лихорадки Скалистых гор, желтой лихорадки и туляремии.

Возбудители чумы, холеры и натуральной оспы считаются особо опасными, по-скольку вызывают заболевания, отличающиеся большой заразностью, быстрым рас-пространением, тяжелым течением болезни и высокой смертностью.

При применении бактериологического (биологического) оружия возникает зона бактериологического (биологического) заражения, которая образуется в результате заражения местности патогенными микроорганизмами. В пределах этой зоны возни-кает очаг бактериологического (биологического) поражения.

Очагом бактериологического (биологического) поражения называется территория с населенными пунктами и объектами народного хозяйства, в пре-делах которой в результате воздействия БО возникли массовые поражения людей, сельскохозяйственных животных растений.

Особую эпидемическую значимость имеют города, населенные пункты, отдель-но стоящие объекты народного хозяйства, то есть та территория, где живут и работа-ют люди. На остальной территории не происходит бурного развития эпидемического процесса и не требуется проведения защитных противоэпидемических мероприятий.

При аэрозольном способе заражения территории, заболеваемость имеет сплош-ной характер, в виде эпидемиологического взрыва, часто наблюдаются тяжелые формы заболевания.

При применении зараженных переносчиков (трансмиссивный способ) границы очага нечеткие, заболевае-мость нарастает медленно.

Для заражения баксредствами воздуха, воды в замкнутом пространстве используется диверсионный метод.

Методика оценки обстановки в очаге предусматривает учет следующих факто-ров: вид примененного возбудителя и способ его применения, своевременность обна-ружения, площадь зоны заражения и площадь территории возможного распростране-ния инфекционных заболеваний, метеорологические условия, время года, количество и плотность населения, характер и плотность застройки населенных пунктов, обеспе-ченность населения индивидуальными и коллективными средствами защиты и свое-временность их использования, численность иммунизированного населения, обеспе-ченность средствами неспецифической и специфической профилактики и лечения.

Учет указанных факторов позволяет определить санитарные потери и организовать мероприятия по локализации и ликвидации очага бактериологического поражения.

Санитарные потери от биологического оружия могут значительно колебаться в зависимости от вида микробов, их вирулентности, контагиозности, масштабов при-менения и организации противобактериологической защиты. Из общего числа людей, находящихся в очаге бактериологического поражения, первич-ная заболеваемость может составлять 25-50%.

Медицинская обстановка в очаге бактериологического пора-жения в значительной мере будет определяться не только величиной и структурой са-нитарных потерь, но и наличием сил и средств, предназначенных для ликвидации по-следствий, а также их подготовленностью.

Вопрос № 4

Краткая характеристика очага комбинированного поражения

Комбинированными считаются поражения, вызванные различными видами ору-жия или различными поражающими факторами одного и того же вида оружия.

Наличие у вероятного противника ядерного, химиче-ского и бактериологического оружия и других средств нападения позволяет ему одномоментно или последовательно применить несколько видов ОМП.

Возможны следующие варианты:

  1. сочетание ядерного и химического оружия;
  2. ядерного и бактериологического оружия;
  3. химического и бактериоло-гического оружия;
  4. ядерного, химического и бактериоло-гического оружия.
  5. Не исключается также сочетанное при-менение оружия массового поражения с различными ви-дами обычного вооружения.

Очагом комбинированного поражения (ОКП) назы-вается территория, в пределах которой в результате одномоментного или последовательного воздействия двух или более видов оружия массового поражения или других средств нападения противника возникла обстановка, тре-бующая проведения аварийно спасательных и других неотложных работ (АС и ДНР) с обеззараживанием мест-ности и находящихся на ней объектов.

ОКП будет характеризоваться более сложной общей и медицинской обстановкой по сравнению с очагами, вы-званными каким-либо одним видом оружия массового по-ражения.

При оценке обстановки в ОКП следует исходить из особенностей поражающего действия того или иного вида примененного оружия. Так, высокая токсичность совре-менных 0В, быстрота их воздействия на человека требу-ет проведения всех мероприятий, в том числе и медицин-ских, в первую очередь и в короткие сроки. С другой сто-роны, своевременное обнаружение факта применения бактериологического (биологического) оружия, одной из особенностей поражающего действия которого является наличие скрытого периода, дает возможность некоторые мероприятия (выявление больных и их госпитализация) проводить в более поздние сроки.

Учитывая особенности оружия массового поражения, работу формирований МС ГО в ОКП следует ориентиро-вать на поражения от того вида оружия (или поражаю-щих факторов), которые требуют немедленного оказания медицинской помощи.

Наиболее сложные задачи для МСГО возникают при применении противником ядерного и химического оружия .

Это обусловлено тем, что в таком ОКП требуется достаточно быстро оказывать медицин-скую помощь многим пораженным как ядерным, так и химическим оружием. В то же время розыск пораженных и быстрое оказание медицинской помощи будут резко за-труднены из-за возникших пожаров, разрушений, радио-активного и химического заражения местности, а также использования индивидуальных средств защиты при спа-сательных работах.

В результате воздействия на организм человека раз-личных видов оружия или разных поражающих факторов одного вида оружия возникают комбинированные пора-жения.

Известно, что поражения от одного вида оружия могут отягощать течение поражений от другого вида ору-жия. Эта особенность комбинированных поражений по-лучила название «синдром взаимного отягощения».

Так, лучевая болезнь снижает защитные функции организма, что значительно затрудняет диагностику и лечение пора-жений, вызванных бактериологическим (биологическим) оружием.

В то же время инфекционные болезни будут не только отягощать состояние пораженных лучевой болезнью, но и ухудшать заживление ран и ожогов.

Кроме то-го, различные ранения и ожоги открывают дополнитель-ные пути для внедрения в организм человека БС и ОВ.

Поражение высокотоксичными ОВ (зарин, V x , иприт) бу-дет резко ухудшать состояние пораженных.

Таким образом, возникновение ОКП приведет:

К рез-кому увеличению потерь (в том числе и санитарных),

Усложнит структуру поражений,

Затруднит розыск, ока-зание медицинской помощи пораженным, эвакуацию их из очага поражения,

Утяжелит течение поражений,

И ос-ложнит лечение пораженных.

Вопрос № 5

Новейшие виды оружия и их поражающее действие

Считается, что из числа возможных в ближайшем будущем новых видов оружия наибольшую реальную опасность представляют лучевое, ра-диочастотное, инфразвуковое, радиологическое и геофизическое оружие.

1. Лучевое оружие . К этому оружию относятся:

А). Лазеры представляют собой мощные излучатели электромагнитной энергии оп-тического диапазона. Поражающее действие лазерного луча достигается в результате нагревания до высоких температур материалов объекта, приводящее к их расплавлению и даже ис-парению, повреждению сверхчувствительных элементов, поражению органов зрения и нанесению человеку термических ожогов кожи.

Действие лазерного луча отличается скрытностью (отсутствием внешних при-знаков в виде огня, дыма, звука), высокой точностью, прямолинейностью распростра-нения, практически мгновенным действием.

Применение лазеров с наибольшей эффективностью может быть достигнуто в космическом пространстве для уничтожения межконтинентальных баллистических ракет и искусственных спутников Земли, как это предусматривается в американских планах «звездных войн».

Б). Ускорительное оружие. Поражаю-щим фактором ускорительного оружия служит высокоточный остронаправленный пучок насыщенных энергией заряженных или нейтральных частиц (электронов, про-тонов, нейтральных атомов водорода), разогнанных до больших скоростей. Ускори-тельное оружие называют также пучковым оружием.

Объектами поражения могут быть искусственные спутники Земли, межконтинентальные, баллистические и крылатые ракеты различных типов, а также различные виды наземного вооружения и военной техники,

2 . Радиочастотное оружие - средства, поражающее действие которых ос-новано на использовании электромагнитных излучений сверхвысокой (СВЧ) или чрезвычайно низкой частоты (ЧНЧ). Диапазон сверхвысоких частот нахо-дится в пределах от 300 МГц до 30 ГГц, к чрезвычайно низким относятся час-тоты менее 100 Гц.

Объектом поражения радиочастотным оружием является живая сила, при этом имеется в виду известная способность радиоизлучений сверхвысокой и чрезвычайно низкой частоты вызывать повреждения (нарушения функций) жизненно важных ор-ганов и систем человека - таких, как мозг, сердце, центральная нервная система, эн-докринная система и система кровообращения.

Радиочастотные излучения способны также воздействовать на психику челове-ка, нарушать восприятие, вызывать слуховые галлюцинации, (синтезировать дезориентирующие речевые сообщения, вводимые непосредственно в сознание человека).

3. Инфразвуковое оружие - средства массового поражения, основанные на использовании направленного излучения мощных инфразвуковых колебаний с частотой ниже 16 Гц.

Такие колебания могут воздействовать на центральную нервную систему и пищеварительные органы человека, вызывают го-ловную боль, болевые ощущения во внутренних органах, нарушают ритм дыхания .

При более высоких уровнях мощности излучения и очень малых частотах появ-ляются такие симптомы, как головокружение, тошнота, расстройство кишечника и потерю сознания. Инфразвуковое излучение обладает также психотропным действием на человека, вызывает по-терю контроля над собой, чувство страха и панику .

4. Радиологическое оружие - один из возможных видов оружия массового поражения, действие которого основано на использовании боевых радиоактив-ных веществ. Под боевыми радиоактивными веществами понимают специаль-но получаемые и приготовленные в виде порошков или растворов вещества, содержащие в своем составе радиоактивные изотопы химических элементов, обладающие ионизирующим излучением.

Действие радиологического оружия может быть сравнимо с действием радиоактив-ных веществ, которые образуются при ядерном взрыве и загрязняют окружающую мест-ность.

Основным источником получения боевых радиоактивных веществ служат отхо-ды, образующиеся при работе ядерных реакторов. Они могут быть также получены путем облучения заранее подготовленных веществ в ядерных реакторах или боепри-пасах.

Применение боевых радиоактивных веществ может осуществляться с помощью авиационных бомб, распылительных авиационных приборов, беспилотных самоле-тов, крылатых ракет и других боеприпасов и боевых приборов.

5. Геофизическое оружие - принятый в ряде зарубежных стран условный термин, обозначающий совокупность различных средств, позволяющих ис-пользовать в военных целях разрушительные силы неживой природы путем искусственно вызываемых изменений физических свойств и процессов, протекающих в атмосфере, гидросфере и литосфере Земли.

В США и других странах НАТО делаются также попытки изучать возможность воздействия на ионосферу , вызывая искусственные магнитные бури и полярные сия-ния, нарушающие радиосвязь и препятствующие радиолокационным наблюдениям в пределах обширного пространства. Изучается возможность крупномасштабного из-менения температурного режима путем распыления веществ, поглощающих солнеч-ную радиацию, уменьшения количества осадков, рассчитанного на неблагоприятные для противника изменения погоды (например, засуху). Разрушение слоя озона в ат-мосфере предположительно может дать возможность направить в районы, занимае-мые противником, губительное действие космических лучей и ультрафиолетового из-лучения Солнца.

Термин «геофизическое оружие» отражает, по существу, одно из боевых свойств ядерного оружия - оказание влияния на геофизические процессы в направле-нии инициирования их опасных последствий для войск и населения. Иными словами, поражающими (разрушительными) факторами геофизического оружия служат при-родные явления, и роль их целенаправленного инициирования выполняет главным образом ядерное оружие.

6. Боеприпасы объемного взрыва - принципиально новый вид боеприпасов, эффективность которых, по свидетельству зарубежной печати, значительно выше, чем у боеприпасов, снаряженных обычными взрывчатыми веществами,

Они разработаны в США в 1966 г., Действие боеприпаса объемного взрыва сводится к следующему: заряд (жидкая рецептура) распы-ляется в воздухе, полученный аэрозоль преобразуется в газовоздушную смесь, кото-рая затем подрывается. Действие такого заряда, как считают зарубежные специалисты, соизмеримо с поражающим действие ударной волны тактического ядерного боеприпаса.

7. Зажигательные средства - на основе нефтепродуктов - напалмы . По своему внешнему виду напалмы напоминают резиновый клей, хорошо прилипают к различным поверхностям, горят 3-5 мин, при этом возникает темпера-тура 900-1100 °С. Введение в состав напалмов белого фосфора делает их самовоспла-меняющимися, а добавление металлического натрия придает свойство воспламенять-ся от соприкосновения с влагой. Такие смеси называют супернапалмами . Средняя температура их горения 1100-1200 °С, они хорошо удерживаются на вертикальных и наклонных поверхностях.

Особенности действия зажи-гательных средств : возможность поражения больших скоплений живой силы и тех-ники; уничтожение и вывод из строя на длительное время крупных военных объектов и населенных пунктов; оказание психологического воздействия на людей (снижается способность к сопротивлению); болезненность ожогов, длительность стационарного лечения пораженных. Низкая стоимость по сравнению с другими видами оружия, а также наличие достаточной сырьевой базы делают зажигательное оружие предпочти-тельным.

8. Огнестрельное оружие . Основным видом поражения, которое возникает от воздействия огнестрельного оружия, является ранение. Ранящими снарядами могут быть пули или осколки артил-лерийских снарядов, бомб, мин и ручных гранат.

Использование автоматической винтовки М-16 калибра 5,56 с высокой начальной скоростью полета пули способствует возникновению ранений, характери-зующихся большой величиной разрушения и очагов некроза вокруг раневого канала .

Кассетные боеприпасы применяются для повышения боевой эффективности обычных средств нападения, позволяющих в десятки раз увеличить площадь пораже-ния. Кассеты снаряжаются множеством мелких бомб, предназначенных для уничто-жения живой силы.

Кассетные боеприпасы за рубежом создаются также и для артиллерии, систем залпового огня, управляемых тактических ракет. Их эффективность в 5 раз выше, чем у осколочно-фугасных снарядов.

Для массового уничтожения живой силы предназначены шариковые бомбы, со-держащие 250 металлических шариков массой 0,7-1,0 г. При раскрытии бомбы шари-ки рассеиваются на площади 100 м 2 . Истребитель-бомбардировщик может взять на борт 1000 бомб и поразить открытую живую силу на 10 га. Поражающее действие та-кой бомбовой нагрузки, по расчетам американских специалистов, эквивалентно огне-вой мощи 13160 винтовок, выстреливающих по магазину патронов каждая.

Фугасные боеприпасы предназначены для разрушения промышленных, жилых и административных зданий, железнодорожных и автомобильных магистралей, поражения техники и людей. Основным поражающим фактором фугасных боеприпасов является воздушная ударная волна, возникающая при взрыве обычного взрывчатого вещества, которым снаряжаются эти боеприпасы.

От ударной волны и осколков фугасных и осколочных боеприпасов эффективно за-щищают убежища, укрытия различных типов, перекрытые щели. От шариковых бомб можно укрываться в зданиях, траншеях, складках местности, колодцах коллекторов.

Кумулятивные боеприпасы предназначены для поражения бронированных це-лей. Принцип действия их основан на прожигании преграды мощной струей продук-тов детонации взрывчатого вещества.

Бетонобойные боеприпасы предназначены для поражения железобетонных со-оружений высокой прочности, а также для разрушения взлетно-посадочных полос аэ-родромов. В корпусе боеприпаса размещается два заряда (кумулятивный и фугасный) и два детонатора. При встрече с преградой срабатывает детонатор мгновенного дей-ствия, который подрывает кумулятивный заряд. С некоторой задержкой (после про-хождения боеприпаса через перекрытие) срабатывает второй детонатор, подрываю-щий фугасный заряд, который и вызывает основное разрушение объекта.

Улучшение конструкции боеприпасов идет и в направлении увеличения точно-сти попадания в цель (сверхточное оружие).

9. Высокоточное оружие . Это разведывательно-ударные комплексы , которые объединяют в себе два элемента:

. поражающие средства - самолеты с кассетными бомбами, ракеты оснащенные бое-головками самонаведения способны проводить селекцию целей на фоне других объектов и местных предметов;

. технические средства - обеспечивающие боевое применение поражающих средств: средства раз-ведки, связи, навигации, системы управления, обработки и отображения ин-формации, выработки команд.

Такая интегрированная автоматизированная система управления предполагает полностью исключить человека (оператора) из процесса наведения оружия на цель.

К высокоточному оружию относятся также управляемые авиационные бомбы. По внешнему виду они напоминают авиационные бомбы обычного типа и отличают-ся от последних наличием системы управления и небольших крыльев. Эти бомбы предназначены для поражения малоразмерных целей, требующих большой точности попадания. Бом-бы сбрасываются с самолетов, которые не доходят до цели многие километры, и при помощи систем радио- и телеуправления наводятся на цель.

Развитие средств вооруженной борьбы по сравнению с прошлыми войнами может привести к многократному увели-чению размеров санитарных потерь, изменении их структуры, появлению новых видов боевой патологии, что, в свою очередь, ус-ложнит условия работы всех звеньев медицинской службы.

Ст. преподаватель кафедры МПЗ и МК А. Шабров

Ядерный взрыв сопровождается выделением огромного количества энергии, поэтому по разрушающему и поражающему действию он в сотни и тысячи раз может превосходить взрывы самых крупных авиационных бомб, снаряжённых обычными взрывчатыми веществами.

Поражение войск ядерным оружием происходит на больших площадях и носит массовый характер. Ядерное оружие позволяет в короткие сроки наносить противнику крупные потери в живой силе и боевой технике, разрушать сооружения и другие объекты.

Поражающими факторами ядерного взрыва являются:

  1. Ударная волна;
  2. Световое излучение;
  3. Проникающая радиация;
  4. Электромагнитный импульс (ЭМИ);
  5. Радиоактивное заражение.

Ударная волна ядерного взрыва – один из его основных поражающих факторов. В зависимости от того, в какой среде возникает и распространяется ударная волна – в воздухе, воде или грунте, ее называют соответственно: воздушной, подводной, сейсмовзрывной.

Воздушной ударной волной называют область резкого сжатия воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью. Обладая большим запасом энергии, ударная волна ядерного взрыва способна наносить поражения людям, разрушать различные сооружения, вооружение и военную технику и другие объекты на значительных расстояниях от места взрыва.

При наземном взрыве фронт ударной волны представляет собой полусферу, при воздушном взрыве в первый момент – сферу, затем полусферу. Кроме того, при наземном и воздушном взрыве часть энергии расходуется на образование сейсмовзрывных волн в грунте, а также на испарение грунта и образование воронки.

Для объектов большой прочности, например, убежищ тяжелого типа, радиус зоны разрушающего действия ударной волны будет наибольшим при наземном взрыве. Для таких малопрочных объектов, как жилые здания, наибольшим радиус разрушения будет при воздушном взрыве.

Поражение людей воздушной ударной волной может возникать в результате непосредственного и косвенного воздействия (летящими обломками сооружений, падающими деревьями, осколками стекла, камнями грунтом).

В зоне, где избыточное давление во фронте ударной волны превышает 1 кгс/см 2 , имеют место крайне тяжелые и смертельные поражения открыто расположенного личного состава, в зоне с давлением 0,6…1 кгс/см 2 – тяжелые поражения, при 0,4…0,5 кгс/см 2 – поражения средней тяжести и при 0,2…0,4 кгс/см 2 – легкие поражения.

Радиусы зон поражения личного состава в положении лежа в значительно меньше, чем в положении стоя. При расположении людей в траншеях, щелях радиусы зон поражения уменьшаются примерно в 1,5 — 2 раза.

Лучшими защитными свойствами обладают закрытые помещения подземного и котлованного типа (блиндажи, убежища), уменьшая радиус поражения ударной волной не менее, чем в 3 – 5 раз.

Таким образом, надежной защитой личного состава от ударной волны являются инженерные сооружения.

Ударная волна выводит из строя и вооружение. Так, слабые повреждения ЗУР наблюдаются при избыточном давлении ударной волны 0,25 – 0,3 кгс/см 2 . При слабых повреждениях у ракет происходит местное обжатие корпуса, могут выйти из строя отдельные приборы и агрегаты. К примеру, при взрыве боеприпаса мощностью 1 Мт ракеты выходят из строя на расстоянии 5…6 км, автомобили и подобная им техника – 4…5 км.

Световое излучение ядерного взрыва представляет собой электромагнитное излучение оптического диапазона, включающее ультрафиолетовую (0,01 — 0,38 мк), видимую (0,38 — 0,77 мк) и инфракрасную (0,77-340 мк) области спектра.

Источником светового излучения является светящаяся область ядерного взрыва, температура которой вначале достигает нескольких десятков миллионов градусов, а затем остывает и в своем развитии проходит три фазы: начальную, первую и вторую.

В зависимости от мощности взрыва длительность начальной фазы светящейся области составляет доли миллисекунды, первой – от нескольких миллисекунд до десятков и сотен миллисекунд, а второй – от десятых долей секунды до десятков секунд. За время существования светящейся области температура внутри ее изменяется от миллионов до нескольких тысяч градусов. Основная доля энергии светового излучения (до 90%) приходится на вторую фазу. Время существования светящейся области возрастает с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра (до 1 кт) свечение продолжается десятые доли секунды; малого (от 1 до 10 кт) – 1 … 2 с; среднего (от 10 до 100 кт) – 2…5 с; крупного (от 100 кт до 1 Мт) – 5 … 10 с; сверхкрупного (свыше 1 Мт) – несколько десятков секунд. Размеры светящейся области также возрастают с увеличением мощности взрыва. При взрывах боеприпасов сверхмалого калибра максимальный диаметр светящейся области составляет – 20 … 200 м, малого – 200 … 500, среднего – 500 … 1000 м, крупного – 1000 … 2000 м и сверхкрупного – несколько километров.

Основным параметром, определяющим поражающую способность светового излучения ядерного взрыва, является световой импульс.

Световой импульс – количество энергии светового излучения, падающей за все время излучения на единицу площади неподвижной неэкранированной поверхности, расположенной перпендикулярно к направлению прямого излучения, без учета отраженного излучения. Световой импульс измеряется в джоулях на квадратный метр (Дж/м 2) или в калориях на квадратный сантиметр (кал/см 2); 1 кал/см 2 4,2*10 4 Дж/м 2 .

Световой импульс уменьшается с увеличением расстояния до эпицентра взрыва и зависит от вида взрыва и состояния атмосферы.

Поражение людей световым излучением выражается в появлении ожогов различных степеней открытых и защищенных обмундированием участков кожи, а также в поражении глаз. Например, при взрыве мощностью 1 Мт (U = 9 кал/см 2) поражаются открытые участки кожи человека, вызывая ожог 2-ой степени.

Под воздействием светового излучения возможно возгорание различных материалов и возникновение пожаров. Световое излучение в значительной степени ослабляется облачностью, зданиями населенных пунктов, лесом. Однако, в последних случаях поражение личного состава может быть вызвано за счет образования обширных зон пожаров.

Надежной защитой от светового излучения личного состава и боевой техники являются подземные инженерные сооружения (блиндажи, убежища, перекрытые щели, котлованы, капониры).

Защита от светового излучения в подразделениях включает выполнение следующих мероприятий:

повышение коэффициента отражения светового излучения поверхностью объекта (применение материалов, красок, обмазок светлых тонов, различных металлических отражателей);

повышение стойкости и защитных свойств объектов к действию светового излучения (применение увлажнения, снежных обсыпок, использование огнестойких материалов, покрытие глиной и известью, пропиткой чехлов и тентов огнестойкими составами);

проведение противопожарных мероприятий (расчистка районов расположения личного состава и боевой техники от легко воспламеняющихся материалов, подготовка сил и средств для тушения пожаров);

использование индивидуальных средств защиты, таких как общевойсковой комплексный защитный костюм (ОКЗК), общевойсковой защитный комплект (ОЗК), импрегнированное обмундирование, защитные очки и т.п.

Таким образом, ударная волна и световое излучение ядерного взрыва являются его основными поражающими факторами. Своевременное и умелое использование простейших укрытий, рельефа местности, инженерных фортификационных сооружений, индивидуальных средств защиты, профилактических мероприятий позволит ослабить, а в ряде случаев исключить воздействие ударной волны и светового излучения на личный состав, вооружение и военную технику.

Проникающая радиация ядерного взрыва представляет собой поток γ- излучения и нейтронов. Нейтронное и γ-излучение различны по своим физическим свойствам, а общим для них является то, что они могут распространяться в воздухе во все стороны на расстояния до 2,5 – 3 км. Проходя через биологическую ткань, γ -кванты и нейтроны ионизируют атомы и молекулы, входящие в состав живых клеток, в результате чего нарушается нормальный обмен веществ и изменяется характер жизнедеятельности клеток, отдельных органов и систем организма, что приводит к возникновению заболевания – лучевой болезни. Схема распространения гамма-излучения ядерного взрыва показана на рисунке 1.

Рис. 1. Схема распространения гамма-излучения ядерного взрыва

Источником проникающей радиации являются ядерные реакции деления и синтеза, протекающие в боеприпасах в момент взрыва, а также радиоактивный распад осколков деления.

Поражающее действие проникающей радиации характеризуется дозой излучения, т.е. количеством энергии ионизирующих излучений, поглощенной единицей массы облучаемой среды, измеряемой в радах (рад ).

Нейтроны и γ-излучение ядерного взрыва действуют на любой объект практически одновременно. Поэтому общее поражающее действие проникающей радиации определяется суммированием доз γ-излучения и нейтроно, где:

  • суммарная доза излучения, рад;
  • доза γ- излучения, рад;
  • доза нейтронов, рад (ноль у символов доз показывает, что они определяются перед защитной преградой).

Доза излучения зависит от типа ядерного заряда, мощности и вида взрыва, а также от расстояния до центра взрыва.

Проникающая радиация является одним из основных поражающих факторов при взрывах нейтронных боеприпасов и боеприпасов деления сверхмалой и малой мощности. Для взрывов большой мощности радиус поражения проникающей радиацией значительно меньше радиусов поражения ударной волной и световым излучением. Особо важное значение проникающая радиация приобретает в случае взрывов нейтронных боеприпасов, когда основная доля дозы излучения образуется быстрыми нейтронами.

Поражающее воздействие проникающей радиации на личный состав и на состояние его боеспособности зависит от полученной дозы излучения и времени, прошедшего после взрыва, что вызывает лучевую болезнь. В зависимости от полученной дозы излучения различают четыре степени лучевой болезни.

Лучевая болезнь I степени (легкая) возникает при суммарной дозе излучения 150 – 250 рад. Скрытый период продолжается 2 – 3 недели, после чего появляется недомогание, общая слабость, тошнота, головокружение, периодическое повышение температуры. В крови уменьшается содержание лейкоцитов и тромбоцитов. Лучевая болезнь I степени излечивается в течение 1,5 – 2 месяцев в стационаре.

Лучевая болезнь II степени (средняя) возникает при суммарной дозе излучения 250 – 400 рад. Скрытый период длится около 2 – 3 недель, затем признаки заболевания выражаются более ярко: наблюдается выпадение волос, меняется состав крови. При активном лечении наступает выздоровление через 2 — 2,5 месяца.

Лучевая болезнь III степени (тяжелая) наступает при дозе излучения 400 – 700 рад. Скрытый период составляет от несколько часов до 3 недель.

Болезнь протекает интенсивно и тяжело. В случае благоприятного исхода выздоровление может наступить через 6 – 8 месяцев, но остаточные явления наблюдаются значительно дольше.

Лучевая болезнь IV степени (крайне тяжелая) наступает при дозе излучения свыше 700 рад, которая является наиболее опасной. Смерть наступает через 5 – 12 дней, а при дозах, превышающих 5000 рад, личный состав утрачивает боеспособность через несколько минут.

Тяжесть поражения в известной мере зависит от состояния организма до облучения и его индивидуальных особенностей. Сильное переутомление, голодание, болезнь, травмы, ожоги повышают чувствительность организма к воздействию проникающей радиации. Сначала человек теряет физическую работоспособность, а затем – умственную.

При больших дозах излучения и потоках быстрых нейтронов утрачивают работоспособность комплектующие элементы систем радиоэлектроники. При дозах более 2000 рад стекла оптических приборов темнеют, окрашиваясь в фиолетово – бурый цвет, что снижает или полностью исключает возможность их использования для наблюдения. Дозы излучения 2 – 3 рад приводят в негодность фотоматериалы, находящиеся в светонепроницаемой упаковке.

Защитой от проникающей радиации служат различные материалы, ослабляющие γ-излучение и нейтроны. При решении вопросов защиты следует учитывать разницу в механизмах взаимодействия γ-излучения и нейтронов со средой, что определяет выбор защитных материалов. Излучение сильнее всего ослабляется тяжелыми материалами, имеющими высокую электронную плотность (свинец, сталь, бетон). Поток нейтронов лучше ослабляется легкими материалами, содержащими ядра легких элементов, например водорода (вода, полиэтилен).

В подвижных объектах для защиты от проникающей радиации необходима комбинированная защита, состоящая из легких водородосодержащих веществ и материалов с высокой плотностью. Средний танк, например, без специальных противорадиационных экранов имеет кратность ослабления проникающей радиации равную примерно 4, что недостаточно для обеспечения надежной защиты экипажа. Поэтому вопросы защиты личного состава должны решаться выполнением комплекса различных мероприятий.

Наибольшей кратностью ослабления от проникающей радиации обладают фортификационные сооружения (перекрытые траншеи – до 100, убежища – до 1500).

В качестве средств, ослабляющих действие ионизирующих излучений на организм человека, могут быть использованы различные противорадиационные препараты (радиопротекторы).

Ядерные взрывы в атмосфере и в более высоких слоях приводят к возникновению мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля ввиду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ).

Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, на вооружении и военной технике и других объектах.

Основной причиной генерации ЭМИ длительностью менее 1с считают взаимодействие γ-квантов и нейтронов с газом во фронте ударной волны и вокруг него. Важное значение имеет также возникновение асимметрии в распределении пространственных электрических зарядов, связанных с особенностями распространения излучения и образования электронов.

При наземном или низком воздушном взрыве γ-кванты, испускаемые из зоны протекания ядерных реакций, выбивают из атомов воздуха быстрые электроны, которые летят в направлении движения квантов со скоростью, близкой к скорости света, а положительные ионы (остатки атомов) остаются на месте. В результате такого разделения электрических зарядов в пространстве образуются элементарные и результирующие электрические и магнитные поля, которые и представляют собой ЭМИ.

При наземном и низком воздушном взрывах поражающее воздействие ЭМИ наблюдается на расстоянии порядка нескольких километров от центра взрыва.

При высотном ядерном взрыве (Н > 10 км) могут возникать поля ЭМИ в зоне взрыва и на высотах 20 – 40 км от поверхности земли. ЭМИ в зоне такого взрыва возникает за счет быстрых электронов, которые образуются в результате взаимодействия квантов ядерного взрыва с материалом оболочки боеприпаса и рентгеновского излучения с атомами окружающего разреженного воздушного пространства.

Испускаемое из зоны взрыва излучение в направлении поверхности земли начинает поглощаться в более плотных слоях атмосферы на высотах 20 – 40 км, выбивая из атомов воздуха быстрые электроны. В результате разделения и перемещения положительных и отрицательных зарядов в этой области и в зоне взрыва, а также при взаимодействии зарядов с геомагнитным полем земли возникает электромагнитное излучение, которое достигает поверхности земли в зоне радиусом до нескольких сот километров. Продолжительность ЭМИ – несколько десятых долей секунды.

Поражающее действие ЭМИ проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении и военной технике и других объектах. Под действием ЭМИ в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, сгорание разрядников, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.

Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления. Когда амплитуда ЭМИ не слишком большая, то возможно срабатывание средств защиты (плавких вставок, грозоразрядников) и нарушение работоспособности линий.

Кроме того, высотный взрыв способен создать помехи в работе средств связи на очень больших площадях.

Защита от ЭМИ достигается экранированием как линий энергоснабжения и управления, так и собственно аппаратуры, а также созданием такой элементной базы радиотехнических средств, которая устойчива к воздействию ЭМИ. Все наружные линии, например, должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками. Для защиты чувствительного электронного оборудования целесообразно использовать разрядники с небольшим порогом зажигания. Важное значение имеют правильная эксплуатация линий, контроль исправности средств защиты, а также организация обслуживания линий в процессе эксплуатации.

Радиоактивное заражение местности, приземного слоя атмосферы, воздушного пространства, воды и других объектов возникает в результате выпадения радиоактивных веществ из облака ядерного взрыва при его перемещении под воздействием ветра.

Значение радиоактивного заражения как поражающего фактора определяется тем, что высокие уровни радиации могут наблюдаться не только в районе, прилегающем к месту взрыва, но и на расстоянии десятков и даже сотен километров от него. В отличие от других поражающих факторов, действие которых проявляется в течение относительно короткого времени после ядерного взрыва, радиоактивное заражение местности может быть опасным на протяжении нескольких лет и десятков лет после взрыва.

Наиболее сильное заражение местности происходит от наземных ядерных взрывов, когда площади заражения с опасными уровнями радиации во много раз превышают размеры зон поражения ударной волной, световым излучением и проникающей радиацией. Сами радиоактивные вещества и испускаемые ими ионизирующие излучения не имеют цвета, запаха, а скорость их распада не может быть измерена какими – либо физическими или химическими методами.

Зараженную местность по пути движения облака, где выпадают радиоактивные частицы диаметром более 30 – 50 мкм, принято называть ближним следом заражения. На больших расстояниях – дальний след – небольшое заражение местности, которое в течение длительного времени не влияет на боеспособность личного состава. Схема формирования следа радиоактивного облака наземного ядерного взрыва представлена на рисунке 2.

Рис. 2. Схема формирования следа радиоактивного облака наземного ядерного взрыва

Источниками радиоактивного заражения при ядерном взрыве являются:

  • продукты деления (осколки деления) ядерных взрывчатых веществ;
  • радиоактивные изотопы (радионуклиды), образующиеся в грунте и др. материалах под воздействием нейтронов – наведенная активность;
  • не разделившаяся часть ядерного заряда.

При наземном ядерном взрыве светящаяся область касается поверхности земли и образуется воронка выброса. Значительное количество грунта, попавшего в светящуюся область, плавится, испаряется и перемешивается с радиоактивными веществами.

По мере остывания светящейся области и ее подъема пары конденсируются, образуя радиоактивные частицы разных размеров. Сильный прогрев грунта и приземного слоя воздуха способствует образованию в районе взрыва восходящих потоков воздуха, которые формируют пылевой столб («ножку» облака). Когда плотность воздуха в облаке взрыва станет равной плотности окружающего воздуха, подъем облака прекращается. При этом, в среднем за 7 – 10 мин. облако достигает максимальной высоты подъема, которую иногда называют высотой стабилизации облака.

Границы зон радиоактивного заражения с разной степенью опасности для личного состава можно характеризовать как мощностью дозы излучения (уровнем радиации) на определенное время после взрыва, так и дозой до полного распада радиоактивных веществ.

По степени опасности зараженную местность по следу облака взрыва принято делить на 4 зоны.

Зона А (умеренного заражения), площадь которой составляет 70 – 80% площади всего следа.

Зона Б (сильного заражения). Дозы излучения на внешней границе этой зоны Д внешн = 400 рад, а на внутренней — Д внутр. = 1200 рад. На долю этой зоны приходится примерно 10% площади радиоактивного следа.

Зона В (опасного заражения). Дозы излучения на ее внешней границе Д внешн = 1200 рад, а на внутренней — Д внутр = 4000 рад. Эта зона занимает примерно 8 – 10% площади следа облака взрыва.

Зона Г (чрезвычайно опасного заражения). Дозы излучения на ее внешней границе более 4000 рад.

На рисунке 3 показана схема нанесения прогнозируемых зон заражения при одиночном наземном ядерном взрыве. Синим цветом наносится зона Г, зеленым – Б, коричневым – В, черным – Г.

Рис. 3. Схема нанесения прогнозируемых зон заражения при одиночном ядерном взрыве

Потери людей, вызванные действием поражающих факторов ядерного взрыва, принято делить на безвозвратные исанитарные.

К безвозвратным потерям относят погибших до оказания медицинской помощи, а к санитарным – пораженных, поступивших для лечения в медицинские подразделения и учреждения.

Ядерным оружием называется оружие, поражающее действие которого основано на использовании внутриядерной энергии, выделяющейся при ядерном взрыве.

Ядерное оружие основано на использовании внутриядерной энергии, выделяющейся при цепных реакциях деления тяжелых ядер изотопов урана-235, плутония-239 или при термоядерных реакциях синтеза легких ядер-изотопов водорода (дейтерия и трития) в более тяжелые.

Это оружие включает различные ядерные боеприпасы (боевые головные части ракет и торпед, авиационные и глубинные бомбы, артиллерийские снаряды и мины), снаряженные ядерными зарядными устройствами, средства управления ими и доставки их к цели.

Основной частью ядерного боеприпаса является ядерный заряд, содержащий ядерное взрывчатое вещество (ЯВВ)- уран-235 или плутоний-239.

Цепная ядерная реакция может развиваться только при наличии критической массы делящегося вещества. До взрыва ЯВВ в одном боеприпасе должно быть разделено на отдельные части, каждая из которых по массе должна быть меньше критической. Для осуществления взрыва необходимо соединить их в единое целое, т.е. создать надкритическую массу и инициировать начало реакции от специального источника нейтронов.

Мощность ядерного взрыва принято характеризовать тротиловым эквивалентом.

Применение реакции синтеза в термоядерных и комбинированных боеприпасах позволяет создать оружие практически с неограниченной мощностью. Ядерный синтез дейтерия и трития может быть осуществлен при температуре в десятки и сотни миллионов градусов.

Реально в боеприпасе эта температура достигается в процессе ядерной реакции деления, создавая условия для развития термоядерной реакции синтеза.

Оценка энергетического эффекта термоядерной реакции синтеза показывает, что при синтезе 1кг. Гелия из смеси дейтерия и трития энергии выделяется в 5р. больше, чем при делении 1кг. урана-235.

Одной из разновидностей ядерного оружия является нейтронный боеприпас. Это малогабаритный термоядерный заряд мощностью не более 10 тыс.т., у которого основная доля энергии выделяется за счет реакций синтеза дейтерия и трития, а количество энергии, получаемой в результате деления тяжелых ядер в детонаторе, минимально, но достаточно для начала реакции синтеза.

Нейтронная составляющая при проникающей радиации такого малого по мощности ядерного взрыва и будет оказывать основное поражающее действие на людей.

Для нейтронного боеприпаса на одинаковом расстоянии от эпицентра взрыва доза проникающей радиации примерно в 5-10р.больше, чем для заряда деления той же мощности.

Ядерные боеприпасы всех типов в зависимости от мощности подразделяются на следующие виды:

1. сверхмалые (менее 1 тыс.т);

2. малые(1-10 тыс.т);

3. средние (10-100 тыс.т);

4. крупные (100тыс.-1млн.т).

В зависимости от задач, решаемых с применением ядерного оружия, ядерные взрывы подразделяются на следующие виды:

1. воздушные;

2. высотные;

3. наземные (надводные);

4. подземные (подводные).

Поражающие факторы ядерного взрыва

При взрыве ядерного боеприпаса за миллионные доли секунды выделяется колоссальное количество энергии. Температура повышается до нескольких миллионов градусов, а давление достигает миллиардов атмосфер.

Высокие температура и давление вызывают световое излучение и мощную ударную волну. Наряду с этим взрыв ядерного боеприпаса сопровождается испусканием проникающей радиации, состоящей из потока нейтронов и гамма-квантов. Облако взрыва содержит огромное количество радиоактивных продуктов-осколков деления ядерного взрывчатого вещества, которые выпадают по пути движения облака, в результате чего происходит радиоактивное заражение местности, воздуха и объектов.

Неравномерное движение электрических зарядов в воздухе, возникающее под действием ионизирующих излучений, приводит к образованию электромагнитного импульса.

Основными поражающими факторами ядерного взрыва являются:

1. ударная волна-50% энергии взрыва;

2. световое излучение-30-35% энергии взрыва;

3. проникающая радиация-8-10% энергии взрыва;

4. радиоактивное заражение-3-5% энергии взрыва;

5. электромагнитный импульс-0,5-1 % энергии взрыва.

Ядерное оружие - это один из основных видов оружия массового поражения. Оно способно в короткое время вывести из строя большое количество людей и животных, разрушить здания и сооружения на обширных территориях. Массовое применение ядерного оружия чревато катастрофическими последствиями для всего человечества, поэтому Российская Федерация настойчиво и неуклонно ведет борьбу за его запрещение.

Население должно твердо знать, и умело применять приемы защиты от оружия массового поражения, в противном случае неизбежны огромные потери. Всем известны ужасные последствия атомных бомбардировок в августе 1945 года японских городов Хиросима и Нагасаки - десятки тысяч погибших, сотни тысяч пострадавших. Если бы население этих городов знало средства и способы защиты от ядерного оружия, было бы оповещено об опасности и укрылось в убежище, количество жертв могло быть значительно меньше.

Поражающее действие ядерного оружия основано на энергии, выделяющейся при ядерных реакциях взрывного типа. К ядерному оружию относятся ядерные боеприпасы. Основу ядерного боеприпаса составляет ядерный заряд, мощность поражающего взрыва которого принято выражать тротиловым эквивалентом, т. е. количеством обычного взрывчатого вещества, при взрыве которого выделяется столько же энергии, сколько ее выделится при взрыве данного ядерного боеприпаса. Ее измеряют в десятках, сотнях, тысячах (кило) и миллионах (мега) тонн.

Средствами доставки ядерных боеприпасов к целям являются ракеты (основное средство нанесения ядерных ударов), авиация и артиллерия. Кроме того, могут применяться ядерные фугасы.

Ядерные взрывы осуществляются в воздухе на различной высоте, у поверхности земли (воды) и под землей (водой). В соответствии с этим их принято разделять на высотные, воздушные, наземные (надводные) и подземные (подводные). Точка, в которой произошел взрыв, называется центром, а ее проекция на поверхность земли (воды) - эпицентром ядерного взрыва.

Поражающими факторами ядерного взрыва являются ударная волна, световое излучение, проникающая радиация, радиоактивное заражение и электромагнитный импульс.

Ударная волна - основной поражающий фактор ядерного взрыва, так как большинство разрушений и повреждений сооружений, зданий, а также поражения людей обусловлены, как правило, ее воздействием. Источник ее возникновения - сильное давление, образующееся в центре взрыва и достигающее в первые мгновения и миллиардов атмосфер. Образовавшаяся при взрыве область сильного сжатия окружающих слоев воздуха, расширяясь, передает давление соседним слоям воздуха, сжимая и нагревая их, а те, в свою очередь, воздействуют на следующие слои. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления. Передняя граница сжатого слоя воздуха называется фронтом ударной волны.

Степень поражения ударной волной различных объектов зависит от мощности и вида взрыва, механической прочности (устойчивости объекта), а также от расстояния, на котором произошел взрыв, рельефа местности и положения объектов на ней.

Поражающее действие ударной волны характеризуется величиной избыточного давления. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед фронтом волны. Оно измеряется в ньютонах на квадратный метр (Н/метр в квадрате). Эта единица давления называется Паскалем (Па). 1 Н /метр квадратный = 1 Па (1кПа * 0,01 кгс/см квадратный).

При избыточном давлении 20 - 40 кПА незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие ударной волны с избыточным давлением 40 - 60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждение органов слуха, сильные вывихи конечностей, кровотечение из носа и ушей. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей, поражением внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении 100 кПа.

Скорость движения и расстояние на которое распространяется ударная волна, зависят от мощности ядерного взрыва; с увеличением расстояния от места взрыва скорость быстро падает. Так, при взрыве боеприпаса мощностью 20 кт ударная волна проходит 1 км за 2 с., 2 км за 5 с., 3 км за 8 с.. За это время человек после вспышки может укрыться и тем самым избежать поражения ударной волной.

Световое излучение - это поток лучистой энергии, включающий ультрафиолетовые, видимые и инфракрасные лучи. Его источник - светящаяся область, образуемая раскаленными продуктами взрыва и раскаленным воздухом. Световое излучение распространяется практически мгновенно и длится в зависимости от мощности ядерного взрыва, до 20 с. Однако сила его такова, что, несмотря на кратковременность, оно способно вызывать ожоги кожи (кожных покровов), поражение (постоянное или временное) органов зрения людей и возгорание горючих материалов объектов.

Световое излучение не проникает через непрозрачные материалы, поэтому любая преграда, способная создать тень, защищает от прямого действия светового излучения и исключает ожоги. Значительно ослабляется световое излучение в запыленном (задымленном) воздухе, в туман, дождь, снегопад.

Проникающая радиация - это поток гамма лучей и нейтронов. Она длится 10-15 с. Проходя через живую ткань, гамма - излучение ионизирует молекулы, входящие в состав клеток. Под влиянием ионизации в организме возникают биологические процессы, приводящие к нарушению жизненных функций отдельных органов и развитию лучевой болезни.

В результате прохождения излучений через материалы окружающей среды уменьшается интенсивность излучения. Ослабляющее действие принято характеризовать слоем половинного ослабления, т. е. такой толщиной материала, проходя через которую радиация уменьшается в два раза. Например, в два раза ослабляют интенсивность гамма - лучей: сталь толщиной 2,8 см, бетон 10 см, грунт 14 см, древесина 30 см.

Открытые и особенно перекрытые щели уменьшают воздействие проникающей радиации, а убежища и противорадиационные укрытия практически полностью защищают от нее.

Основными источниками радиоактивного заражения являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате воздействия нейтронов на материалы, из которых изготовлен ядерный боеприпас, и на некоторые элементы, входящие в состав грунта в районе взрыва.

При наземном ядерном взрыве светящаяся область касается земли. Внутрь ее затягиваются массы испаряющегося грунта, которые поднимаются вверх. Охлаждаясь, пары продуктов деления и грунта конденсируются на твердых частицах. Образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, а затем со скоростью 25-100 км/ч движется по ветру. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров. При этом заражаются местность, здания, сооружения, посевы, водоемы и т. п., а также воздух.

Наибольшую опасность радиоактивные вещества представляют в первые часы после выпадения, так как их активность в этот период наивысшая.

Электромагнитный импульс - это электрические и магнитные поля, возникающие в результате воздействия гамма - излучения ядерного взрыва на атомы окружающей среды и образования в этой среде потока электронов и положительных ионов. Он может вызывать повреждение радиоэлектронной аппаратуры, нарушение работы радио - и радиоэлектронных средств.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. В поле следует укрываться за прочными местными предметами, обратными скатами высот, в складках местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ используются средства защиты органов дыхания (противогазы, респираторы, противопыльные тканевые маски и ватно-марлевые повязки), а также средства защиты кожи.

Основу нейтронных боеприпасов составляют термоядерные заряды, в которых используются ядерные реакции деления и синтеза. Взрыв такого боеприпаса оказывает поражающее воздействие, прежде всего на людей, за счет мощного потока проникающей радиации.

При взрыве нейтронного боеприпаса площадь зоны поражения проникающей радиацией превосходит площадь зоны поражения ударной волной в несколько раз. В этой зоне техника и сооружения могут оставаться невредимыми, а люди получат смертельные поражения.

Очагом ядерного поражения называется территория, подвергшаяся непосредственному воздействию поражающих факторов ядерного взрыва. Он характеризуется массовыми разрушениями зданий, сооружений, завалами, авариями в сетях коммунально - энергетического хозяйства, пожарами, радиоактивным заражением и значительными потерями среди населения.

Размеры очага тем больше, чем мощнее ядерный взрыв. Характер разрушений в очаге зависит также от прочности конструкций зданий и сооружений, их этажности и плотности застройки. За внешнюю границу очага ядерного поражения принимают условную линию на местности, проведенную на таком расстоянии от эпицентра (центра) взрыва, где величина избыточного давления ударной волны равна 10 кПа.

Очаг ядерного поражения условно делят на зоны - участки с примерно одинаковыми по характеру разрушениями.

Зона полных разрушений - это территория, подвергшаяся воздействию ударной волны с избыточным давлением (на внешней границе) свыше 50 кПа. В зоне полностью разрушаются все здания и сооружения, а также противорадиационные укрытия и часть убежищ, образуются сплошные завалы, повреждается коммунально - энергетическая сеть.

Зона сильных разрушений - с избыточным давлением во фронте ударной волны от 50 до 30 кПа. В этой зоне наземные здания и сооружения получат сильные разрушения, образуются местные завалы, возникнут сплошные и массовые пожары. Большинство убежищ сохранится, у отдельных убежищ будут завалены входы и выходы. Люди в них могут получить поражения только из-за нарушения герметизации убежищ, их затопления или загазованности.

Зона средних разрушений избыточным давлением во фронте ударной волны от 30 до 20 кПа. В ней здания и сооружения получат средние разрушения. Убежища и укрытия подвального типа сохранятся. От светового излучения возникнут сплошные пожары.

Зона слабых разрушений с избыточным давлением во фронте ударной волны от 20 до 10 кПа. Здания получат небольшие разрушения. От светового излучения возникнут отдельные очаги пожаров.

Зона радиоактивного заражения - это территория, подвергшаяся заражению радиоактивными веществами в результате их выпадения после наземных (подземных) и низких воздушных ядерных взрывов.

Поражающее действие радиоактивных веществ обусловливается в основном гамма - излучениями. Вредное воздействие ионизирующих излучений оценивается дозой излучения (дозой облучения; Д), т.е. энергией этих лучей, поглощенной в единице объема облучаемого вещества. Эта энергия измеряется в существующих дозиметрических приборах в рентгенах (Р). Рентген - это такая доза гамма - излучения, которая создает 1 см кубический сухого воздуха (при температуре 0 градусов С и давлении 760 мм рт. Ст.) 2,083 млрд. пар ионов.

Обычно дозу облучения определяют за какой - либо промежуток времени, называемый временем облучения (время пребывания людей на зараженной местности).

Для оценки интенсивности гамма - излучения, испускаемого радиоактивными веществами на зараженной местности, введено понятие «мощность дозы излучения» (уровень радиации). Мощность дозы измеряют в рентгенах в час (Р/ч), небольшие мощности дозы - в милирентгенах в час (мР/ч).

Постепенно мощности дозы излучений (уровни радиации) снижаются. Так, мощности дозы (уровни радиации) снижаются. Так, мощности дозы (уровни радиации), замеренные через 1 час после наземного ядерного взрыва, через 2 часа уменьшатся вдвое, спустя 3 ч. - в 4 раза, через 7 ч - в 10 раз, а через 49 ч. - в 100 раз.

Степень радиоактивного заражения и размеры зараженного участка радиоактивного следа при ядерном взрыве зависят от мощности и вида взрыва, метеорологических условий, а также от характера местности и грунта. Размеры радиоактивного следа условно делят на зоны (схема № 1 стр. 57)).

Зона опасного поражения. На внешней границе зоны доза радиации (с момента выпадения радиоактивных веществ из облака на местность до полного их распада 1200 Р, уровень радиации через 1 час после взрыва - 240 Р/ч.

Зона сильного заражения . На внешней границе зоны доза радиации - 400 Р, уровень радиации через 1 час после взрыва - 80 Р/ч.

Зона умеренного заражения. На внешней границе зоны доза радиации через 1 час после взрыва - 8Р/ ч.

В результате воздействия ионизирующих излучений, также как и при воздействии проникающей радиации, у людей возникает лучевая болезнь, Доза 100-200 Р вызывает лучевую болезнь первой степени, доза 200 - 400 Р - лучевую болезнь второй степени, доза 400 - 600 Р - лучевую болезнь третьей степени, доза свыше 600 Р - лучевую болезнь четвертой степени.

Доза однократного облучения в течении четырех суток до 50 Р, как и многократного облучения до 100 Р за 10 - 30 дней, не вызывает внешних признаков заболевания и считается безопасной.