Перегонка нефти производится. Простая перегонка

Зачем нам вставать, еслирассвело?

Джон Донн «Рассвет»

Случайный человек, который пройдет мимо нефтепе­рерабатывающего завода и увидит множество высоких колонн, наверное решит, что это колонны крекинга. Это распространенная ошибка. Большинство этих высоких колонн является в действительности ректификационны­ми колоннами того или иного типа. Колонны крекинга, которые обычно короче и приземистее, будут рассмотре­ны в одной из следующих глав.

Перегонка нефти является замечательным изобрете­нием технологов-нефтяников, основанным на важной ха­рактеристике нефти, описанной в предыдущей главе, а именно, на кривой разгонки. Механизм, который при этом используется, не очень сложен и поэтому не осо­бенно интересен. Однако для полноты изложения мы рас­смотрим здесь и эти элементарные веши.

Для начала полезно провести аналогию. Самогонщик из Кентукки использует простой перегонный куб, чтобы отделить светлый продукт от негодного остатка (см. рис. 3.1). После ферментации кислого сусла, то есть ког­да прошла медленная биохимическая реакция с образо­ванием спирта, смесь нагревают до начала кипения спир­та. Светлый продукт испаряется. В виде пара он оказыва­ется легче жидкости. Поэтому он перемещается вверх, отделяется от жидкости и попадает в холодильник, где охлаждается и снова превращается в жидкость (конден­сируется). То, что остаётся в кубе, выбрасывают, а то,

Что ушло вверх, разливают в бутылки. Описанный про­цесс является простой перегонкой.

Если бы самогонщик захотел продать продукт каче­ством выше среднего, он мог бы пропустить полученную жидкость через второй перегонный куб периодического действия, работающий аналогично первому. Во втором кубе более легкая часть жидкости отделилась бы от неко­торого количества неспиртовых примесей, которые в пер­вом кубе были увлечены вверх вместе с более легким погоном. Это произошло из-за того, что самогонщик не мог точно выдержать температуру кипения кислого сусла. Впрочем, возможно, он специально поднял температуру в первом кубе немного выше, чем нужно, чтобы полу­чить как можно больше продукта.

Такой двухступенчатый процесс можно превратить в непрерывный, как это показано на рисунке 3.2. В самом деле, раньше многие промышленные установки для пе­регонки выглядели именно так.

Ясно, что периодическая перегонка, описанная выше, не годится для переработки 100-200 тыс. баррелей (~16- 32 тыс. м3) сырой нефти в день, тем более что нужно разделить нефть на 5-6 компонентов. Ректификационная колонна позволяет проводить эту операцию постоянно, затрачивая гораздо меньше труда, оборудования и энер­гии в виде топлива и тепла.

Процесс, происходящий в ректификационной колон­не, схематично показан на рисунке 3.3. Внутрь поступает сырая нефть, а наружу выходят углеводородные газы (бу­тан и более лёгкие газы), бензин, нафта (лигроин), керо­син, лёгкий газойль, тяжелый газойль и кубовый остаток.

Чтобы понять, как все происходит внутри колонны, требуется рассмотреть некоторые тонкости. Первый эле­мент, который необходим для работы колонны - это сырьевой насос, перекачивающий сырую нефть из склад­ского резервуара в систему (см. рис. 3.4). Сначала нефть проходит через печь, в которой нагревается до темпера-

Рис. 3.3. Перегонка нефти

Туры порядка 385°С (750°F). Из предыдущей главы Вы знаете, что при этой температуре, как правило, испаря­ется больше половины нефти.

Полученная таким образом смесь жидкости и паров подаётся снизу в ректификационную колонну.

Внутри ректификационной колонны находится набор тарелок, в которых проделаны отверстия. Благодаря этим отверстиям нефть может подниматься вверх. Когда смесь пара и жидкости поднимается по колонне, то более плот­ная и тяжёлая часть отделяется и опускается на дно, а лёгкие пары поднимаются вверх, проходя через тарелки (рис. 3.5).

Отверстия в тарелках снабжены приспособлениями, называемыми барботажными колпачками (рис. 3.6). Они нужны для того, чтобы пары, через та­

Релки, барботировали через слой жидкости толщиной около 10 см, находящийся на тарелке. Это пробулькива - ние газа через слой жидкости и составляет суть ректифи­кации: горячие пары (при температуре не ниже 400°С

Рис. 3.5. Поступление нефти в ректификационную колонну.

Рис. 3.6. Барботажные колпачки на тарелке ректификацион­ной колонны

(750°F) проходят через жидкость. При этом тепло пере­дается от паров к жидкости. Соответственно пузырьки пара несколько охлаждаются и часть углеводородов из них переходит в жидкое состояние. По мере переноса тепла от паров к жидкости, температура паров снижает­ся. Так как температура жидкости ниже, некоторые со­единения в парах конденсируются (сжижаются).

После того как пары прошли через слой жидкости и потеряли часть более тяжелых углеводородов, они под­нимаются к следующей тарелке, где повторяется тот же процесс.

Тем временем количество жидкости на каждой тарел­ке растет за счет углеводородов, конденсирующихся из паров. Поэтому в колонне устанавливают приспособле­ние, которое называется сливной стакан и позволяет из­бытку жидкости перетекать вниз на следующую тарелку. Число тарелок должно быть таким, чтобы общее количе­ство продуктов, выходящих из ректификационной ко­лонны, было равным количеству сырой нефти, поступа­ющей внутрь. В действительности, некоторые молекулы несколько раз путешествуют туда и обратно - в виде пара поднимаются на несколько тарелок вверх, затем конденсируются и стекают уже как жидкость на несколь­ко тарелок вниз через сливные стаканы Именно эта про-

Рис. 3.7. Сливные стаканы и боковые выходы.

Мывка пара жидкостью за счет противотока и обеспечи­вает четкое разделение фракций. За один проход это было бы невозможно.

На различных уровнях колонны имеются боковые от­воды (рис. 3.7) для отбора фракций - более легкие про­дукты отбираются в верхней части колонны, а тяжелая жидкость выходит внизу.

Орошение и повторное испарение

Несколько дополнительных операций, происходящих вне ректификационной колонны, способствуют более ус­пешному проведению процесса перегонки. Чтобы тяже­лые продукты случайно не попали в верхнюю часть ко­лонны вместе с легкими фракциями, пары периодичес­ки направляют в холодильник. Вещества, которые кон­денсируются в холодильнике, снова поступают на одну из расположенных ниже тарелок. Это своего рода ороше­ние ректификационной колонны (рис. 3.8).

Рис. 3.8. Орошение и повторное испарение.

И наоборот, некоторое количество легких углеводоро­дов может быть увлечено током жидкости в нижнюю часть колонны вместе с тяжелыми продуктами. Чтобы избежать этого, жидкость, выходящую через боковой от­вод, снова пропускают через нагреватель. В результате остатки легких углеводородов отделяются и повторно по­ступают в ректификационную колонну в виде пара. Этот процесс называется повторным испарением. Преимущество такой схемы заключается в том, что только небольшая часть общего потока сырой нефти должна повторно пе­рерабатываться для дополнительного возвращения про­дукта. Не нужно снова нагревать всю нефть, что позволя­ет сэкономить энергию и .

Орошение и повторное испарение могут с тем же ус­пехом использоваться и в средней части колонны, что также способствует эффективному разделению. Повторно испаренная фракция, которая поступает в колонну, вно­сит туда дополнительное тепло, что помогает легким мо­лекулам отправиться в верхнюю часть колонны. Точно так же орошение предоставляет тяжелым молекулам, ко­торые случайно оказались выше, чем им положено, пос­ледний шанс сконденсироваться в жидкость.

Состав некоторых сырых нефтей может быть таким, что на части тарелок в колонне не окажется достаточно­го количества парожидкостной смеси. В этих случаях оро­шение и повторное испарение позволяют регулировать потоки так, чтобы процесс ректификации (разделения) мог продолжаться.

При анализе процесса перегонки нефти принципиаль­но важной характеристикой являются границы кипения фракций. Так называют температуры, при которых продук­ты перегонки отделяются друг от друга. В частности, тем­пература, при которой продукт (фракция, погон) начи­нает кипеть, называется точкой начала кипения (ТНК). Температура, при которой 100% данной фракции испари­лось, называется точкой выкипания (ТВ) этой фракции. Таким образом, каждая фракция имеет две границы - ТНК и ТВ.

Если мы снова обратимся к диаграмме, изображенной на рисунке 3.3, то легко увидим, что температура выкипа­ния нафты (лигроина) является точкой начала кипения для керосиновой фракции. То есть ТНК и ТВ двух соседних фракций совпадают, по крайней мере, номинально.

Однако ТНК и ТВ могут и не совпадать - это зависит от того, насколько хорошее разделение обеспечивает про­цесс ректификации. Возможно, рассматривая всю эту си­стему тарелок и барботажных колпачков, Вы задавали себе вопрос, насколько же хорош результат. Естественно, процесс перегонки неидеален и приводит к появлению, извините за выражение, так называемых хвостов.

Предположим, что мы анализируем нафту (лигроин) и керосин в лаборатории и для каждой из этих фракций получили кривые разгонки - такие, как изображены на рисунке 3.9. Рассмотрите их внимательно, и Вы заметите, что температура выкипания нафты около a

Точка начала кипения керосина около 150°С (305°F).

Рисунок 3.10 более наглядно иллюстрирует, что такое хвосты. На этом рисунке изображена зависимость температу­ры, но на этот раз не от общей объемной доли испарившей­ся нефти, а от объемной доли нефти, испарившейся имен­но при этой температуре (для тех, кто знаком с математи­ческим анализом, можно сказать, что это первая производ­ная функции, обратной изображенной на рисунке 3.9).

Хвосты почти всегда появляются при перегонке. Это настолько обычное явление, что считается само собой разумеющимся. Однако чтобы не усложнять себе жизнь, пришли к компромиссу. В качестве границ фракций при 1 перегонке берут так называемые эффективные границы | кипения, то есть температуры, при которых фракции ус­ловно считаются разделенными. В дальнейшем, при упот­реблении термина границы кипения, мы будем иметь в виду эффективные границы.

Рис. 3.10. Хвосты фракций на кривой разгонки.

Установление границ фракций

Когда мы рассматривали границы фракций в преды­дущей главе, а также обсуждали их выше, могло сло­житься впечатление, что эти величины для каждой фрак­ции точно установлены. На самом же деле в применении к конкретной ректификационной колонне эти границы можно несколько смещать. Например, смещение грани­цы между нафтой (лигроином) и керосином может иметь следующие последствия. Предположим, что температур­ная граница сместилась со 157 (315) до 162°С (325°F). Во - первых, при этом изменятся объемы продуктов ректифи­кации, выходящих из колонны - получится больше на - фты и меньше керосина. Дело в том, что фракция, кипя­щая между 157 и 162°С, теперь будет выходить через отверстие для нафты, а не для керосина.

При этом плотность и нафты (лигроина), и керосина увеличится. Как же так может быть? Погон, который теперь переместился во фракцию нафты (лигроина), тя­желее, чем нафта в среднем. Одновременно он легче, чем в среднем керосин. Вот так обе фракции и стали тяжелее!

Некоторые другие свойства также изменятся, но плот­ность - единственная халактепистика. котопую МЫ до

Сих пор рассмотрели. При обсуждении дальнейшей судь­бы продуктов перегонки в последующих главах мы упо­мянем другие возможные последствия изменения границ кипения фракций.

Если Вы сейчас узнаете, куда отправляются продукты, полученные при перегонке, Вам будет легче понять суть последующих глав. Легкие фракции, выходящие в верхней части колонны (верхний погон), поступают на установку газофракционирования. Прямогонный бензин отправляет­ся на компаундирование для получения автомобильного бензина. Нафта (лигроин) подается на установку рифор - минга, керосин поступает на установку гидроочистки, лег­кий газойль направляется на смешение для получения ди - стиллятного (дизельного) топлива, тяжелый газойль слу­жит сырьем для каталитического крекинга, и, наконец, прямогонный остаток подается на вакуумную перегонку.

УПРАЖНЕНИЯ

1. Заполните пропуски, выбрав слова из следующего списка:

Печь прямогонный бензин

Сырая нефть фракционирование

Периодический непрерывный

Увеличивается уменьшается

Верхний погон холодильник барботажный колпачок

А. Когда самогон выходит из верхней части перегонного

Куба, его нужно пропустить через, прежде

Чем разливать в бутылки.

Б. режим не очень эффективен в совре­

Менной нефтепереработке. В настоящее время рек­тификация сырой нефти осуществляется только в режиме.

В. Приспособление, увеличивающее эффективность пере­мешивания в ректификационной колонне, называется

TOC \o "1-3" \h \z г. Отверстия в тарелках ректификационной колонны снабжены либо.

Д. Хвосты возникают, потому что одной

Фракции перекрывается с другой

Е. По мере продвижения паров вверх по колонне, их тем­пература.

Ж. При понижении температуры выкипания фракции в ректификационной колонне, объем этой фракции а плотность API.

2. Управляющий нефтеперерабатывающего завода по­лучил задание производить зимой 33 тыс. бар./сут котельного топлива. Он знает, что будет получать 200 тыс. бар./сут сырой нефти - 30 тыс. бар. из Луизиа­ны и 170 тыс. бар. из Западного Техаса. Кривые разгон­ки этих нефтей приведены ниже. Еще одно условие " состоит в том, что требуется получить как можно боль­ше реактивного топлива. То есть из нефти нужно вы­жать как можно больше. Интервал кипения реактивно­го топлива - 300-525°F (150-275°С), это и будут гра­ницы соответствующей фракции в ректификационной колонне.

Наконец, чтобы обеспечить выпуск 33 тыс. бар./сут ко­тельного топлива, нужно получать 20 тыс. бар./сут легкого прямогонного газойля при перегонке сырой нефти

И направлять его на получение котельного топлива.

Задача: Какие температурные границы следует устано­вить для фракции ЛПГ, чтобы получить 20 тыс. бар./сут?

Данные по разгонке:

Указание: Рассчитайте кривую разгонки для смешан­ной нефти. ТВ реактивного топлива является ТНП фрак­ции ЛПГ. Остается рассчитать ТВ для фракции ЛПГ так, чтобы получилось 20 тыс. бар./сут.

Переработка нефти осуществляется физическими и химическими способами: физический – прямая перегонка; химический – термический крекинг; каталитический крекинг; гидрокрекинг; каталитический риформинг; пиролиз. Разберем эти способы переработки нефти в отдельности.

Переработка нефти прямой перегонкой

В нефтях содержатся углеводороды с различным числом атомов в молекуле (от 2 до 17). Такое разнообразие углеводородов приводит к тому, что нефть не имеет какой-либо постоянной температуры кипения и при нагревании выкипает в широких температурных пределах. Из большинства нефтей при слабом нагревании до 30…40°С начинают испаряться и выкипать наиболее легкие углеводороды. При дальнейшем нагревании до более высоких температур из нефти выкипают все более тяжелые углеводороды. Эти пары можно отвести и охладить (сконденсировать) и выделить часть нефти (фракцию нефти), выкипающую в определенных температурных пределах. И в этом поможет !

Знаете ли Вы, что нефть используется человечеством уже более 6000 лет?

Процесс разделения углеводородов нефти по температурам их кипения называется прямой перегонкой . На современных заводах процесс прямой перегонки нефти осуществляют на установках непрерывного действия. Нефть под давлением подают насосами в трубчатую печь, где ее нагревают до 330…350°С. Горячая нефть вместе с парами попадает в среднюю часть ректификационной колонны, где она вследствие снижения давления дополнительно испаряется и испарившиеся углеводороды отделяются от жидкой части нефти – мазута. Пары углеводородов устремляются вверх по колонне, а жидкий остаток стекает вниз. В ректификационной колонне по пути движения паров устанавливают тарелки, на которых конденсируется часть паров углеводородов. Более тяжелые углеводороды конденсируются на первых тарелках, легкие успевают подняться вверх по колонне, а самые в смеси с газами проходят всю колонну, не конденсируясь, и отводятся сверху колонны в виде паров. Так углеводороды разделяются на фракции в зависимости от температуры их кипения.

С верха колонны и с верхних тарелок отводят легкие бензиновые фракции (дистилляты) нефти. Такие фракции с пределами кипения от 30 до 180…205°С после очистки являются составной частью многих товарных автомобильных бензинов. Ниже отбирают керосиновый дистиллят, который после очистки используют в качестве топлива для реактивных авиационных двигателей. Еще ниже отводят газойлевый дистиллят, который после очистки идет в качестве топлива для дизельных двигателей.

Так добывают нефть

Мазут, оставшийся после прямой перегонки нефти, в зависимости от его состава используют или непосредственно в виде топлива (топочный мазут) или в качестве сырья на установки крекинга, или подвергают дальнейшему разделению на масляные фракции в вакуумной ректификационной колонне. В последнем случае, мазут снова нагревают в трубчатой печи до 420…430°С и подают в ректификационную колонну, работающую под разрежением (остаточное давление 50…100 мм рт. ст.). Температура кипения углеводородов при понижении давления снижается, что позволяет испарить без разложения тяжелые углеводороды, содержащиеся в мазуте. При вакуумной перегонке мазута в верхней части колонны отбирают соляровый дистиллят, который служат сырьем для каталитического крекинга. Ниже отбирают масляные фракции:

  • веретенная;
  • машинная;
  • автоловая;
  • цилиндровая.

Все эти фракции после соответствующей очистки идут на приготовление товарных масел. Из нижней части колонны отбирают неиспарившуюся часть мазута – полугудрон или гудрон. Из этих остатков путем глубокой очистки делают высоковязкие, т.н. остаточные масла.

Долгое время прямая перегонка нефти была единственным способом переработки нефти, но с ростом потребности в бензине ее эффективности (20…25% выхода бензина) стало не хватать. В 1875г. был предложен процесс разложения тяжелых углеводородов нефти при высоких температурах. В промышленности этот процесс был назван крекингом , что означает расщепление, раскалывание.

Термический крекинг

В состав автомобильных бензинов входят углеводороды с 4…12 атомами углерода, 12…25 – диз. топливо, 25…70 – масло. В соответствии с увеличением числа атомов увеличивается молекулярная масса. Переработка нефти методом крекинга расщепляет тяжелые молекулы на более легкие и превращает их в легко кипящие углеводороды с образованием бензиновых, керосиновых и дизельных фракций.

В 1900 году в России добывалось больше половины от общемировых объемов добычи нефти.

Термический крекинг разделяют на парофазный и жидкофазный:

  • парофазный крекинг – нефть нагревают до 520…550°С при давлении 2…6 атм. Сейчас он не применяется по причине низкой производительности и большого содержания (40%) непредельных углеводородов в конечном продукте, которые легко окисляются и образуют смолы;
  • жидкофазный крекинг – температура нагрева нефти 480…500°С при давлении 20…50 атм. Увеличивается производительность, снижается количество (25…30%) непредельных углеводородов. Бензиновые фракции термического крекинга используются в качестве компонента товарных автомобильных бензинов. Для топлив термического крекинга характерна низкая химическая стабильность, которую улучшают путем введения в топлива специальных антиокислительных добавок. Выход бензина 70% – из нефти, 30% – из мазута.

Каталитический крекинг

Переработка нефти каталитическим крекингом – более совершенный технологический процесс. При каталитическом крекинге имеет место расщепление тяжелых молекул углеводородов нефти при температуре 430…530°С при давлении близком к атмосферному в присутствии катализаторов. Катализатор направляет процесс и способствует изомерации предельных углеводородов и превращению из непредельных в предельные. Бензин каталитического крекинга имеет высокую детонационную стойкость и химическую стабильность. Выход бензина до 78% из нефти и качество значительно выше, чем при термическом крекинге. В качестве катализаторов применяют алюмосиликаты, содержащие окиси Si и Al, катализаторы, содержащие окиси меди, марганца, Со, Ni, и платиновый катализатор.

Гидрокрекинг

Переработка нефти – это разновидность каталитического крекинга. Процесс разложения тяжелого сырья происходит в присутствии водорода при температуре 420…500°С и давлении 200 атм. Процесс происходит в специальном реакторе с добавлением катализаторов (окиси W, Mo, Pt). В результате гидрокрекинга получают топливо для турбореактивных двигателей.

Каталитический риформинг

Переработка нефти каталитическим риформингом заключается в ароматизации бензиновых фракций в результате каталитического преобразования нафтеновых и парафиновых углеводородов в ароматические. Кроме ароматизации молекулы парафиновых углеводородов могут подвергаться изомерации, наиболее тяжелые углеводороды могут расщепляться на более мелкие.


Нефть оказывает наибольшее влияние на цену топлива

В качестве сырья для переработки используются бензиновые фракции прямой перегонки нефти пары которых при температуре 540°С и давлении 30 атм. в присутствии водорода пропускают через реакционную камеру, заполненную катализатором (двуокись молибдена и окись алюминия). В результате получают бензин с содержанием ароматических углеводородов 40…50%. При изменении технологического процесса кол-во ароматических углеводородов можно увеличить до 80%. Присутствие водорода увеличивает срок службы катализатора.

Пиролиз

Переработка нефти пиролизом – это термическое разложение углеводородов нефти в специальных аппаратах или газогенераторах при температуре 650 °С. Применяется для получения ароматических углеводородов и газа. В качестве сырья можно применять как нефть так и мазут, но наибольший выход ароматических углеводородов наблюдается при пиролизе легких фракций нефти. Выход: 50% газа, 45% смолы, 5% сажи. Из смолы получают ароматические углеводороды путем ректификации.

Вот мы и разобрали, как осуществляется . Ниже можно посмотреть небольшое видео о том, как поднять октановое число бензина и получать смесевые топлива,

Фракции нефти определяются лабораторным путем, поскольку продукт содержит органические вещества, обладающие разным давлением насыщенных паров. О температуре кипения, как таковой, говорить нельзя, но вычисляется начальная точка и предел. Определенный интервальный промежуток кипения нефти +28-540°С. По нему определяется фракционный состав нефти. Он регламентирован стандартом ГОСТ 2177-99. За начало кипения принята температура, при которой появляется конденсат. Завершением кипения считается момент прекращения испарения паров. Лабораторные испытания проходят на перегонных аппаратах, где фиксируются устойчивые показания и выводится кривая температур кипения методом перегонки. Разделение нефти и нефтепродуктов на фракции до +200°С производится при атмосферном давлении. Остальные в более высоких температурах отбираются под вакуумом, чтобы не произошло разложения.

Методы определения фракционного состава нефтепродуктов

Фракционирование нефти необходимо, чтобы выбрать направления переработки сырьевой базы, узнать точное содержание базовых масел при перегонке нефти. На основании этого классифицируются все свойства фракций.

  • Метод A — использование автоматических аппаратов для определения фракционного состава нефти и отдельных псевдокомпонентов. Колбы используются из термостойкого стекла, дно и стенки которых одинаковой толщины.
  • Метод B – применение четырехгнездного, или шестигнездного аппарата. Колбы с круглым дном вместимостью 250 см3. Метод применяется только для разгонки темных нефтепродуктов.

Виды и свойства нефтяных фракций

Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.

  • Простая перегонка - во время испарения пар конденсирует.
  • Дефлегмация - только высококипящие пары выделяют конденсат и возвращаются обратно в общую смесь в виде флегмы. Низкокипящие пары полностью испаряются.
  • Ректификация - процесс соединения двух предыдущих видов обработки, когда достигается максимальная концентрация и конденсирование низкокипящих паров.

В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:

  • легкие (к этому типу относят бензиновую и петролейную) – выходят при температуре до 140°С при атмосферном давлении;
  • средние (сюда относятся: керосиновая, дизельная, лигроиновая) при атмосферном давлении в интервале температур 140-350°С;
  • при вакуумной переработке и температурах более 350°С получаются фракции, которые называют тяжелые (Вакуумный газойль, гудрон).

Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).

Фракции нефти таблица

А теперь подробнее об основных видах нефтяных фракций:

Петролейная фракция

Эфир или масло Шервуда - это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.

Бензиновая фракция

Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.

Лигроиновая фракция

Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.

Керосиновая фракция

Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.

Дизельная фракция

Подвид находит применение в изготовлении дизельного топлива для быстроходных видов транспорта, а также используется как вторичное сырье. В процессе обработки выделяется керосин, используемый для в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта. Преобладание смесей углеводородов нафтена. Для получения топлива, которые не застывает при -60°С, состав проходит карбамидную депарафинизацию. Это перемешивание всех компонентов в течение 1 часа и последующая фильтрация через воронку Бюхнера.

Мазут

Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение - жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид - в котельных предприятий. Флотский - неотъемлемая часть работы судоходного транспорта.

Гудрон

Качество компонентов в процентном соотношении определяется так:

  • Парафин, нафтен - 95%.
  • Асфальтен - 3%.
  • Смолы - 2%.

Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса - продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.

Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.

Нефтепереработка – достаточно сложный процесс, для проведения которого требуется привлечение . Из добытого природного сырья получают множество продуктов – разные типы топлива, битумы, керосины, растворители, смазки, нефтяные масла и другие. Переработка нефти и начинается с транспортировки углеводородов на завод. Производственный процесс происходит в несколько этапов, каждый из которых очень важен с технологической точки зрения.

Процесс переработки

Процесс переработки нефти начинается с ее специализированной подготовки. Это вызвано наличием в природном сырье многочисленных примесей. В нефтеносной залежи содержится песок, соли, вода, грунт, газообразные частицы. Для добычи большого количества продуктов и сохранения месторождения энергоресурса используют воду. Это имеет свои преимущества, но значительно снижает качество полученного материала.

Наличие примесей в составе нефтепродуктов делает невозможной их транспортировку к заводу. Они провоцируют образование налета на теплообменных аппаратах и других емкостях, что значительно снижает их срок службы.

Поэтому добытые материалы подвергаются комплексной очистке – механической и тонкой. На данном этапе производственного процесса происходит разделение полученного сырья на нефть и . Это происходит при помощи специальных нефтяных сепараторов.

Для очистки сырья в основном его отстаивают в герметических резервуарах. Для активации процесса разделения материал подвергают действию холода или высокой температуры. Электрообессоливающие установки применяются для удаления, содержащихся в сырье, солей.

Как происходит процесс разделения нефти и воды?

После первичной очистки получают труднорастворимую эмульсию. Она представляет собой смесь, в которой частички одной жидкости равномерно распределяются во второй. На этом основании выделяют 2 типа эмульсий:

  • гидрофильная. Представляет собой смесь, где частицы нефти находятся в воде;
  • гидрофобная. Эмульсия в основном состоит из нефти, где находятся частички воды.

Процесс разрушения эмульсии может происходить механическим, электрическим или химическим способом. Первый метод подразумевает отстаивание жидкости. Это происходит при определенных условиях – подогрев до температуры 120-160 градусов, повышение давления до 8-15 атмосфер. Расслаивание смеси обычно происходит в течение 2-3 часов.

Чтобы процесс разделение эмульсии прошел удачно, необходимо не допускать испарение воды. Также выделение чистой нефти осуществляется при помощи мощных центрифуг. Эмульсия разделяется на фракции при достижении 3,5-50 тысяч оборотов в минуту.

Применение химического метода подразумевает применение специальных поверхностно-активных веществ, называемых деэмульгаторами. Они помогают растворить адсорбционную пленку, в результате чего нефть очищается от частиц воды. Химический метод зачастую применяется совместно с электрическим. Последний способ очистки подразумевает воздействие на эмульсию электрического тока. Он провоцирует объединение частиц воды. В результате он легче удаляются из смеси, что позволяет получить нефть высочайшего качества.

Первичная переработка

Добыча и переработка нефти происходит в несколько этапов. Особенностью производства различных продуктов из природного сырья считается то, что даже после качественной очистки полученный продукт не подлежит применению по прямому назначению.

Исходный материал характеризуется содержанием различных углеводородов, которые существенно отличаются молекулярным весом и температурой кипения. В его составе присутствуют вещества нафтеновой, ароматической, парафиновой природы. Также в исходном сырье содержатся сернистые, азотистые и кислородные соединения органического типа, которые также должны быть удалены.

Все существующие способы переработки нефти направлены на ее разделение на группы. В процессе производства получают широкий спектр продукции с разными характеристиками.

Первичная переработка природного сырья осуществляется на основании разных температур кипения ее составляющих частей. Для осуществления данного процесса привлекаются специализированные установки, которые позволяют получить различные нефтепродукты – от мазута до гудрона.

Если перерабатывать природное сырье таким способом, не удастся получить материал, готовый к дальнейшему использованию. Первичная перегонка направлена лишь на определение физико-химических свойств нефти. После ее проведения можно определить необходимость осуществления дальнейшей переработки. Также устанавливают тип оборудования, которое необходимо привлечь для выполнения нужных процессов.

Первичная переработка нефти

Способы перегонки нефти

Выделяют следующие методы переработки нефти (перегонки):

  • однократное испарение;
  • многократное испарение;
  • перегонка с постепенным испарением.

Метод однократного испарения подразумевает переработку нефти при воздействии высокой температуры с заданным значением. В результате образуются пары, которые поступают в специальный аппарат. Его называют испарителем. В данном устройстве цилиндрической формы пары отделяются от жидкостной фракции.

При многократном испарении сырье подвергают обработке, при которой несколько раз осуществляют повышение температуры по заданному алгоритму. Последний способ перегонки является более сложным. Переработка нефти с постепенным испарением подразумевает плавное изменение основных рабочих параметров.

Оборудование для перегонки

Промышленная переработка нефти осуществляется при помощи нескольких аппаратов.

Трубчатые печи. В свою очередь их также разделяют на несколько видов. Это атмосферные, вакуумные, атмосферно-вакуумные печи. При помощи оборудования первого типа осуществляется неглубокая переработка нефтепродуктов, что позволяет получить мазут, бензиновые, керосиновые и дизельные фракции. В вакуумных печах в результате более эффективной работы сырье разделяют на:

  • гудрон;
  • масляные частицы;
  • газойлевые частицы.

Полученные продукты полностью подходят для производства кокса, битума, смазочных материалов.

Ректификационные колонны. Процесс переработки нефтяного сырья при помощи данного оборудования подразумевает ее нагревание в змеевике до температуры 320 градусов. После этого смесь поступает в промежуточные уровни ректификационной колонны. В среднем она имеет 30-60 желобов, каждый из которых размещен с определенным интервалом и оснащен ванной с жидкостью. Благодаря этому пары стекают вниз в виде капель, поскольку образуется конденсат.

Существует также переработка с помощью теплообменных аппаратов.

Вторичная переработка

После определения свойств нефти, в зависимости от потребности в определенном конечном продукте, выбирается тип вторичной перегонки. В основном она заключается в термически-каталитическом воздействии на исходное сырье. Глубокая переработка нефти может происходить при помощи нескольких методов.

Топливный. Применение данного способа вторичной перегонки позволяет получить ряд высококачественных продуктов – автомобильных бензинов, дизельных, реактивных, котельных топлив. Для осуществления переработки не нужно привлекать много оборудования. В результате применения данного метода из тяжелых фракций сырья и осадка получают готовый продукт. К топливному методу перегонки относят:

  • крекинг;
  • риформинг;
  • гидроочистку;
  • гидрокрекинг.

Топливно-масляный. В результате применения данного метода перегонки получают не только различные топлива, но и асфальт, смазочные масла. Это осуществляется при помощи метода экстракции, деасфальтизации.

Нефтехимический. В результате применения данного метода с привлечением высокотехнологичного оборудования получают большое количество продукции. Это не только топливо, масла, а и пластмассы, каучук, удобрения, ацетон, спирт и многое другое.

Как из нефти и газа получаются окружающие нас предметы - доступно и понятно

Данный метод считается более всего распространенным. С его помощью осуществляется переработка сернистой или высокосернистой нефти. Гидроочистка позволяет существенно повысить качество получаемых видов топлива. Из них удаляют различные добавки – сернистые, азотистые, кислородные соединения. Обработка материала происходит на специальных катализаторах в водородной среде. При этом температура в оборудовании достигает показателей 300-400 градусов, а давление – 2-4 Мпа.

В результате перегонки, содержащиеся в сырье, органические соединения разлагаются при взаимодействии с водородом, циркулирующем внутри аппарата. В итоге образуется аммиак, сероводород, которые удаляются из катализатора. Гидроочистка позволяет переработать 95-99% сырья.

Каталитический крекинг

Перегонка осуществляется при помощи цеолитсодержащих катализаторов при температуре 550 градусов. Крекинг считается очень эффективным методом переработки подготовленного сырья. С его помощью из мазутных фракций можно получить высокооктановый автомобильный бензин. Выход чистого продукта в данном случае составляет 40-60%. Также получают жидкий газ (10-15% от исходного объема).

Каталитический риформинг

Риформинг осуществляется при помощи алюмоплатинового катализатора при температуре 500 градусов и давлении 1-4 Мпа. При этом внутри оборудования присутствует водородная среда. Данный метод применяется для превращения нафтеновых и парафиновых углеводородов в ароматические. Это позволяет существенно повысить октановое число производимой продукции. При использовании каталитического риформинга выход чистого материала составляет 73-90% от залученного сырья.

Гидрокрекинг

Позволяет получить жидкостное топливо при воздействии высокого давления (280 атмосфер) и температуры (450 градусов). Также данный процесс происходит с применением сильных катализаторов – оксидов молибдена.

Если гидрокрекинг сочетать с другими методами переработки природного сырья, выход чистых продуктов в виде бензина и реактивного топлива составляет 75-80%. При применении качественных катализаторов их регенерация может не проводиться 2-3 года.

Экстракция и деасфальтизация

Экстракция подразумевает разделение подготовленного сырья на нужные фракции при помощи растворителей. В дальнейшем производится депарафинизация. Она позволяет существенно снизить температуру застывания масла. Также для получения продукции высокого качества ее подвергают гидроочистке. В результате проведения экстракции можно получить дистдизельное топливо. Также с помощью данной методики производят извлечение ароматических углеводородов из подготовленного сырья.

Деасфальтизация необходима для того, чтобы из конечных продуктов дестиляции нефтяного сырья получить смолисто-асфальтеновые соединения. Образовавшиеся вещества активно применяются для производства битума, в качестве катализаторов для осуществления других методов переработки.

Другие методики переработки

Переработка природного сырья после первичной перегонки может осуществляться и другими способами.

Алкилирование. После переработки подготовленных материалов получают высококачественные компоненты для бензина. Метод основан на химическом взаимодействии олефиновых и парафиновых углеводородов, в результате чего получают высококипящий парафиновый углеводород.

Изомеризация . Применение данного метода позволяет получить из низкооктановых парафиновых углеводородов вещество с более высоким октановым числом.

Полимеризация . Позволяет осуществить превращение бутиленов и пропилена в олигомерные соединения. В результате получают материалы для производства бензинов и для проведения различных нефтехимических процессов.

Коксование . Применяется для производства нефтяного кокса из тяжелых фракций, получаемых после перегонки нефти.

Нефтеперерабатывающая отрасль относится к перспективным и развивающимся. Производственный процесс все время усовершенствуется за счет введения нового оборудования и методик.

Видео: Переработка нефти

Ректификация - это процесс разделения бинарных или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью.

Ректификация нефти заключается в разделении на фракции при нагревании, при этом выделяются фракции, различающиеся по температуре кипения. Низкокипящие фракции называются легкими, а высококипящие - тяжелыми.

В результате ректификации нефти получают бензин, керосин, дизельное топливо, масла и другие фракции.

Светлые нефтепродукты - бензин, керосин и дизельное топливо получают на установках, называемых атмосферными или атмосферными трубчатками (AT), поскольку процесс происходит под атмосферным давлением, а нагрев нефти производится в трубчатой печи. Получаемый на этих установках остаток - мазут - может быть направлен в вакуумную установку, где в результате перегонки получают различные сорта смазочных масел.

Перегонка с ректификацией наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах – ректификационных колоннах – путем многократного противоточного контактирования паров и жидкости.

Основные фракции, выделяемые при первичной перегонке нефти:

21 . Получение водорода из метана.

Паровая конверсия природного газа/метана

Паровая конверсия - получение чистого водорода из лёгких углеводородов (например метана, пропан-бутановой фракции) путём парового риформинга(каталитической конверсии углеводородов в присутствии водяного пара).

CH 4 + H 2 O = CO + 3H 2 - реакция парового риформинга;

Водород можно получать разной чистоты: 95-98% или особо чистый. В зависимости от дальнейшего использования водород получают под различным давлением: от 1,0 до 4,2 МПа. Сырье (природный газ или легкие нефтяные фракции) подогревается до 350-400° в конвективной печи или теплообменнике и поступает в аппарат десульфирования. Конвертированный газ из печи охлаждается в печи-утилизаторе, где вырабатывается пар требуемых параметров. После ступеней высокотемпературной и низкотемпературной конверсии СО газ поступает на адсорбцию СО 2 и затем на метанирование остаточных оксидов. В результате получается водород 95-98,5% чистоты с содержанием в нем 1-5% метана и следов СО и СО 2 .

В том случае, если требуется получать особо чистый водород, установка дополняется секцией адсорбционного разделения конвертированного газа. В отличие от предыдущей схемы конверсия СО здесь одноступенчатая. Газовая смесь, содержащая H 2 , CO 2 , CH 4 , H 2 O и небольшое количество СО, охлаждается для удаления воды и направляется в адсорбционные аппараты, заполненные цеолитами. Все примеси адсорбируются в одну ступень при температуре окружающей среды. В результате получают водород со степенью чистоты 99,99%. Давление получаемого водорода составляет 1,5-2,0 МПа..