Реактивный двигатель рабочее тело. Реактивный двигатель

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain) , выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle) . Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.

Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

Устройство реактивного двигателя

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор , который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Отклоняемый вектор тяги

Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток . Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.

Типы реактивных двигателей

Существует несколько основных типом реактивных двигателей.

Классический реактивный двигатель самолета F-15

Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.

Турбовинтовой двигатель . В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается 600-800 км/ч.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Используется на лайнерах и больших самолетах.

Прямоточный воздушно-реактивный двигатель (Ramjet)

Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.

Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.

И напоследок – видео работы реактивного двигателя:

Картинки взяты из различных источников. Русификация картинок – Лаборатори 37.

РЕАКТИ́ВНЫЙ ДВИ́ГАТЕЛЬ, двигатель, создающий необходимую для движения силу тяги путём преобразования потенциальной энергии в кинетическую энергию реактивной струи рабочего тела. Под рабочим тело м, применительно к двигателям, понимают вещество (газ, жидкость, твёрдое тело), с помощью которого тепловая энергия, выделяющаяся при сгорании топлива, преобразуется в полезную механическую работу. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, направленной в пространстве в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в реактивном двигателе могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная).

Реактивный двигатель (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем , т. е. обеспечивает собственное движение без участия промежуточных механизмов. Для создания реактивной тяги (тяги двигателя), используемой реактивным двигателем, необходимы: источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи; рабочее тело, которое в виде реактивной струи выбрасывается из реактивного двигателя; сам реактивный двигатель – преобразователь энергии. Тяга двигателя – это реактивная сила, являющаяся результирующей газодинамических сил давления и трения, приложенных к внутренним и наружным поверхностям двигателя. Различают внутреннюю тягу (реактивную тягу) – результирующую всех газодинамических сил, приложенных к двигателю, без учёта внешнего сопротивления и эффективную тягу, учитывающую внешнее сопротивление силовой установки. Исходная энергия запасается на борту летательного или другого аппарата, оснащённого реактивным двигателем (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца).

Для получения рабочего тела в реактивном двигателе может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода); вещество, находящееся в баках аппарата или непосредственно в камере реактивного двигателя; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата. В современных реактивных двигателях в качестве первичной энергии чаще всего используется химическая энергия. В этом случае рабочее тело представляет собой раскалённые газы – продукты сгорания химического топлива. При работе реактивного двигателя химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель.

Принцип работы реактивного двигателя

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи – первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора , смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700° С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы – продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину , которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя – через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса – воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД – тепловые двигатели , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Основные характеристики реактивных двигателей

Основным техническим параметром, характеризующим реактивный двигатель, является тяга – усилие, которое развивает двигатель в направлении движения аппарата, удельный импульс – отношение тяги двигателя к массе ракетного топлива (рабочего тела), расходуемого в 1 с, или идентичная характеристика – удельный расход топлива (количество топлива, расходуемого за 1 с на 1 Н развиваемой реактивным двигателем тяги), удельная масса двигателя (масса реактивного двигателя в рабочем состоянии, приходящаяся на единицу развиваемой им тяги). Для многих типов реактивных двигателей важными характеристиками являются габариты и ресурс. Удельный импульс является показателем степени совершенства или качества двигателя. В приведённой диаграмме (рис. 2) в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей в зависимости от скорости полёта, выраженной в форме Маха числа , что позволяет видеть область применимости каждого типа двигателей. Этот показатель является также мерой экономичности двигателя.

Тяга – сила, с которой реактивный двигатель воздействует на аппарат, оснащённый этим двигателем, - определяется по формуле: $$P = mW_c + F_c (p_c – p_n),$$ где $m$ – массовый расход (расход массы) рабочего тела за 1 с; $W_c$ – скорость рабочего тела в сечении сопла; $F_c$ – площадь выходного сечения сопла; $p_c$ – давление газов в сечении сопла; $p_n$ – давление окружающей среды (обычно атмосферное давление). Как видно из формулы, тяга реактивного двигателя зависит от давления окружающей среды. Она больше всего в пустоте и меньше всего в наиболее плотных слоях атмосферы, т. е. изменяется в зависимости от высоты полёта аппарата, оснащённого реактивным двигателем, над уровнем моря, если рассматривается полёт в атмосфере Земли. Удельный импульс реактивного двигателя прямо пропорционален скорости истечения рабочего тела из сопла. Скорость же истечения увеличивается с ростом температуры истекающего рабочего тела и уменьшением молекулярной массы топлива (чем меньше молекулярная масса топлива, тем больше объём газов, образующихся при его сгорании, и, следовательно, скорость их истечения). Поскольку скорость истечения продуктов сгорания (рабочего тела) определяется физико-химическими свойствами компонентов топлива и конструктивными особенностями двигателя, являясь постоянной величиной при не очень больших изменениях режима работы реактивного двигателя, то величина реактивной силы определяется в основном массовым секундным расходом топлива и колеблется в очень широких пределах (минимум у электрических – максимум у жидкостных и твердотопливных ракетных двигателей). Реактивные двигатели малой тяги применяются главным образом в системах стабилизации и управления летательных аппаратов. В космосе, где силы тяготения ощущаются слабо и практически нет среды, сопротивление которой приходилось бы преодолевать, они могут использоваться и для разгона. РД с максимальной тягой необходимы для запуска ракет на большие дальность и высоту и особенно для вывода летательных аппаратов в космос, т. е. для разгона их до первой космической скорости. Такие двигатели потребляют очень большое количество топлива; они работают обычно очень короткое время, разгоняя ракеты до заданной скорости.

ВРД используют в качестве основного компонента рабочего тела окружающий воздух, значительно экономичнее. ВРД могут работать непрерывно в течение многих часов, что делает их удобными для использования в авиации. Разные схемы позволили их применять для ЛА эксплуатирующихся на разных режимах полёта. Широко применяются турбореактивные двигатели (ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Значительно проще по конструкции бескомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами; это пульсирующие и прямоточные двигатели. В пульсирующем воздушно-реактивном двигателе (ПуВРД) для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие этого давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется. В бескомпрессорном двигателе другого типа, прямоточном воздушно-реактивном (ПВРД), нет даже и этой клапанной решётки и атмосферный воздух, попадая во входное устройство двигателя со скоростью, равной скорости полёта, сжимается за счёт скоростного напора и поступает в камеру сгорания. Впрыскиваемое топливо сгорает, повышается теплосодержание потока, который истекает через реактивное сопло со скоростью, большей скорости полёта. За счёт этого и создаётся реактивная тяга ПВРД. Основным недостатком ПВРД является неспособность самостоятельно обеспечить взлёт и разгон летательного аппарата (ЛА). Требуется сначала разогнать ЛА до скорости, при которой запускается ПВРД и обеспечивается его устойчивая работа. Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Историческая справка

Принцип реактивного движения известен давно. Родоначальником реактивного двигателя можно считать шар Герона . Твердотопливные ракетные двигатели (РДТТ – ракетный двигатель твёрдого топлива) – пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Её впервые сформулировал русский революционер-народоволец Н. И. Кибальчич, который в марте 1881, незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов. РДТТ применяют во всех классах ракет военного назначения (баллистических, зенитных, противотанковых и др.), в космической (например, в качестве стартовых и маршевых двигателей) и авиационной технике (ускорители взлёта самолётов, в системах катапультирования ) и др. Небольшие твердотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти реактивные двигатели пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических летательных аппаратов , ракетно-космической технике и т. д.

Большое значение для создания реактивных двигателей имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского , Н. Е. Жуковского , труды французского учёного Р. Эно-Пельтри , немецкого учёного Г. Оберта . Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина «Теория воздушного реактивного двигателя», опубликованная в 1929. Практически на более 99% летательных аппаратов в той или иной степени применяют реактивный двигатель.

сайт и «Ростех» вспоминают людей, которые заставили ракеты летать.

Истоки

«Ракета сама собой не полетит» — эту фразу приписывают многим известным ученым. И Сергею Королеву, и Вернеру фон Брауну, и Константину Циолковскому. Считается, что идею полета ракеты сформулировал чуть ли ни сам Архимед, но даже он не представлял себе как заставить ее полететь.

Константин Циолковский

К настоящему времени существует много разновидностей ракетных двигателей. Химические, ядерные, электрические, даже плазменные. Впрочем, ракеты появились задолго до того, как человек изобрел первый двигатель. Слова «ядерный синтез» или «химическая реакция» едва ли говорили что-то жителям Древнего Китая. А ведь ракеты появились именно там. Точную дату назвать сложно, но, предположительно, произошло это в годы правления династии Хань (III-II вв. до н. э.). К тем временам относятся и первые упоминания о порохе. Ракета, которая поднималась вверх благодаря силе, возникшей при взрыве пороха, использовалась в те времена исключительно в мирных целях — для фейерверков. Ракеты эти, что характерно, имели собственный запас горючего, в данном случае, пороха.

Конрад Хаас считается создателем первой боевой ракеты


Следующий шаг был сделан только в 1556 году немецким изобретателем Конрадом Хаасом, который был специалистом по огнестрельному оружию в армии Фердинанда I — Императора Священной Римской Империи. Хаас считается создателем первой боевой ракеты. Хотя, строго говоря, изобретатель не создал ее, а лишь заложил теоретические основы. Именно Хаасу принадлежала идея многоступенчатой ракеты.



Многоступенчатая ракета в представлении Конрада Хааса

Ученый подробным образом описал механизм создания летательного аппарата из двух ракет, которые разделялись бы в полете. «Такой аппарат, — уверял он, — мог бы развивать огромную скорость». Идеи Хааса вскоре развил польский генерал Казимир Семенович.




Титульный лист книги, в которой Казимир Семенович описал ракеты

В 1650 году он предложил проект создания трехступенчатой ракеты. В жизнь, впрочем, эта идея воплощена так и не была. То есть, конечно, была, но только в ХХ веке, через несколько столетий после смерти Семеновича.

Ракеты в армии

Военные, разумеется, никогда не упустят возможность принять на вооружение новый вид разрушительного оружия. В XIX веке у них появилась возможность применить в бою ракету. В 1805 году британский офицер Уильям Конгрив продемонстрировал в Королевском Арсенале созданные им пороховые ракеты небывалой по тем временам мощности. Существует предположение, что большинство идей Конгрив «украл» у ирландского националиста Роберта Эммета, применившего некое подобие ракеты во время восстания 1803 года. Спорить на эту тему можно вечно, но тем не менее ракета, которую взяли на вооружение британские войска, называется ракетой Конгрива, а не ракетой Эммета.


Военные начали использовать ракеты на заре XIX века


Запуск Ракеты Конгрива, 1890

Оружие многократно применялось во время Наполеоновских войн. В России пионером ракетостроения считается генерал-лейтенант Александр Засядко.


Александр Засядко

Он не только усовершенствовал ракету Конгрива, но и задумался над тем, что энергию этого разрушительного оружия можно было бы использовать и в мирных целях. Засядко, например, первым высказал идею, что с помощью ракеты можно было бы совершить полет в космос. Инженер даже точно подсчитал, сколько пороха понадобиться, чтобы ракета достигла Луны.


Засядко первым предложил использовать ракеты для полета в космос

На ракете — в космос

Идеи Засядко легли в основу многих работ Константина Циолковского. Этот знаменитый ученый и изобретатель теоретически обосновал возможность полета в космос при помощи ракетных технологий. Правда, в качестве топлива он предлагал использовать не порох, а смесь жидкого кислорода с жидким водородом. Аналогичные идеи высказывал младший современник Циолковского Герман Оберт.




Герман Оберт

Он также разрабатывал идею межпланетных перелетов. Оберт прекрасно понимал сложность задачи, но его работы вовсе не носили фантастический характер. Ученый, в частности, предложил идею ракетного двигателя. Он даже проводил экспериментальные испытания подобных устройств. В 1928 году Оберт познакомился с молодым студентом Вернером фон Брауном. Этому юному физику из Берлина в скором времени предстояло совершить прорыв в ракетостроении и воплотить в жизнь многие идеи Оберта. Но об этом позже, ибо за два года до встречи двух этих ученых была запущена первая в истории ракета на жидком топливе.

Эра ракетостроения

Произошло это знаменательное событие 16 марта 1926 года. А главным героем стал американский физик и инженер Роберт Годдард. Еще в 1914 году он запатентовал многоступенчатую ракету. Вскоре ему удалось воплотить в жизнь идею, предложенную Хаасом почти за четыреста лет до этого. В качестве топлива Годдард предлагал использовать бензин и оксид азота. После серии неудачных запусков, он добился успеха. 16 марта 1926 года на ферме своей тетушки Годдард запустил в небо ракету размером с человеческую руку. За две с небольшим секунды она взлетела в воздух на 12 метров. Любопытно, что позднее на основе трудов Годдарда будет создана Базука.




Роберт Годдард и его ракета

Открытия Годдарда, Оберта и Циолковского имели большой резонанс. В США, Германии и Советском Союзе стали стихийно возникать общества любителей ракетостроения. В СССР уже в 1933 году был создан Реактивный институт. В том же году появился и принципиально новый тип оружия — реактивные снаряды. Установка для их запуска вошла в историю под именем «Катюша».




Залп «Катюш»

В Германии развитием идей Оберта занимался уже знакомый нам Вернер фон Браун. Он создавал ракеты для германской армии и не оставил этого занятия после прихода к власти нацистов. Более того, Браун получил от них баснословное финансирование и неограниченные возможности для работы.


Вернер фон Браун с моделью «Фау-2» в руках

При создании новых ракет использовался рабский труд. Известно, что Браун пытался протестовать против этого, но получил в ответ угрозу, что сам может оказаться на месте подневольных работников. Так была создана баллистическая ракета, появление которой предсказал еще Циолковский. Первые испытания прошли в 1942 году. В 1944-м баллистическая ракета дальнего действия «Фау-2» была принята на вооружение Вермахтом. С ее помощью обстреливали, в основном, территорию Великобритании (до Лондона с территории Германии ракета долетала за 6 минут). «Фау-2» несла страшные разрушения и вселяла страх в сердца людей. Ее жертвами стали как минимум 2700 мирных жителей Туманного Альбиона. В британской прессе «Фау-2» именовали «крылатым ужасом».

Нацисты использовали рабский труд для создания ракет

После войны

Американские и советские военные с 1944 года вели «охоту» за Брауном. Обе страны были заинтересованы в его идеях и разработках. Ключевую роль в решении этого вопроса сыграл сам ученый. Еще весной 1945 он собрал свою команду на совет, на котором решался вопрос о том, кому по окончании войны лучше сдаться в плен. Ученые пришли к выводу, что сдаваться лучше американцам. Сам Браун оказался в плену почти случайно. Его брат Магнус, увидев американского военного, подбежал к нему и сказал: «Меня зовут Магнус фон Браун, мой брат изобрел «Фау-2», мы хотим сдаться».

Р-7 Королёва — первая ракета, использованная для полета в космос

В США Вернер фон Браун продолжил работу над ракетами. Теперь однако он трудился в основном для мирных целей. Именно он дал колоссальный толчок к развитию американской космической отросли, сконструировав для США первые ракеты-носители (разумеется, создавал Браун и боевые баллистические ракеты). Его команда в феврале 1958 запустила в космос первый американский искусственный спутник Земли. Советский Союз опередил США с запуском спутника почти на полгода. 4 октября 1957 года на орбиту Земли был выведен первый искусственный спутник. При его запуске была использована советская ракета Р-7, созданная Сергеем Королевым.




Сергей Королев

Р-7 стала первой в мире межконтинентальной баллистической ракетой, а также первой ракетой, использованной для космического полета.

Ракетные двигатели в России

В 1912 году в Москве был открыт завод по производству авиационных двигателей. Предприятие входило во французское общество «Гном». Здесь создавались, в том числе, и моторы для самолетов Российской Империи в годы Первой мировой. Завод успешно пережил Революцию, получил новое название «Икар» и продолжил работу уже при советской власти.


Завод по производству авиационных двигателей появился в России в 1912-м


Авиационные двигатели создавались тут и в 1930-е, и в 1940-е, военные, годы. Моторы, которые производились на «Икаре», ставились на передовые советские самолеты. А уже в 1950-е предприятие стало выпускать турборакетные двигатели, в том числе и для космической отрасли. Сейчас завод принадлежит ОАО «Кузнецов», которое получило свое название в честь выдающегося советского авиаконструктора Николая Дмитриевича Кузнецова. Предприятие входит в структуру госкорпорации «Ростех».


Современное состояние

«Ростех» продолжает выпуск ракетных двигателей, в том числе и для ракетной отрасли. В последние годы объемы производства растут. В прошлом году появилась информация о том, что заказов на производство двигателей «Кузнецов» получил аж на 20 лет вперед. Двигатели создаются не только для космической отрасли, но также для авиации, энергетики и грузовых железнодорожных перевозок.


В 2012-м «Ростех» испытал лунный двигатель


В 2012-м «Ростехом» были проведены испытания лунного двигателя. Специалистам удалось возродить технологии, которые создавались для советской лунной программы. Сама программа, как мы знаем, в итоге была свернута. Но забытые, вроде бы, наработки теперь обрели новую жизнь. Ожидается, что лунный двигатель получит широкое применение в российской космической программе.

РЕФЕРАТ

ПО ТЕМЕ:

Реактивные Двигатели .

НАПИСАЛ: Киселев А.В.

г.КАЛИНИНГРАД

Вступление

Реактивный двигатель, двигатель, создающий необходимую для движения силу тяги путём преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела; в результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде реакции (отдачи) струи, перемещающая в пространстве двигатель и конструктивно связанный с ним аппарат в сторону, противоположную истечению струи. В кинетическую (скоростную) энергию реактивной струи в Р. д. могут преобразовываться различные виды энергии (химическая, ядерная, электрическая, солнечная). Р. д. (двигатель прямой реакции) сочетает в себе собственно двигатель с движителем, т. е. обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги, используемой Р. д., необходимы:

источник исходной (первичной) энергии, которая превращается в кинетическую энергию реактивной струи;

рабочее тело, которое в виде реактивной струи выбрасывается из Р. д.;

сам Р. д. - преобразователь энергии.

Исходная энергия запасается на борту летательного или др. аппарата, оснащенного Р. д. (химическое горючее, ядерное топливо), или (в принципе) может поступать извне (энергия Солнца). Для получения рабочего тела в Р. д. может использоваться вещество, отбираемое из окружающей среды (например, воздух или вода);

вещество, находящееся в баках аппарата или непосредственно в камере Р. д.; смесь веществ, поступающих из окружающей среды и запасаемых на борту аппарата.

В современных Р. д. в качестве первичной чаще всего используется химическая

Огневые испытания ракетного

двигателя Спейс Шаттла

Турбореактивные двигатели АЛ-31Ф самолета Су-30МК . Относятся к классу воздушно-реактивных двигателей

энергия. В этом случае рабочее тело представляет собой раскалённые газы - продукты сгорания химического топлива. При работе Р. д. химическая энергия сгорающих веществ преобразуется в тепловую энергию продуктов сгорания, а тепловая энергия горячих газов превращается в механическую энергию поступательного движения реактивной струи и, следовательно, аппарата, на котором установлен двигатель. Основной частью любого Р. д. является камера сгорания, в которой генерируется рабочее тело. Конечная часть камеры, служащая для ускорения рабочего тела и получения реактивной струи, называется реактивным соплом.

В зависимости от того, используется или нет при работе Р. д. окружающая среда, их подразделяют на 2 основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - тепловые двигатели, рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а большую часть рабочего тела черпает из окружающей среды. В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащенного РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД единственно пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

История реактивных двигателей

Принцип реактивного движения известен очень давно. Родоначальником Р. д. можно считать шар Герона. Твёрдотопливные ракетные двигатели - пороховые ракеты появились в Китае в 10 в. н. э. На протяжении сотен лет такие ракеты применялись сначала на Востоке, а затем в Европе как фейерверочные, сигнальные, боевые. В 1903 К. Э. Циолковский в работе "Исследование мировых пространств реактивными приборами" впервые в мире выдвинул основные положения теории жидкостных ракетных двигателей и предложил основные элементы устройства РД на жидком топливе. Первые советские жидкостные ракетные двигатели - ОРМ, ОРМ-1, ОРМ-2 были спроектированы В. П. Глушко и под его руководством созданы в 1930-31 в Газодинамической лаборатории (ГДЛ). В 1926 Р. Годдард произвёл запуск ракеты на жидком топливе. Впервые электротермический РД был создан и испытан Глушко в ГДЛ в 1929-33.

В 1939 в СССР состоялись испытания ракет с прямоточными воздушно-реактивными двигателями конструкции И. А. Меркулова. Первая схема турбореактивного двигателя? была предложена русским инженером Н. Герасимовым в 1909.

В 1939 на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Испытаниям созданного двигателя помешала Великая Отечественная война 1941-45. В 1941 впервые был установлен на самолёт и испытан турбореактивный двигатель конструкции Ф. Уиттла (Великобритания). Большое значение для создания Р. д. имели теоретические работы русских учёных С. С. Неждановского, И. В. Мещерского, Н. Е. Жуковского, труды французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. Важным вкладом в создание ВРД была работа советского учёного Б. С. Стечкина "Теория воздушно-реактивного двигателя", опубликованная в 1929.

Р. д. имеют различное назначение и область их применения постоянно расширяется.

Наиболее широко Р. д. используются на летательных аппаратах различных типов.

Турбореактивными двигателями и двухконтурными турбореактивными двигателями оснащено большинство военных и гражданских самолётов во всём мире, их применяют на вертолётах. Эти Р. д. пригодны для полётов как с дозвуковыми, так и со сверхзвуковыми скоростями; их устанавливают также на самолётах-снарядах, сверхзвуковые турбореактивные двигатели могут использоваться на первых ступенях воздушно-космических самолётов. Прямоточные воздушно-реактивные двигатели устанавливают на зенитных управляемых ракетах, крылатых ракетах, сверхзвуковых истребителях-перехватчиках. Дозвуковые прямоточные двигатели применяются на вертолётах (устанавливаются на концах лопастей несущего винта). Пульсирующие воздушно-реактивные двигатели имеют небольшую тягу и предназначаются лишь для летательных аппаратов с дозвуковой скоростью. Во время 2-й мировой войны 1939-45 этими двигателями были оснащены самолёты-снаряды ФАУ-1.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах.

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. Твёрдотопливные ракетные двигатели используют в баллистических, зенитных, противотанковых и др. ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твёрдотопливные двигатели применяются в качестве ускорителей при взлёте самолётов. Электрические ракетные двигатели и ядерные ракетные двигатели могут использоваться на космических летательных аппаратах.


Однако этот могучий ствол, принцип прямой реакции, дал жизнь огромной кроне "генеалогического дерева" семьи реактивных двигателей. Чтобы познакомиться с основными ветвями его кроны, венчающей "ствол" прямой реакции. Вскоре, как можно видеть по рисунку (см. ниже), этот ствол делится на две части, как бы расщепленный ударом молнии. Оба новых ствола одинаково украшены могучими кронами. Это деление произошло по тому, что все "химические" реактивные двигатели делятся на два класса в зависимости от того, используют они для своей работы окружающий воздух или нет.

Один из вновь образованных стволов - это класс воздушно-реактивных двигателей (ВРД). Как показывает само название, они не могут работать вне атмосферы. Вот почему эти двигатели - основа современной авиации, как пилотируемой, так и беспилотной. ВРД используют атмосферный кислород для сгорания топлива, без него реакция сгорания в двигателе не пойдет. Но все же в настоящее время наиболее широко применяются турбореактивные двигатели

(ТРД), устанавливаемые почти на всех без исключения современных самолётах. Как и все двигатели, использующие атмосферный воздух, ТРД нуждаются в специальном устройстве для сжатия воздуха перед его подачей в камеру сгорания. Ведь если давление в камере сгорания не будет значительно превышать атмосферное, то газы не станут вытекать из двигателя с большей скоростью - именно давление выталкивает их наружу. Но при малой скорости истечения тяга двигателя будет малой, а топлива двигатель будет расходовать много, такой двигатель не найдёт применения. В ТРД для сжатия воздуха служит компрессор, и конструкция двигателя во многом зависит от типа компрессора. Существует двигатели с осевым и центробежным компрессором, осевые компрессоры могут иметь спасибо за пользование нашей системой меньшее или большее число ступеней сжатия, быть одно-двухкаскадными и т.д. Для приведения во вращение компрессора ТРД имеет газовую турбину, которая и дала название двигателю. Из-за компрессора и турбины конструкция двигателя оказывается весьма сложной.

Значительно проще по конструкции безкомпрессорные воздушно-реактивные двигатели, в которых необходимое повышение давления осуществляется другими способами, которые имеют названия: пульсирующие и прямоточные двигатели.

В пульсирующем двигателе для этого служит обычно клапанная решётка, установленная на входе в двигатель, когда новая порция топливно-воздушной смеси заполняет камеру сгорания и в ней происходит вспышка, клапаны закрываются, изолируя камеру сгорания от входного отверстия двигателя. Вследствие того давление в камере повышается, и газы устремляются через реактивное сопло наружу, после чего весь процесс повторяется.

В бескомпрессорном двигателе другого типа, прямоточном, нет даже и этой клапанной решётки и давление в камере сгорания повышается в результате скоростного напора, т.е. торможения встречного потока воздуха, поступающего в двигатель в полёте. Понятно, что такой двигатель способен работать только тогда, когда летательный аппарат уже летит с достаточно большой скоростью, на стоянке он тяги не разовьет. Но зато при весьма большой скорости, в 4-5 раз большей скорости звука, прямоточный двигатель развивает очень большую тягу и расходует меньше топлива, чем любой другой "химический" реактивный двигатель при этих условиях. Вот почему прямоточные двигатели.

Особенность аэродинамической схемы сверхзвуковых летательных аппаратов с прямоточными воздушно-реактивными двигателями (ПВРД) обусловлена наличием специальных ускорительных двигателей, обеспечивающих скорость движения, необходимую для начала устойчивой работы ПРД. Это утяжеляет хвостовую часть конструкции и для обеспечения необходимой устойчивости требует установки стабилизаторов.

Принцип работы реактивного двигателя.

В основе современных мощных реактивных двигателях различных типов лежит принцип прямой реакции, т.е. принцип создания движущей силы (или тяги) в виде реакции (отдачи) струи вытекающего из двигателя "рабочего вещества", обычно - раскалённых газов.

Во всех двигателях существует два процесса преобразования энергии. Сначала химическая энергия топлива преобразуется в тепловую энергию продуктов сгорания, а затем тепловая энергия используется для совершения механической работы. К таким двигателям относятся поршневые двигатели автомобилей, тепловозов, паровые и газовые турбины электростанций и т.д.

Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.

Подобных переход осуществлялся и во всех других тепловых двигателях, но реактивные двигатели принципиально отличаются от них в отношении дальнейшей судьбы раскалённых продуктов сгорания.

После того, как в тепловом двигателе образовались горячие газы, заключающие в себя большую тепловую энергию, эта энергия должна быть преобразована в механическую. Ведь двигатели для того и служат, чтобы совершать механическую работу, что-то "двигать", приводить в действие, все равно, будь то динамо-машина на просьба дополнить рисунками электростанции, тепловоз, автомобиль или самолёт.

Чтобы тепловая энергия газов перешла в механическую, их объём должен возрасти. При таком расширении газы и совершают работу, на которую затрачивается их внутренняя и тепловая энергия.

В случае поршневого двигателя расширяющиеся газы давят на поршень, движущийся внутри цилиндра, поршень толкает шатун, а тот уже вращает коленчатый вал двигателя. Вал связывается с ротором динамомашины, ведущими осями тепловоза или автомобиля или же воздушным винтом самолёта - двигатель совершает полезную работу. В паровой машине, или газовой турбине газы, расширяясь, заставляют вращать связанное с валом турбиной колесо - здесь отпадает нужда в передаточном кривошипно-шатунном механизме, в чем заключается одно из больших преимуществ турбины

Расширяются газы, конечно, и в реактивном двигателе, ведь без этого они не совершают работы. Но работа расширения в том случае не затрачивается на вращение вала. Связанного с приводным механизмом, как в других тепловых двигателях. Назначение реактивного двигателя иное - создавать реактивную тягу, а для этого необходимо, чтобы из двигателя вытекала наружу с большой скоростью струя газов - продуктов сгорания: сила реакции этой струи и есть тяга двигателя. Следовательно, работа расширения газообразных продуктов сгорания топлива в двигателе должна быть затрачена на разгон самих же газов. Это значит, что тепловая энергия газов в реактивном двигателе должна быть преобразована в их кинетическую энергию - беспорядочное хаотическое тепловое движение молекул должно замениться организованным их течением в одном, общем для всех направлении.

Для этой цели служит одна из важнейших частей двигателя, так называемое реактивное сопло. К какому бы не все в там правда типу не принадлежал тот или иной реактивный двигатель, он обязательно снабжен соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например, в ракетных или прямоточных двигателях. В других, турбореактивных, - газы сначала проходят через турбину, которой отдают часть своей тепловой энергии. Она расходует в этом случае для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель.

Реактивное сопло может иметь различные формы, и, тем более, разную конструкцию в зависимости от типа двигателя. Главное заключается в той скорости, с которой газы вытекают из двигателя. Если эта скорость истечения не превосходит скорости, с которой в вытекающих газах распространяются звуковые волны, то сопло представляет собой простой цилиндрический или суживающий отрезок трубы. Если же скорость истечения должна превосходить скорость звука, то соплу придается форма расширяющейся трубы или же сначала суживающейся, а за тем расширяющейся (сопло Лавля). Только в трубе такой формы, как показывает теория и опыт, можно разогнать газ до сверхзвуковых скоростей, перешагнуть через "звуковой барьер".

Схема реактивного двигателя

Турбовентиляторный двигатель - это наиболее широко используемый в гражданской авиации реактивный двигатель.

Горючее, попадая в двигатель (1), перемешивается со сжатым воздухом и сгорает в камере сгорания (2). Расширяющиеся газы вращают быстроходную (3) и тихоходную) турбины, которые, в свою очередь, приводят в движение компрессор (5), проталкивающий воздух в камеру сгорания, и вентиляторы (6), прогоняющие воздух через эту камеру и направляющие его в выхлопную трубу. Вытесняя воздух, вентиляторы обеспечивают дополнительную тягу. Двигатель данного типа способен развивать тягу до 13 600кг.

Заключение

Реактивный двигатель обладает многими замечательными особенностями, но главная из них заключается в следующем. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном пространстве.

К. Э. Циолковский – основоположник теории космических полётов. Научное доказательство возможности использования ракеты для полётов в космическое пространство, за пределы земной атмосферы и к другим планетам Солнечной системы было дано впервые русским учёным и изобретателем Константином Эдуардовичем Циолковским

Список литературы

Энциклопедический Словарь Юного Техника.

Тепловые Явления в технике.

Материалы с сайта http://goldref.ru/;

  1. Реактивное движение (2)

    Реферат >> Физика

    Которое в виде реактивной струи выбрасывается из реактивного двигателя ; сам реактивный двигатель - преобразователь энергии... с которой реактивный двигатель воздействует на аппарат, оснащенный этим реактивным двигателем . Тяга реактивного двигателя зависит от...

  2. Реактивное движение в природе и технике

    Реферат >> Физика

    Сальпу вперед. Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым... т.е. аппарат с реактивным двигателем , использующим горючее и окислитель, находящиеся на самом аппарате. Реактивный двигатель – это двигатель , преобразующий...

  3. Реактивная система залпового огня БМ-13 Катюша

    Реферат >> Исторические личности

    Головной части и порохового реактивного двигателя . Головная часть по своей... взрыватель и дополнительный детонатор. Реактивный двигатель имеет камеру сгорания, в... резкому увеличению огневых возможностей реактивной

Идеи создания теплового двигателя, к которому относится и реактивный двигатель, известны человеку с древнейших времен. Так, в трактате Герона Александрийского под названием «Пневматика» присутствует описание Эолипила – шара «Эола». Данная конструкция представляла собой не что иное, как паровую турбину, в которой пар подавался через трубки в бронзовую сферу и, вырываясь из нее, эту сферу и раскручивал. Вероятнее всего, устройство использовалось для развлечений.

Шар «Эола» Несколько дальше продвинулись китайцы, создавшие в XIII веке некое подобие «ракет». Используемая изначально в качестве фейерверка, в скором времени новинка была взята на вооружение и применялась в боевых целях. Не обошел стороной идею и великий Леонардо, вознамерившийся при помощи горячего воздуха, подаваемого на лопасти, вращать вертел для жарки. Впервые идею газотурбинного двигателя предложил в 1791 году английский изобретатель Дж. Барбер: конструкция его ГТД была оснащена газогенератором, поршневым компрессором, камерой сгорания и газовой турбиной. Использовал в качестве силовой установки для своего самолета, разработанного в 1878 году, тепловой двигатель и А.Ф. Можайский: два паросиловых двигателя приводили в движение пропеллеры машины. Из-за низкого КПД желаемого эффекта достичь не удалось. Другой русский инженер – П.Д. Кузьминский – в 1892 году разработал идею газотурбинного двигателя, в котором топливо сгорало при постоянном давлении. Начав реализацию проекта в 1900 году, он решил установить ГТД с многоступенчатой газовой турбиной на небольшой катер. Однако смерть конструктора помешала закончить начатое. Более интенсивно за создание реактивного двигателя принялись лишь в ХХ веке: сначала теоретически, а через несколько лет – уже и практически. В 1903 году в работе «Исследование мировых пространств реактивными приборами» К.Э. Циолковским были разработаны теоретические основы жидкостных ракетных двигателей (ЖРД) с описанием основных элементов реактивного двигателя, использующего жидкое топливо. Идея создания воздушно-реактивного двигателя (ВРД) принадлежит Р. Лорину, запатентовавшему проект в 1908 году. При попытке создания двигателя, после обнародования чертежей устройства в 1913 году, изобретатель потерпел неудачу: скорости, необходимой для функционирования ВРД, достигнуть так и не удалось. Попытки создания газотурбинных двигателей продолжались и далее. Так, в 1906 году русский инженер В.В. Караводин разработал, а через два года и построил бескомпрессорный ГТД с четырьмя камерами прерывистого сгорания и газовой турбиной. Однако мощность, развиваемая устройством, даже при 10000 об/мин не превышала 1,2 квт (1,6 л.с.). Создал газотурбинный двигатель прерывистого горения и немецкий конструктор Х. Хольварт. Построив ГТД в 1908 году, к 1933 году, после многолетних работ по его совершенствованию, он довёл КПД двигателя до 24%. Тем не менее, идея не нашла широкого применения.

В.П. Глушко Идея же турбореактивного двигателя была озвучена в 1909 году русским инженером Н.В. Герасимовым, получившим патент на газотурбинный двигатель для создания реактивной тяги. Работы по реализации этой идеи не прекращались в России и впоследствии: в 1913 году М.Н. Никольской проектирует ГТД мощностью 120 квт (160 л.с.) с трёхступенчатой газовой турбиной; в 1923 году В.И. Базаров предлагает принципиальную схему газотурбинного двигателя, близкую по схеме современным турбовинтовым двигателям; в 1930 году В.В. Уваров совместно с Н.Р. Брилингом проектирует, а в 1936 году и реализует газотурбинный двигатель с центробежным компрессором. Огромный вклад в создание теории реактивного двигателя внесли работы русских ученых С.С. Неждановского, И.В. Мещерского, Н.Е. Жуковского. французского учёного Р. Эно-Пельтри, немецкого учёного Г. Оберта. На создание воздушно-реактивного двигателя повлияла и работа известного советского ученого Б.С. Стечкина, который опубликовал в 1929 году свой труд «Теория воздушно-реактивного двигателя». Не останавливались работы по созданию и жидкостного реактивного двигателя: в 1926 году американский ученый Р. Годдард осуществил запуск ракеты на жидком топливе. Работы над этой темой происходили и в Советском Союзе: в период с 1929 по 1933 год В.П. Глушко разработал и испытал в действии в Газодинамической лаборатории электротермический реактивный двигатель. Им же в этот период были созданы и первые отечественные жидкостные реактивные двигатели – ОРМ, ОРМ-1, ОРМ-2. Наибольший вклад в практическое воплощение реактивного двигателя внесли немецкие конструкторы и ученые. Имея поддержку и финансирование со стороны государства, рассчитывавшего этим путем добиться технического превосходства в грядущей войне, инженерный корпус III Рейха с максимальной отдачей и в короткие сроки подошел к созданию боевых комплексов, имевших в своей основе идеи реактивного движения. Концентрируя внимание на авиационной составляющей, можно сказать, что уже 27 августа 1939 года летчик-испытатель фирмы Heinkel флюг-капитан Э. Варзиц поднял в воздух He.178 – реактивный самолет, технологические наработки которого были впоследствии использованы при создании истребителей Heinkel He.280 и Messerschmitt Me.262 Schwalbe. Установленный на Heinkel He.178 двигатель Heinkel Strahltriebwerke HeS 3 конструкции Х.-И. фон Охайна хоть и не обладал высокой мощностью, но сумел открыть эру реактивных полетов боевой авиации. Достигнутая He.178 максимальная скорость в 700км/ч с использованием двигателя, мощность которого не превышала 500 кгс, говорила о многом. Впереди лежали безграничные возможности, которые лишали будущего поршневые моторы. Созданная в Германии целая серия реактивных двигателей, например, Jumo-004 производства фирмы Junkers, позволила ей уже в конце Второй мировой войны обладать серийными реактивными истребителями и бомбардировщиками, опередив другие страны в этом направлении на несколько лет. После поражения III Рейха именно немецкие технологии дали толчок развитию реактивного самолетостроения во многих странах мира. Единственной страной, сумевшей ответить на немецкий вызов, была Великобритания: созданный Ф. Уиттлом турбореактивный двигатель Rolls-Royce Derwent 8 был установлен на истребителе Gloster Meteоr.

Трофейный Jumo 004 Первым в мире турбовинтовым двигателем стал венгерский двигатель Jendrassik Cs-1 конструкции Д. Ендрашика, построившего его в 1937 году на заводе Ganz в Будапеште. Несмотря на возникшие в ходе внедрения проблемы, двигатель предполагалось устанавливать на венгерский двухмоторный штурмовик Varga RMI-1 X/H, специально сконструированный для этого авиаконструктором Л. Варго. Однако довести работы до конца венгерские специалисты так и не сумели – предприятие было перенацелено на выпуск немецких моторов Daimler-Benz DB 605, выбранных для установки на венгерские Messerschmitt Me.210. Перед началом войны в СССР продолжались работы по созданию различных типов реактивных двигателей. Так, в 1939 году прошли испытания ракеты, на которых стояли прямоточные воздушно-реактивные двигатели конструкции И.А. Меркулова. В том же году на ленинградском Кировском заводе начались работы по постройке первого отечественного турбореактивного двигателя конструкции А.М. Люльки. Однако начавшаяся война прекратила опытные работы над двигателем, направив всю мощность производства на нужды фронта. Настоящая эра реактивных двигателей началась после завершения Второй мировой войны, когда за короткий промежуток времени был покорен не только звуковой барьер, но и земное притяжение, что позволило вывести человечество в космическое пространство.