Правильная циркуляция в каждом помещении. Атмосферная циркуляция

Неравномерность поступления солнечной радиации в те или иные регионы Земли служит главной причиной циркуляции Вм атмосферы с образованием циклонов и антициклонов. Циркуляция атмосферы – важнейший климатообразующий процесс, способствующий переносу тепла и влаги из одних регионов в другие и определяющий характер К. в любой точке поверхности земного шара. Существование циркуляции атмосферы обусловлено, главным образом, неоднородным распределением атмосферного давления, вызванным в основном различным притоком солнечной радиации в тех или иных широтах, различными физическими свойствами земной поверхности (суши, моря и льда), а также отклоняющим влиянием вращения Земли на воздушные потоки.

Совокупность этих причин определяет местонахождение и перемещение постоянных и сезонных центров действия атмосферы, т.е. обширных областей атмосферы с преобладанием антициклонов (областей повышенного атмосферного давления) или циклонов (областей с пониженным атмосферным давлением). Размещение центров действия атмосферы отражает наиболее устойчивые особенности общей циркуляции атмосферы. Различают постоянные центры действия атмосферы, проявляющиеся в течение всего года – экваториальную депрессию; области высокого атмосферного давления над тридцатыми широтами северного и южного полушарий (Азорский антициклон (max) , Северо-Тихоокеанский / Гавайский max, Южно-Атлантический max, Южно-Индийский max, Южно-Тихоокеанский max); депрессии субполярных широт (Исландская депрессия (min), Алеутский min, Субантарктический min); полярные области высокого атмосферного давления (Арктический антициклон (max), Антарктический max), а также сезонные центры действия атмосферы, образование которых связано с интенсивным прогревом или охлаждением внутренних районов материков в летний и зимний сезоны – например, Азиатский антициклон, Канадский антициклон, Сахаро-Аравийский min, Южно-Азиатский min. Атмосферное давление само по себе не имеет большого непосредственного значения для климатов, но косвенное его значение нельзя недооценивать. В результате неравномерного распределения атмосферного давления возникает движение воздуха относительно земной поверхности, обычно горизонтальное, которое направлено от области высокого давления к низкому. Это движение не что иное, как ветер.

Существование постоянных центров действия определяет формирование постоянных ветров. Для тропического пояса характерна пассатная циркуляция.

Схема распределения давления и ветров на земной поверхности

Пассат – это постоянный ветер тропических широт, его возникновение связано с оттоком воздуха из области высокого давления над тридцатыми широтами в область экваториальной депрессии. Под воздействием силы Кориолиса пассаты в северном полушарии имеют северо-восточное направление, в южном полушарии – юго-восточное направление. Пассаты тропической зоны характеризуются удивительным постоянством направления и относительно равномерной скоростью. Поэтому в тропических широтах образуется пояс восточных ветров. Зона тропических восточных ветров по обе стороны экватора, включая и внутритропическую зону конвергенции, занимает самую большую площадь по сравнению с остальными звеньями общей циркуляции атмосферы.

Для внетропической зоны характерен западный перенос воздуха и в этих широтах формируется поле западных ветров. Западные ветры – это постоянные ветры умеренных широт. Их формирование обусловлено падением температуры воздуха и атмосферного давления от субтропиков (области высокого давления над тридцатыми широтами) к субполярным широтам. Меридионально направленные (вследствие существования барического градиента) воздушные течения отклоняются силой Кориолиса вправо в северном полушарии и влево – в южном, т.е. в обоих случаях с запада на восток. Зона западного переноса Вм отличается интенсивной циклонической деятельностью.

Зоны общей циркуляции меняют свое положение в соответствии с годовым ходом высоты Солнца, что является причиной устойчивого чередования преобладающих направлений ветра на окраинах этих зон. Хотя их смещение и незначительно, но оно играет большую роль в формировании климатических условий переходных климатических поясов (субарктического, субтропического, субэкваториального).

Ветер – одно из основных понятий метеорологии. Различают прямое воздействие ветра: рельефообразующий фактор, влияет на форму растений, способствует переносу семян растений, вызывает морские течения, регулирует дальность распространения морских и материковых влияний и т.д. Но большее значение, чем прямое воздействие ветра, имеют его косвенные эффекты, ибо именно ветру мы обязаны сменами погоды, связанными с перемещением различных Вм с их разнообразными свойствами.

Воздушные массы – относительно однородные части тропосферы, соизмеримые с большими частями материков и океанов и обладающие определенными общими свойствами (температурой, влажностью, давлением и т.д.); формируются над однородной подстилающей поверхностью, в однородных радиационных условиях; перемещаются как целое в одном из течений общей циркуляции атмосферы (что в значительной степени определяет характер климатических условий) и отделяются друг от друга атмосферными фронтами. По происхождению различают: арктические, антарктические, умеренных широт, тропические и экваториальные Вм с подразделением их (кроме экваториальных) на морской и континентальный типы.

Фронтальные зоны, формирующиеся в зоне контакта Вм, обладают большой неустойчивостью атмосферы. Для арктического и полярного атмосферных фронтов характерно образование циклонов, крупных атмосферных вихрей. Циркуляция воздуха в вихрях направлена в северном полушарии против, а южном – по часовой стрелке, с отклонением к центру циклона в нижних слоях атмосферы. В различных частях циклона отмечаются значительные температурные контрасты. Прохождение циклонов обычно сопровождается усилением облачности и осадков, изменением температуры воздуха и резкой сменой погоды.

Схема развития фронтального циклона (по С.П. Хромову)

Во внутритропической зоне конвергенции (зоны столкновения в атмосфере пассатов Северного и Южного полушарий, или пассата и экваториального муссона) наблюдаются сильные восходящие токи воздуха, приводящие к образованию мощной облачности и выпадению обильных ливневых осадков.

На территории Северных материков, большая часть которых располагается в умеренном, субарктическом и субтропическом поясах, господствует западный перенос Вм умеренных широт. Исландский и Алеутский барические минимумы, которые формируются над океаническими бассейнами в районе 60 0 с.ш., служат зонами конвергенции Вм, развития фронтальных процессов и формирования циклонов, которые смещаются с запада на восток, с океанов на материки и определяют режим погод на значительных пространствах Северных материков. Наиболее сильно влияние западных ветров проявляется в западно-приокеанических секторах Евразии и Северной Америки в субарктическом, умеренном поясах, где формируются морские типы климата, отличающиеся теплой для данных широт зимой, прохладным летом и большим количеством осадков, выпадающих в течение всего года с небольшим преобладанием зимних осадков. В западно-приокеаническом секторе субтропического пояса формируется средиземноморский климат с влажной зимой (влияние западных ветров) и сухим жарким летом (из-за летнего положения субтропических антициклонов).

В пределах южных тропических материков, основная площадь территории которых расположена в экваториально-тропических широтах, господствует пассатная циркуляция. В тропических широтах всех южных тропических материков пассаты непосредственно участвуют в образовании климатов восточных побережий. На восток Южной Америки, Австралии и Южной Африки пассаты приносят мТВ. Они способствуют выпадению осадков на восточных склонах береговых поднятий. В летнее время количество осадков увеличивается, т.к. усиливается пассатная циркуляция и влагосодержание Вм возрастает. С продвижением вглубь континентов, Вм трансформируются и количество осадков снижается. Более быстрое превращение мТВ в кТВ происходит в холодный период. Для этих районов характерны тропические влажные (пассатно влажные) климаты.

Особенно большую роль циркуляция пассатного типа играет в формировании климата северной, наиболее широкой части Африки, которая к тому же расположена в непосредственном соседстве с огромным материковым блоком Евразии. Северо-восточный пассат устойчиво наблюдается в течение всего года между 30 0 и 17 0 с.ш. над территорией северной Африки. Вм, перенесенные пассатным потоком, формируются в области повышенного давления тридцатых широт, располагающейся над севером Африки и Аравией. По своим свойствам это кТВм, которые очень сухие и осадков не дают. Поэтому, в зоне влияния этого воздушного потока формируется самая большая по площади пустыня мира – Сахара. Сахару называют «детищем северо-восточного пассата».

В зимний период над внутренними районами Северных материков развиваются обширные области с высоким атмосферным давлением: Канадский, Северо-Американский, Азиатский антициклоны. Наибольшей устойчивостью отличается Азиатский антициклон, центр которого расположен над северной Монголией и южным Забайкальем. Вм, формирующиеся в этих областях повышенного давления, отличаются сухостью и очень низкими температурами. Растекание Вм из Азиатского антициклона обусловливает снижение температур и отсутствие зимних осадков на огромных пространствах Северной, Центральной, Восточной Азии.

В летний период внутренние районы материков прогреваются, над ними формируются барические депрессии, в которые затягиваются Вм с окраин материков. Например, летние муссонноподобные ветры с Мексиканского залива, столкновение тихоокеанский и атлантических Вм над внутренними районами Мексиканского нагорья с развитием внутритропической конвергенции; аналогичные процессы развиваются летом южного полушария над внутренними районами Южной Африки.

На фоне общей циркуляции атмосферы в ряде регионов проявляется местная циркуляция, обусловленная географическими особенностями соответствующей территории: характером рельефа, резкими контрастами температуры воздуха, подстилающей поверхностью и др. Существует много локально обусловленных ветров, носящих местные наименования. Среди местных ветров обособленные группы образуют бризовые ветры, горно-долинные ветры, нисходящие (фёновые) ветры, синоптические региональные ветры (их формирование связано со специфической, чаще других повторяющейся, синоптической ситуацией): сирокко, самум, хамсин, вилли-вилли и др.; штормовые (торнадо, смерч, тайфун) ветры.

"Общая циркуляция атмосферы"

циркуляция атмосфера географическ ий давление

Введение


В связи с сильной зависимостью человеческой деятельности от изменений погоды в течение последнего столетия практически во всех странах возникла национальная служба погоды, которая занимается наблюдением и изучение изменений погоды и составлением синоптических карт, сводок погоды и пр.

Смена дня и ночи, сезонов года вносит в погоду достаточно простые и регулярные изменения в виде суточного и годового хода метеорологических элементов. Но резкие и нерегулярные изменения, гораздо более характерные для погоды, являются результатом смены воздушных масс, прохождения разделяющих их фронтов, перемещения и эволюции циклонов и антициклонов. В отдельных широтах большее значение имеют не междусуточные изменения погоды, а долгосрочные ее проявления, такие как засуха, наводнения и т.д. Непрерывно происходящие изменения в состоянии погоды связаны в первую очередь с процессами общей циркуляции атмосферы.

Вышеизложенные положения обуславливают актуальность данной работы, формируя ее цель, которая состоит в теоретическом исследовании темы: «Общая циркуляция атмосферы» с изложением полученных результатов.

Для наиболее полного достижения данной цели были поставлены следующие задачи:

-дать общее понятие о масштабах атмосферных движений и общей циркуляции атмосферы;

-рассмотреть составляющие общей циркуляции, и географическое распределение давления и ветра, центры действия атмосферы;

-рассмотреть циркуляцию на различных широтах, типы атмосферных циркуляций;

1. Представление о масштабах атмосферных движений


Если окинуть взглядом Землю, то в каждый данный момент времени нам представится очень сложная система ветров и сложная картина распределения давления. В практике службы погоды картина распределения ветров и давления отражается на географических картах Северного и Южного полушарий, а также тропической зоны. Такие карты называются синоптическими. Они составляются как для атмосферных движений у поверхности Земли, так и в форме топографии изобарических поверхностей и ветра на них. Так как атмосфера находится в непрерывном движении, то системы ветров и распределение давления все время меняются. Эти изменения можно проследить, если рассматривать синоптические карты за последовательные сроки наблюдений, т.е. следить за изменением полей ветра и давления от карты к карте (например, за 00 и 12 ч Гринвичского времени). На них видны различные атмосферные образования. Среди них циклоны и антициклоны, которые непрерывно возникают, двигаются и разрушаются. Анализ атмосферных движений позволяет выделить следующие характерные масштабы движений:

-Микрометеорологический масштаб;

-Масштаб конвективных облаков;

-Мезометеорологический масштаб;

-Синоптический масштаб;

-Глобальный масштаб;

В каждый данный момент времени в атмосфере существуют движения всех масштабов, накладывающиеся друг на друга. Именно этим определяется сложность атмосферной циркуляции. Однако, прослеживая из года в год развитие атмосферных процессов, можно отметить определенные устойчивые черты, проявляющиеся в полях ветра и давления. Лучше всего они выявляются с помощью статистического осреднения полей давления и ветра, при котором ежедневные возмущения сглаживаются, а остаются наиболее устойчивые особенности воздушных течений. Именно они и представляют общую циркуляцию атмосферы.


2. Общая циркуляция атмосферы


Общей циркуляцией атмосферы называют систему крупномасштабных воздушных течений на земном шаре, т.е. таких течений, которые по своим размерам сравнимы с материками и океанами.

ОЦА - результат взаимодействия многих факторов, из которых решающими являются:

·неравномерность притока солнечной энергии на разных широтах и в разное время года;

·вращение Земли и действие возникающих при этом инерционных сил;

·неоднородность земной поверхности (например, наличие суши с различно ориентированными горными хребтами, плато, равнинами, морями и т.д.).

Самое первое элементарное представление об общей циркуляции атмосферы получают, рассматривая средние многолетние карты. Для ветра это обычно карты преобладающих направлений либо равнодействующих, для давления карты многолетнего среднего распределения давления за отдельные месяцы, сезоны и за год.

Рассматривая глобальное распределение давления (рис.1 и рис.2), можно заметить, что поля давления в тропиках и вне их сильно отличаются. Вне тропиков отчетливо выделяются следующие зоны:

зона I - область относительно высокого давления над полюсами;

зона II - пояс низкого давления в районе субполярных широт (60-65°);

зона III - умеренные широты, где непрерывно возникают, развиваются и исчезают движущиеся атмосферные возмущения - волны и вихри в форме циклонов и антициклонов;

зона IV - пояс высокого давления в субтропических широтах около 30-35° широты, объединяющий обширные, расположенные над океанами антициклоны; это так называемый пояс субтропических антициклонов.

На обращенной к экватору периферии субтропического пояса высокого давления в тропиках также можно выделить характерные зональные области в поле давления:

зона IV - те же самые крупномасштабные замкнутые области высокого давления в форме субтропических антициклонов, особенно над океанами, периферия которых распространяется до 25° широты;

зона V - где приземное давление уменьшается от субтропиков в направлении экватора;

зона VI - экваториальная ложбина, т.е. пояс низкого давления, который опоясывает весь земной шар и испытывает сезонные смещения, различные на разных долготах.

Описанные особенности в той или иной степени можно видеть на каждой синоптической карте, хотя они в значительной степени замаскированы подвижными циклонами и антициклонами. Даже на многолетних средних картах особенности в распределении давления носят отпечаток различного влияния суши и моря на циклоническую деятельность. Однако по величине и направлению средние градиенты давления между указанными выше зонами близки к меридиональным градиентам. В умеренных широтах они направлены от I и IV зон ко II зоне, а в тропиках - от IV к VI зоне.

Так как реальный ветер близок к геострофическому (градиентному), такие градиенты обусловливают преобладание восточных движений в полярных и тропических широтах и западных - в умеренных широтах.

Сопоставление среднего атмосферного давления на уровне моря зимой (рис.1 январь, рис.2 июль) и летом (рис.2 июль, рис.1 январь) показывает существенную асимметрию между Северным и Южным полушариями.

В северном континентальном полушарии поле давления значительно менее зонально, чем в Южном океаническом. Например, зимой в Северном полушарии существуют две огромные области низкого давления: над Северной Атлантикой и Северным Тихим океаном, в то время как в Южном полушарии в полосе широт 40-60° ю.ш. - зональные изобары.

Как видно, такое среднее поле давления в Северном полушарии складывается из-за преобладания циклонов над антициклонами на севере Атлантического и Тихого океанов. В Южном полушарии в этих широтах никаких материков нет, циклоны и антициклоны развиваются над океаном на любых меридианах и при движении циклонов на юго-восток, а антициклонов - на северо-восток в полосе широт 40-60° ю.ш. области низкого и высокого давления взаимно погашаются. Но конечные стадии развития циклонов дают кольцо областей низкого давления вокруг Антарктиды, а антициклонов - кольцо субтропического пояса высокого давления.


Рис.1. Распределение среднего атмосферного давления на уровне моря в январе (гПа)

Рис.2. Распределение среднего атмосферного давления на уровне моря в июле (гПа)


3. Квазигеострофичность течений общей циркуляции


Крупномасштабные течения общей циркуляции в большей части атмосферы являются квазигеострофическими. Это означает, что ветры, определяющие такие течения, близки к геострофическому ветру и, следовательно, в свободной атмосфере такие течения направлены почти по изобарам (изогипсам) (рис.3, рис.4). Только в слое трения воздушные течения существенно отличаются от геострофического ветра и значительно отклоняются от изобар. Однако приняв известный из опыта средний угол отклонения ветра от изобары, мы и в этом случае можем по полю давления восстановить поле ветра. Употребляя слово «квазигеострофические», мы тем самым подчеркиваем, что и над слоем трения воздушные течения не являются строго геострофическими.

Как правило, реальные крупномасштабные течения и в свободной атмосфере имеют ускорения, связанные с отклонением от геострофического ветра, и направлены не строго по изобарам, что и служит причиной изменения давления.


Рис.3. Средняя абсолютная высота (геопотенциальные декаметры) изобарической поверхности 300 гПа в декабре-феврале


Однако в свободной атмосфере эти отклонения реального ветра от геострофического малы в сравнении с величиной самого ветра.

Допущение о квазигеострофичности справедливо для умеренных широт. В экваториальном поясе условие геострофичности не выполняется ни у земной поверхности, ни в свободной атмосфере: отклоняющая сила вращения Земли на экваторе равна нулю, а в экваториальном поясе мала и не может уравновешивать силу барического градиента. Поэтому в экваториальной зоне ветер не может быть геострофическим.


Рис.4. Средняя абсолютная высота (геопотенциальные декаметры) изобарической поверхности 300 гПа в июне-августе


4. Зональность в распределении давления и ветра


Наиболее устойчивая особенность в распределении, как атмосферного давления, так и ветра над земным шаром - квазизональность этого распределения. Квазизональность циркуляции проявляется в преобладании широтных составляющих ветра (восточной или западной) над меридиональными составляющими (северной или южной) и в больших значениях широтных составляющих по сравнению с меридиональными.

Степень преобладания зональных составляющих над меридиональными может быть различной. Над тропическими океанами преобладание восточных составляющих в переносе воздуха в нижней части тропосферы выражено очень хорошо и легко различимо даже на отдельных синоптических картах, т.е. в отдельные дни. В общем, меридиональные составляющие в тропиках примерно в 10 раз меньше зональных. Хорошо выражено и преобладание западных ветров в умеренных широтах Южного полушария. В то же время во многих районах умеренных широт Северного полушария ветер часто и резко меняется по направлению и преобладание западного переноса можно подметить только из статистического анализа большого материала наблюдений. Есть, наконец, и такие районы (например, восток Азии), где преобладающие направления ветра в нижней тропосфере ближе к меридиональным, чем к зональным.

Причина зональности давления и ветра - зональность в распределении температуры и в динамических особенностях самого механизма общей циркуляции атмосферы.


5. Меридиальные составляющие общей циркуляции


Меридиональные составляющие переноса воздуха в общей циркуляции атмосферы, хотя они и меньше по сравнению с зональными, имеют очень большое значение. Именно они обусловливают обмен воздуха между различными широтами Земли.

Ежедневное распределение меридиональных движений на земном шаре очень сложное, поскольку оно связано с подвижными атмосферными возмущениями - циклонами и антициклонами. В самом деле, в каждом циклоне создается перенос воздуха к высоким широтам в передней части и к низким широтам в тыловой части, в антициклонах наоборот. Отсюда следует, что в каждый данный момент на одном и том же уровне под одним меридианом господствуют направленные на север меридиональные составляющие, а под другим меридианом - направленные на юг.

При осреднении составляющие, направленные по данному меридиану в разное время к северу и к югу, будут в некоторой степени взаимно погашаться. Поэтому средние многолетние меридиональные потоки будут меньше, чем в индивидуальных процессах, но зато они отразят преобладающие переносы. В общем, для всего земного шара в нижней тропосфере тропиков в среднем преобладает ветер, направленный к экватору, с максимальной скоростью зимой около 3 м/с. В верхней тропосфере тропиков преобладает направленная к полюсам составляющая с максимальной скоростью зимой около 2,5 м/с. В средней тропосфере, в слое от 750 до 350 гПа, меридиональный ветер очень слабый.

В умеренных широтах Северного полушария в нижней тропосфере преобладают южные составляющие, а в верхней тропосфере - северные, но их скорости весьма невелики. Такое распределение средних меридиональных составляющих ветра породило представление о существовании в каждом полушарии двух замкнутых колец циркуляции воздуха. В тропиках это кольцо циркуляции получило название ячейки Хэдли (Гадлея). Считалось, что существующий в тропиках в нижней части тропосферы перенос воздуха к экватору, его подъем в экваториальной зоне и обратный перенос в субтропические широты в верхней тропосфере, а там опускание воздуха вниз осуществляется в виде замкнутой циркуляции. В умеренных широтах это второе кольцо получило название ячейки Ферреля. Считалось, что существующий здесь в нижних слоях перенос воздуха от субтропических широт к полярным, его подъем в полярных широтах, обратный перенос к субтропическим широтам в верхних слоях и опускание в субтропических также происходят в виде замкнутой циркуляции. Такое представление оказалось слишком упрощенным.

В действительности замкнутых колец циркуляции не существует. Система меридиональных движений значительно более сложная и изменчивая. Во внетропических широтах обоих полушарий с их сильно развитой циклонической деятельностью воздух перемещается из одних широт в другие не в виде замкнутых циркуляций, а в системах меридиональных потоков, направление которых чередуется на каждом меридиане и на одном и том же уровне. Такая же смена потоков наблюдается и в верхней половине тропосферы в тропиках. Существовавшее ранее упрощенное представление о замкнутых меридиональных ячейках циркуляции возникло как результат статистического осреднения за продолжительный промежуток времени ежедневных систем меридиональных движений.

Переносы воздуха в нижних и верхних слоях атмосферы, совпадающие по направлению с ячейками Хэдли и Ферреля, в действительности существуют, но не в виде замкнутых колец циркуляции, а в форме развивающихся в тропосфере волн и вихрей.


6. Географическое распределение давления. Центры действия атмосферы


Чтобы получить представление о глобальном поле давления, рассмотрим карты многолетнего среднего распределения давления на уровне моря в январе и июле (см. рис.1, рис.2).

Зональные особенности в распределении давления можно легко заметить на этих картах. Однако влияние неравномерного распределения суши и моря приводит к тому, что в каждой зоне барическое поле распадается на отдельные ячейки, на отдельные области повышенного и пониженного давления с замкнутыми изобарами. Эти области носят название центров действия атмосферы. Одни из этих центров действия можно найти на климатологических картах всех месяцев года - их называют перманентными. Другие обнаруживаются на картах только зимних или только летних месяцев - их называют сезонными центрами действия.

Январь. На карте (рис.1) хорошо различается экваториальная ложбина с давлением ниже 1015 гПа, охватывающая всю экваториальную зону Земли. Внутри ложбины имеются три отдельные депрессии - области пониженного давления с замкнутыми изобарами: над Южной Америкой, Южной Африкой и Австралией с Индонезией. Давление в центрах депрессий ниже 1010 гПа. Области с наиболее низким давлением в экваториальной ложбине лежат в январе не на самом экваторе, а достаточно далеко от него: примерно под 15° ю.ш. над прогретыми (здесь лето!) материками Южного полушария.

По обе стороны от экваториальной ложбины обнаруживаются субтропические зоны высокого давления, которые состоят из нескольких антициклонов, называемых субтропическими. Особенно хорошо выражены субтропические антициклоны над всеми тремя океанами Южного полушария (с центрами под 30-35° ю.ш. и с давлением в центре выше 1020 гПа); над более теплыми, чем океаны, материками они заменяются пониженным давлением. В Северном полушарии субтропические антициклоны обнаруживаются над Атлантическим и Тихим океанами (замкнутые изобары 1020 гПа), где их центры также располагаются под 30-35° широты. Антициклон над северным Атлантическим океаном носит название Азорского, над северным Тихим океаном - Гонолульского или Гавайского.

Над Азией в субтропических и тропических широтах давление также повышенное. Однако здесь нет самостоятельного субтропического антициклона: Южная Азия занята южной периферией огромного Азиатского (Сибирского) зимнего антициклона с центром в Монголии.

В умеренных и субполярных широтах Южного полушария, к югу от субтропических антициклонов, находится почти сплошная зона низкого давления, в которой можно выделить несколько центров. В соответствующих широтах Северного полушария также обнаруживается низкое давление, однако, только над океанами; это две океанические депрессии: Исландская на севере Атлантического океана и Алеутская на севере Тихого океана с давлением в центре ниже 1000 гПа. Над материками Азии и Северной Америки они заменяются зимними антициклонами: Азиатским, о котором уже говорилось, и Канадским. В Азиатском антициклоне давление в центре выше 1035 гПа, в Канадском - выше 1020 гПа.

В полярных широтах давление повышено по сравнению с субполярными широтами. Особенно хорошо выражена область высокого давления над Антарктикой - Антарктический антициклон. В Северном полушарии повышение давления в Арктическом бассейне также существует, хотя и менее значительное, чем в Антарктике. Только над ледяной Гренландией видна замкнутая изобара 1000 гПа, обрисовывающая область повышенного давления.

Июль. На карте (рис.2) видно, что экваториальная ложбина смещена к северу и самое низкое давление в ней уже не в Южном, а в Северном полушарии, где лето. Центры низкого давления особенно далеко сместились на север над нагретыми материками Северного полушария: они располагаются примерно на 30-й параллели, как в Азии, так и в Северной Америке. Эти части экваториальной ложбины, вышедшие над нагретыми материками даже за пределы тропиков, называются летними термическими депрессиями: Южноазиатской (Переднеазиатской) и Мексиканской.

Зоны высокого давления в субтропиках также различимы. В Южном полушарии, где в июле зима, субтропические антициклоны захватывают в субтропиках и тропиках не только три океана, но и материки, которые в это время холодные. Но в летнем Северном полушарии антициклоны остаются только над двумя океанами (причем они, как видно из карт, смещаются дальше на север и усиливаются). Над материками субтропических широт давление в противоположность январю, как мы видели, понижено. Оно остается пониженным и в более высоких широтах.

Таким образом, в умеренных и субполярных широтах Северного полушария океанические депрессии (гораздо менее глубокие, чем зимой) и депрессии над материками образуют непрерывную субполярную зону низкого давления вокруг всего полушария. На север от нее давление растет, но очень мало. В Южном полушарии в июле, как и в январе, различают зону низкого давления в субполярных широтах и антициклон над Антарктическим материком.

Зональность в распределении давления нарушается тем, что давление повышается над материками зимой и понижается летом. Зимой над материками высокое давление обнаруживается даже в умеренных и субполярных широтах, где оно вообще понижено. Летом над материками давление понижается в субтропических зонах, где оно вообще повышено.

Наличие центров действия на многолетних средних картах не должно приводить к заключению, что в тех или иных местах Земли круглый год или весь сезон располагается один и тот же устойчивый циклон или антициклон. В действительности циклоны и антициклоны в атмосфере достаточно быстро сменяются. Климатологические карты только позволяют заключить, что в одних местах Земли циклоны преобладают над антициклонами, и потому там, на картах получаются центры действия с пониженным давлением (как, например, на севере Атлантического океана - Исландская депрессия). В других местах антициклоны наблюдаются чаще, чем циклоны, и на картах в таких местах получаются центры действия с повышенным давлением (как Азорский антициклон в субтропиках Атлантического океана). На синоптических картах в тот или иной момент, например, над северным Атлантическим океаном можно одновременно наблюдать не один, а два отдельных субтропических антициклона, а над северным Тихим океаном - даже три.

Прежде полагали, что в полярных областях антициклоны держатся почти постоянно или настолько преобладают над циклонами, что на многолетних средних картах там должны быть достаточно сильные центры действия с высоким давлением - полярные антициклоны. Теперь известно, что в Арктике преобладание антициклонов над циклонами совсем невелико, и потому на многолетних средних картах Арктический антициклон обрисовывается очень слабо. И над Антарктидой антициклоны не обладают таким исключительным постоянством, как думали еще недавно. Но все же Антарктический антициклон в среднем выражен значительно лучше, чем антициклон Арктический. Особую сложность вносит большая высота самого материка Антарктиды над уровнем моря при очень низких приземных температурах воздуха над ледяной поверхностью. Приведение давления к уровню моря дает завышенные результаты, несравнимые со значениями давления на уровне моря для океана и низменности. Для того чтобы видеть, насколько давление над Антарктидой выше, чем над окружающим океаном, нужно составлять карты не для уровня моря, а для уровня 3-4 км, близкого к поверхности материка (для изобарической поверхности 700 гПа). Средние месячные карты для поверхности 700 гПа обнаруживают наличие антициклона над Восточной Антарктидой во все месяцы года.


7. Географическое распределение давления в свободной атмосфере


Для того чтобы получить представление о распределении давления во всей толще атмосферы, строят карты многолетней средней абсолютной топографии стандартных изобарических поверхностей: 900, 850, 700, 500, 300, 200 гПа и т.д. Для этого используют многолетние ряды наблюдений аэрологических станций всего земного шара. На многолетних средних картах барической топографии изобарических поверхностей (700, 500, 300 гПа и т.д.) видно, что с высотой становится все меньше замкнутых изогипс, обрисовывающих отдельные центры действия над материками и океанами, и распределение давления становится все более зональным (см. рис.3, рис.4). Это понятно, так как с высотой влияние суши и моря на температуру, а, следовательно, и на давление, ослабевает. В верхней тропосфере и нижней стратосфере абсолютные изогипсы на средних картах изобарических поверхностей огибают весь земной шар, конечно, не совпадая точно с широтными кругами. Как видно из карт, густота изогипс вдоль каждого меридиана различная.

Учитывая, что в свободной атмосфере ветер близок к геострофическому, карты показывают, что и зимой и летом в тропосфере умеренных и субтропических широт обоих полушарий в общем, господствуют западные воздушные течения. Однако зимой в Северном полушарии отчетливо выделяются три волны с гребнями над востоком Атлантического и Тихого океанов и над Уральским хребтом и с ложбинами у восточных берегов Северной Америки и Азии и над Восточной Европой, наложенные на общий западный поток. В Южном полушарии в тропосфере (см. рис.3, рис.4) изогипсы проходят более зонально, хотя и там можно заметить три волны, правда, с очень маленькой амплитудой. Неодинаковое сгущение изогипс в субтропических широтах и в широтном поясе 50-60° - отражение субтропического струйного течения и планетарной высотной фронтальной зоны полярного фронта.

Анализ карт (рис.3, рис.4) показывает, что высота изобарической поверхности 300 гПа (как, впрочем, и всех других изобарических поверхностей в тропосфере) повышается к экватору. Зимой на поверхности 300 гПа пояс высокого давления с отдельными антициклонами вдоль 10°с. и ю.ш. охватывает всю тропическую зону. Летом на поверхности 300 гПа в полосе высокого давления в широтном поясе 5-25° Северного полушария формируются отдельные антициклоны над материками (см. рис.4). Если вспомнить, что у Земли летом над Центральной Америкой, Северной Африкой и Южной Азией находятся термические депрессии, то станет ясно, что эти антициклоны существуют только в верхней половине тропосферы, т.е. они высотные. И хотя в депрессиях существует недостаток массы по сравнению с окружающими районами, в верхней тропосфере изобарические поверхности образуют антициклональные купола благодаря очень высоким средним температурам слоя 1000-300 гПа.

Итак, наиболее высокое давление в свободной атмосфере наблюдается около 10° с. и ю.ш., наиболее низкое - над полярными районами.

Правда, зимой в Северном полушарии самое низкое давление смещено от полюса к особенно холодным северо-восточным частям Азии и Северной Америки.

В слоях выше 20 км летом распределение давления коренным образом меняется в связи с изменением меридионального распределения температуры. Над полюсом давление становится повышенным, т.е. околополюсная депрессия заменяется антициклоном. Поэтому в летнем полушарии в стратосфере выше 20 км господствуют восточные воздушные течения. В зимнем полушарии давление над полюсом самое низкое, и здесь расположен центр околополюсной депрессии. Поэтому западные воздушные течения господствуют и в стратосфере, приобретая особенно большие скорости на границе полярной ночи.


8. Средняя величина давления для земного шара и полушарий


Среднее значение атмосферного давления на уровне моря для всего земного шара, определенное из многолетних средних карт, близко к 1013 гПа, а на уровне местности (учитывая возвышение материков над уровнем моря) - близко к 982 гПа. Из данных рис.5 видно, что среднее значение давления над каждым полушарием понижается от зимнего полугодия к летнему.


Рис.5. Годовой ход среднего давления воздуха в Северном полушарии (1), в экваториальной зоне между 2,5° ю.ш. (2) и в Южном полушарии (3)


От января к июлю оно понижается над Северным полушарием на несколько гектопаскалей и повышается в Южном полушарии. Атмосферное давление равно весу столба воздуха и, следовательно, пропорционально массе воздуха. Это значит, что из летнего полушария какая-то масса воздуха оттекает в зимнее полушарие, т.е. происходит сезонный обмен воздуха между полушариями. За год из Северного полушария в Южное и обратно переносится 1013 т воздуха, что составляет примерно 1/500 часть всей массы атмосферы.

9. Преобладающие направления ветра


Поскольку существуют центры действия, постольку распределение ветра даже на многолетних средних картах отклоняется от зонального. На картах (рис.6, рис.7) представлены по многолетним данным преобладающие направления ветра у земной поверхности в январе и июле. Оперение стрелок указывает на степень повторяемости данного направления в данном месте: каждое перо означает 10% повторяемости. Представленное климатическое распределение ветра дает, конечно, очень упрощенную картину, поскольку число точек, для которых даны направления ветра, невелико. Из рассмотренного ясно, что климатологическое распределение много проще, чем реальные распределения в отдельные дни. Но им можно воспользоваться для первоначальной ориентировки в воздушных течениях общей циркуляции атмосферы.

На картах показано и многолетнее среднее распределение давления на уровне моря, чтобы можно было сопоставить его с распределением ветра. Это распределение давления несколько отличается в деталях от распределения на картах (рис.6, рис.7).

На картах прежде всего хорошо различимы обладающие высокой повторяемостью северо-восточные и юго-восточные ветры в тропиках над Атлантическим, Тихим и южным Индийским океанами. Это пассаты, у земной поверхности отклоняющиеся от восточного направления изобар субтропических антициклонов.

Затем выделяются ветры западной четверти над океанами в сороковых-шестидесятых широтах Южного полушария. Это самая устойчивая часть западного переноса в умеренных широтах. В северном полушарии преобладание ветров западной четверти постоянно выражено в умеренных широтах только над океанами; над материками режим ветра изменчивее и сложнее, хотя ветры западной половины горизонта преобладают над восточными.

Восточные ветры высоких широт отмечены на картах лишь по окраинам Антарктиды; по новейшим данным можно было бы представить их более отчетливо. Наконец, на юге, востоке и севере Азии и в некоторых других районах видно резкое изменение направления преобладающих ветров от января к июлю. Это районы муссонов.

Подробнее о воздушных течениях в разных широтах и областях Земли будет сказано ниже.

В более высоких слоях тропосферы и нижней стратосфере распределение ветра ближе к зональному, чем у земной поверхности. Климатологические карты ветра на высотах не приводятся, однако судить о распределении ветра в тропосфере можно по картам барической топографии (см. рис.6, рис.7).

Как мы уже говорили, ветры в свободной атмосфере дуют почти по изобарам или по изогипсам абсолютной барической топографии, оставляя низкое давление в Северном полушарии слева, а в Южном - справа.


Рис.6. Преобладающие направления ветра в январе: каждое перо на стрелке означает 10% повторяемости ветра данного направления

Рис.7. Преобладающие направления ветра в июле: каждое перо на стрелке означает 10% повторяемости ветра данного направления


10. Циркуляция в тропиках


Метеорологическая граница тропической зоны. В атмосфере не существует твердых границ: воздушные массы из тропиков могут проникать в полярные широты, а арктический воздух достигает тропических широт, правда, сильно трансформировавшись по пути. Проникновение умеренного воздуха в тропики и тропического воздуха в умеренные широты происходит систематически и представляет основной элемент междуширотного обмена теплом и влагой. Поэтому любая граница в атмосфере является условной, т.е. некоторой переходной зоной, разделяющей районы с преобладанием определенных циркуляционных процессов.

Главное, что отличает циркуляцию в умеренных широтах, - это циклоническая деятельность, развивающаяся в воздушных течениях преобладающего западного переноса. Циркуляция в тропиках существенным образом отличается от циркуляции в умеренных широтах.

Переходная зона, которая отделяет циркуляцию в тропиках от циркуляции умеренных широт над океанами, может быть условно представлена широтными осями субтропических, антициклонов (см. рис.1, рис.2).

Однако для циркуляции над материками этот критерий не годится, поскольку там нет субтропических антициклонов. Более строго границу, выделяющую тропическую зону, можно определить как широту, представляющую среднеарифметическое из широт среднего положения тропической тропопаузы и тропопаузы умеренных широт на каждом меридиане в соответствующем месяце или сезоне. Определенная таким образом граница зимой лежит около 28±3° с.ш. в Северном полушарии и около 32±3° ю.ш. в Южном полушарии, а летом - около 35+5° с.ш. и 35±3° ю.ш. соответственно. Таким образом, от зимы к лету граница тропической зоны смещается к полюсам, причем наибольшее смещение наблюдается в Северном полушарии над материками.

В отличие от умеренных широт циркуляционные системы (но не погода) в тропиках отличаются значительной устойчивостью.


11. Внетропическая циркуляция


Когда речь идет о внетропической циркуляции, имеется в виду главным образом циркуляция в умеренных широтах. Если взять в целом области земного шара вне тропиков, то обнаружим, что здесь всегда имеются районы, занятые арктическим (в Южном полушарии антарктическим) воздухом, образующим арктическую (антарктическую) воздушную массу (АВ). Очагом ее формирования является Арктика (Антарктика). Естественно, большая часть средних широт занята воздушной массой умеренных широт (так называемая умеренная или полярная воздушная масса - УВ). Как это видно из названия, умеренная воздушная масса формируется именно в умеренных широтах. На юге, в субтропических широтах, всегда присутствуют тропические воздушные массы (ТВ), либо здесь формирующиеся, либо принесенные из тропиков. Все воздушные массы существуют круглый год, хотя границы очагов их формирования испытывают сезонные смещения: летом к полюсам, зимой в направлении к тропикам.

Воздушные массы различаются по температуре, влажности и другим свойствам не только у земли, но и в свободной атмосфере, включая, как мы видели, высоту и температуру тропопаузы. Воздушные массы отделяются друг от друга узкими зонами перехода, называемыми главными фронтами: арктический воздух отделяется от воздуха умеренных широт арктическим фронтом (АФ), воздух умеренных широт отделяется от тропического воздуха полярным фронтом (ПФ), иногда называемым фронтом умеренных широт. Наиболее резко контраст метеорологических величин на АФ и ПФ заметен у Земли. Здесь же ширина зоны перехода от одной воздушной массы к другой составляет 10-20 км. Поэтому у земли фронты изображаются фронтальными линиями. С высотой в свободной атмосфере области перехода от одной воздушной массы к другой расширяются и превращаются во фронтальные зоны.

Существующий всегда в свободной атмосфере меридиональный контраст температуры (меридиональный градиент температуры) между экватором и полюсами складывается в основном именно из температурных градиентов во фронтальных зонах главных атмосферных фронтов. Поскольку границы между воздушными массами охватывают все полушарие, то и фронтальные зоны главных атмосферных фронтов имеют планетарный характер. Поэтому такие фронтальные зоны называются планетарными высотными фронтальными зонами (ПВФЗ). Большие величины температурных градиентов на главных фронтах и, следовательно, во фронтальных зонах определяют большие значения термического ветра. Поэтому в области главных фронтов скорость ветра очень сильно растет с высотой, и к ним приурочены струйные течения, являющиеся составной частью ПВФЗ. Барический градиент в умеренных широтах в общем направлен к полюсам, так же направлен и температурный градиент. Следовательно, в силу квазигеострофичности воздушных течений в зоне умеренных широт преобладают западные воздушные течения или, как часто говорят, западный перенос воздушных масс. Скорость западного переноса возрастает с высотой до тропопаузы, и только после изменения направления температурного градиента в стратосфере на обратное (от полюсов к экватору) скорость ветра с высотой убывает.

Западный перенос в тропосфере умеренных широт неустойчив; в нем постоянно образуются волнообразные движения, так называемые волны Росби, длина которых порядка 5000 км.

Воздушные массы, разделяющие их фронты и, следовательно, фронтальные зоны в свободной атмосфере не остаются неподвижными: различия в температурах воздушных масс являются причиной существования горизонтальных градиентов давления, под действием которых воздушные массы и разделяющие их фронты непрерывно перемещаются.

При определенных контрастах температур и разности скоростей ветра по обе стороны от фронта на нем возникают неустойчивые фронтальные волны, амплитуда которых растет со временем. Такие неустойчивые волны дают начало циклонам и антициклонам. Основной особенностью атмосферной циркуляции во внетропических широтах и является постоянное возникновение, развитие, перемещение, а затем разрушение крупномасштабных атмосферных возмущений - циклонов и антициклонов, называемое циклонической деятельностью. Таким образом, все воздушные течения синоптического масштаба связаны во внетропических широтах с циклонической деятельностью.


12. Типы атмосферной циркуляции во внетропических широтах


В зависимости от непериодически меняющихся особенностей циклонической деятельности в каждом сезоне года можно различать во внетропических широтах разные типы атмосферной циркуляции, которые можно выделить как для определенных секторов земного шара, так и для целого полушария. Не останавливаясь на многочисленных работах в этом направлении, укажем здесь только на самое основное разделение: на зональный (широтный) и меридиональный типы циркуляции.

При зональном типе циркуляции (рис. 8) над значительной частью полушария или даже над всем полушарием господствует хорошо выраженный западный перенос воздуха. Это значит, что в крупномасштабном распределении давления высокое давление занимает низкие широты, а низкое - высокие широты. Общий перенос воздуха происходит с запада на восток; в этом же направлении достаточно быстро перемещаются и подвижные циклоны и антициклоны. На высотных картах барической топографии изогипсы в этом типе циркуляции в общем имеют зональное направление. Они обнаруживают волнообразные колебания соответственно прохождению подвижных циклонов и антициклонов у земной поверхности. Волны давления также перемещаются с запада на восток, и амплитуды их сравнительно невелики. Вторжения холодного воздуха в низкие широты в тыловых частях циклонов непродолжительные и не проникают далеко, поэтому междуширотный обмен теплом ослаблен.

При меридиональном типе циркуляции (рис. 9) во внетропических широтах имеются интенсивные высокие и малоподвижные циклоны и антициклоны, расположенные бок о бок. Это описанные выше холодные центральные циклоны и теплые блокирующие антициклоны. Они захватывают всю тропосферу и часто нижнюю стратосферу, поэтому западный перенос воздуха в тропосфере нарушается.

В верхней тропосфере на картах барической топографии в этом типе циркуляции видны малоподвижные волны давления с большой амплитудой; изогипсы образуют хорошо выраженные обширные ложбины, простирающиеся в низкие широты, и гребни, простирающиеся в высокие широты. Поэтому даже в высоких слоях тропосферы воздушные течения приобретают большие меридиональные составляющие.

В передних частях центральных циклонов и в тыловых частях блокирующих антициклонов устанавливаются мощные воздушные течения, направленные из низких широт в высокие, а в тыловых частях центральных циклонов и в передних частях блокирующих антициклонов - из высоких широт в низкие. Обмен воздухом и теплом между высокими и низкими широтами Земли происходит в этом типе интенсивнее, чем в зональном.

Зональный тип циркуляции в Европе связан с адвекцией воздуха с Атлантического океана и, следовательно, с теплой погодой зимой и прохладным летом и с циклоническими осадками в северной половине Европы. Меридиональный тип связан с глубокими проникновениями холодных масс арктического воздуха к югу и теплых масс воздуха из субтропиков в высокие широты.


Рис. 8. Пример зонального типа циркуляции на карте абсолютной топографии поверхности 500 гПа

Рис. 9. Пример меридионального типа циркуляции на карте абсолютной топографии поверхности 500 гПа


Каждый из описанных типов циркуляции обычно господствует над более или менее значительной частью полушария, иногда почти над всем полушарием. Вследствие особенностей механизма циклонической деятельности оба типа могут переходить один в другой, т.е. в течение года несколько раз сменяться.

В Южном полушарии широтный тип циркуляции наблюдается чаще и в большей степени преобладает над меридиональным типом, чем в Северном полушарии. Это объясняется более однородной океанической подстилающей поверхностью Южного полушария.

Как зональный, так и меридиональный типы циркуляции проявляются с разной степенью интенсивности в разных секторах Земли. Для числового выражения зональности или меридиональности циркуляции применяются различные цифровые показатели, так называемые индексы циркуляции. Простейший из них - это разность значений давления между двумя широтами, например 30-й и 60-й (осредненных по отрезкам широтных кругов). Чем больше разность, тем больше средний меридиональный барический градиент между указанными широтами и тем больше интенсивность зонального переноса воздуха. Можно взять в качестве зонального индекса непосредственно среднее значение зональной составляющей геострофического ветра.


13. Местные ветры


Под местными ветрами понимают ветры, характерные только для определенных географических районов. Происхождение их различно.

Во-первых, местные ветры могут быть проявлением местных циркуляций, возникающих в системе общей циркуляции атмосферы при слабых крупномасштабных воздушных течениях. Таковы, например, бризы по берегам морей и больших озер. Различия в нагревании суши и воды днем и ночью создают вдоль береговой линии при слабых воздушных течениях общей циркуляции местную циркуляцию. При этом в приземных слоях атмосферы ветер дует днем с моря на более нагретую сушу, а ночью - с охлажденной суши на море.

Во-вторых, местные ветры могут представлять собой местные изменения (возмущения) течений общей циркуляции атмосферы под влиянием орографии или топографии местности. Таков, например, фён - теплый ветер, дующий по горным склонам в долины и возникающий, когда течение общей циркуляции переваливает через горный хребет. Повышение температуры воздуха при фёне, связанное с нисходящим движением, является следствием именно влияния хребта на общециркуляционное течение. Влиянием орографии объясняется и бора с различными ее разновидностями.

Рельеф местности может создавать также усиление ветров в некоторых районах до скоростей, значительно превышающих скорости в соседних районах. Примером служат ветры горных проходов, ущелий и горловинные ветры, возникающие при орографических сужениях в устье долин. Такие локально усиленные ветры того или иного направления известны в разных районах под разными названиями как местные ветры. Иногда особые свойства придает местному ветру прохождение воздуха над сильно нагретой и сухой поверхностью, например над пустыней или над сильно испаряющей (водной) поверхностью.

В-третьих, местными ветрами называют и такие сильные или обладающие особыми свойствами ветры в некотором районе, которые, по существу, являются течениями общей циркуляции. Интенсивность их проявления и их характерность для данного географического района являются следствием самого механизма общей циркуляции, самого географического распределения синоптических процессов. В этом значении называют местным ветром, например, сирокко на Средиземном море.

Кроме сирокко известны многочисленные местные ветры в различных местах Земли, носящие особые названия, такие как самум, хамсин, афганец и пр. Упоминания о таких ветрах можно найти в физико-географических или климатических характеристиках отдельных местностей.


14. Роль серии циклонов в междуширотном обмене воздуха


Как указывалось выше, циклоны на главных фронтах (полярном или арктическом) обычно возникают сериями; вслед за первым циклоном на его холодном фронте возникает второй циклон, а на холодном фронте второго циклона в свою очередь возникает следующий. Таким образом, на главном фронте обычно развиваются три циклона, а иногда и больше. Каждый циклон серии перемещается в высокие широты, и одновременно вся серия смещается в более низкие широты, обычно на юго-восток, так что траектория каждого следующего центра проходит южнее траектории предыдущего. При этом воздушные массы и разделяющий их фронт далеко уходят от первоначального положения и больше к нему не возвращаются. В тылу каждого циклона серии холодный умеренный воздух проникает все дальше в низкие широты. А заключительный антициклон дает уже мощное вторжение умеренного воздуха в субтропики. По мере продвижения умеренного воздуха в более низкие широты он прогревается от земной поверхности, а в свободной атмосфере - благодаря нисходящим движениям в антициклоне. Эти два процесса - нагревание от земной поверхности и адиабатическое нагревание в антициклоне - приводят к тому, что умеренный воздух постепенно трансформируется и в конце концов приобретает свойства тропического воздуха, т.е. становится тропической воздушной массой. Сам же заключительный антициклон становится высоким и теплым субтропическим антициклоном.

В то же время тропический воздух, составляющий теплые сектора циклонов циклонической серии, продвигается в высокие широты. Правда, у земной поверхности он в теплых секторах не проникает далеко к полюсу, так как каждый циклон серии окклюдируется. В процессе окклюзии циклонов теплый воздух оттесняется от земной поверхности в верхнюю тропосферу и уже там продолжает движение к высоким широтам. Особенно далеко он проникает в передней части центрального циклона. При этом теплый воздух за счет адиабатического подъема и излучения в конце концов трансформируется в умеренный воздух.

Таким образом, в результате развития циклонической серии при посредстве циклонов и антициклонов происходит обмен воздухом между низкими и высокими широтами Земли.


Заключение


Таким образом, мы выполнили поставленные задачи перед написанием работы, целью которой являлось теоретически исследовать тему: «Общая циркуляция атмосферы» с соответствующим реферативным изложением полученных результатов.

В результате мы можем сделать следующие выводы:

Общей циркуляцией атмосферы называют систему крупномасштабных воздушных течений на земном шаре, т.е. таких течений, которые по своим размерам сравнимы с материками и океанами. В каждый данный момент времени в атмосфере существуют движения всех масштабов, накладывающиеся друг на друга. Наиболее устойчивые особенности воздушных течений и представляют общую циркуляцию атмосферы.

Эти воздушные течения возникает вследствие неравномерного нагревания атмосферы, что приводит к обмену воздуха между различными широтами и областями Земли. ОЦА осуществляется в форме циклонической деятельности, т.е. с помощью атмосферных возмущений - циклонов и антициклонов. Под влиянием радиационных условий и циклонической деятельности происходит расчленение атмосферы (тропосферы) в горизонтальном направлении на отдельные воздушные массы с резко разграничивающими их переходными зонами - фронтами. Образование последних в свою очередь поддерживает циклоническую деятельность.


Список используемой литературы


1.Авиационная метеорология: Учеб. пособие/П.Д. Астапенко, А.М. Баранов, И.М. Шварев и др. - М.: Транспорт, 1979, 263с.

2.Авиационная метеорология. Яковлев А.М. Изд-во «Транспорт», 1971г.-248с.

3.Метеорология и климатология: учебник.- 7-е изд./ Хромов С. П., Петросянц М. А. - М.: Изд-во Моск. ун-та: Наука, 2006.-582с.

4.Курс лекций по синоптической метеорологии Ч.1. Дашко Н.А., 2005, 38с.

5.Конспект лекций по дисциплине «Авиационная метеорология». И.А.Кислицына, Некоммерческое образовательное учреждение «Корпоративный центр подготовки персонала - Институт аэронавигации», 2008, 49с.

6.Воробьев В.И. Синоптическая метеорология.-Л.:Гидрометеоиздат, 1994.- 716 с.

7. Погосян Х. П., «Общая циркуляция атмосферы», Л., 1972, 394 с.;


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Циркуляция атмосферы

Движение воздушных масс

Весь воздух Земли непрерывно циркулирует между экватором и полюсами. Нагретый у экватора воздух поднимается вверх, разделяется на две части, одна часть начинает двигаться к северному полюсу, другая часть - к южному полюсу. Доходя до полюсов, воздух охлаждается. У полюсов он закручивается и опускается вниз.

Рисунок 1. Принцип закручивания воздуха

Получается два огромных вихря, каждый из которых охватывает по целому полушарию, центры этих вихрей находятся у полюсов.
Опустившись у полюсов, воздух начинает двигаться обратно к экватору, у экватора нагретый воздух поднимается вверх. Затем опять движется к полюсам.
В нижних слоях атмосферы движение несколько сложнее. В нижних слоях атмосферы воздух от экватора как обычно начинает двигаться к полюсам, но у 30-ой параллели опускается вниз. Одна его часть возвращается к экватору, где снова поднимается вверх, другая его часть, опустившись у 30-ой параллели вниз, продолжает движение к полюсам.

Рисунок 2. Движение воздуха северного полушария

Понятие ветра

Ветер – движение воздуха относительно земной поверхности (горизонтальная составляющая этого движения), иногда говорят о восходящем или о нисходящем ветре, учитывая и его вертикальную составляющую.

Скорость ветра

Оценка скорости ветра в баллах, так называемая шкала Бофорта ,по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т.п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т.е. полное отсутствие ветра. Ветер в 4 балла,по Бофорту называется умеренным и соответствует скорости 5–7 м/сек; в 7 баллов – сильным, со скоростью 12–15 м/сек;в 9 баллов – штормом, со скоростью 18–21 м/сек;наконец, ветер в 12 баллов по Бофорту – это уже ураган, со скоростью свыше 29 м/сек. У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4–8 м/сек и редко превышают 12–15 м/сек.Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек.В тропических ураганах скорости ветра доходят до 65 м/сек,а отдельные порывы – до 100 м/сек.В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек.В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70–100 м/сек. Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10–15 м над земной поверхностью.

Таблица 1. СИЛА ВЕТРА.
Шкала Бофорта для определения силы ветра
Баллы Визуальные признаки на суше Скорость ветра, км/ч Термины, определяющие силу ветра
Спокойно; дым поднимается вертикально Менее 1,6 Штиль
Направление ветра заметно по отклонению дыма, но не по флюгеру 1,6–4,8 Тихий
Ветер ощущается кожей лица; шелестят листья; поворачиваются обычные флюгеры 6,4–11,2 Легкий
Листья и мелкие веточки находятся в постоянном движении; развеваются легкие флаги 12,8–19,2 Слабый
Ветер поднимает пыль и бумажки; раскачиваются тонкие ветви 20,8–28,8 Умеренный
Качаются покрытые листвой деревья; появляется рябь на водоемах суши 30,4–38,4 Свежий
Качаются толстые ветви; слышен свист ветра в электропроводах; трудно удерживать зонт 40,0–49,6 Сильный
Качаются стволы деревьев; трудно идти против ветра 51,2–60,8 Крепкий
Ломаются ветви деревьев; практически невозможно идти против ветра 62,4–73,6 Очень крепкий
Небольшие повреждения; ветер срывает дымовые колпаки и черепицу с крыш 75,2–86,4 Шторм
На суше бывает редко. Деревья выворачиваются с корнями. Значительные разрушения строений 88,0–100,8 Сильный шторм
На суше бывает очень редко. Сопровождается разрушениями на большом пространстве 102,4–115,2 Жестокий шторм
Сильные разрушения (Баллы 13–17 были добавлены Бюро погоды США в 1955 и применяются в шкалах США и Великобритании) 116,8–131,2 Ураган
132,8–147,2
148,8–164,8
166,4–182,4
184,0–200,0
201,6–217,6

Направление ветра

Под направлением ветра подразумевают направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т.е. его азимут. В первом случае различают восемь основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. И восемь промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад. Шестнадцать румбов, указывающих направление, откуда дует ветер, имеют сокращенные обозначения:

Таблица 2. СОКРАЩЁННЫЕ ОБОЗНАЧЕНИЯ РУМБОВ
С N В E Ю S W
CCB NNE ВЮВ ESE ЮЮЗ SSW ЗСЗ WNW
CB NE ЮВ SE ЮЗ SW СЗ NW
BCB ENE ЮЮВ SSE ЗЮЗ WSW ССЗ NNW
N – норд, E – ост, S – зюйд, W – вест

Циркуляция атмосферы

Циркуляция атмосферы - метеорологические наблюдения над состоянием воздушной оболочки земного шара - атмосферы - показывают, что она вообще не находится в покое: при помощи флюгеров и анемометров мы постоянно наблюдаем в виде ветра перенос масс воздуха с одного места на другое. Изучение ветров в различных местностях земного шара показало, что перемещения атмосферы в тех нижних слоях, которые доступны нашему наблюдению, имеют весьма различный характер. Существуют местности, где явления ветра, как и прочие особенности погоды обладают весьма ясно выраженным характером устойчивости, известным стремлением к постоянству. В других же местностях ветры так быстро и часто меняют свой характер, так резко и внезапно изменяется их направление и сила, как будто бы никакой законности в их быстрых сменах не существовало. С введением синоптического метода для изучения непериодических изменений погоды явилась, однако, возможность подметить некоторую связь между распределением давления и передвижениями масс воздуха; дальнейшие теоретические исследования Ферреля, Гульдберга и Мона, Гельмгольца, Бецольда, Обербека, Шпрунга, Вернера Сименса и других метеорологов разъяснили, откуда и как возникают воздушные потоки и как они распределяются по земной поверхности и в массе атмосферы. Внимательное изучение метеорологических карт, изображающих состояние нижнего слоя атмосферы, - погоду у самой поверхности земли, показало, что давление атмосферы распределяется по земной поверхности довольно неравномерно, обыкновенно в виде областей с более низким или с более высоким, чем в окружающем районе, давлением; по системе ветров, в них возникающей, эти области представляют собою настоящие атмосферные вихри. Области пониженного давления принято называть обыкновенно барометрическими минимумами, барометрическими депрессиями или циклонами; области повышенного давления называются барометрическими максимумами или антициклонами. С этими областями теснейшим образом связана и вся погода в занимаемом ими районе, резко отличающаяся для областей пониженного давления от погоды в областях сравнительно высокого давления. Перемещаясь по земной поверхности, упомянутые области переносят с собою и характерную, им свойственную погоду, и своими перемещениями вызывают ее непериодические изменения. Дальнейшее изучение тех и других областей привело к тому заключению, что эти типы распределения атмосферного давления могут иметь еще различный характер по способности сохранять свое существование и менять свое положение на земной поверхности, отличаются очень не одинаковою устойчивостью: существуют барометрические минимумы и максимумы временные и постоянные. В то время, как первые - вихри - временные и не обнаруживают достаточной устойчивости и более или менее быстро переменяют свое место на земной поверхности, то усиливаясь, то ослабевая и, наконец, совершенно распадаясь в сравнительно короткие промежутки времени, области постоянных максимумов и минимумов обладают чрезвычайно большой устойчивостью и в течение весьма продолжительного времени держатся, без существенных изменений, на одном и том же месте. С различною устойчивостью этих областей теснейшим образом связана, конечно, и устойчивость погоды и характер воздушных течений в занимаемом ими районе: постоянным максимумам и минимумам будут соответствовать и постоянная, устойчивая погода и определенная, неизменная система ветров, месяцами держащиеся на месте их существования; временные же вихри при своих быстрых, постоянных перемещениях и изменениях вызывают крайне переменчивую погоду и очень непостоянную для данного района систему ветров. Таким образом, в нижнем слое атмосферы, вблизи земной поверхности, перемещения атмосферы отличаются большим разнообразием и сложностью, а кроме того, не всегда и не везде обладают и достаточной устойчивостью, особенно в тех районах, где преобладают вихри временного характера. Каковы будут движения масс воздуха в несколько более высоких слоях атмосферы, обычные наблюдения не говорят ничего; только наблюдения над движениями облаков позволяют думать, что там - на некоторой высоте над поверхностью земли, все вообще движения воздушных масс несколько упрощаются, носят более определенный и более однообразный характер. А между тем нет недостатка в фактах, указывающих на огромное влияние высоких слоев атмосферы на погоду в нижних: достаточно, напр., указать, что направление передвижения временных вихрей стоит, по-видимому, в прямой зависимости от движения высоких слоев атмосферы. Поэтому еще прежде, чем наука стала располагать достаточным количеством фактов, чтобы решать вопрос о перемещениях высоких слоев атмосферы, явились уже некоторые теории, пытавшиеся объединить все отдельные наблюдения над движениями нижних слоев воздуха и создать общую схему Ц. атмосферы; такова, напр., была теория Ц. атмосферы, данная Мори. Но, пока не было собрано достаточного числа фактов, пока не было вполне выяснено соотношение между давлением воздуха в данных пунктах и ею перемещениями, до тех пор подобные теории, основанный более на гипотезах, чем на фактических данных, не могли дать реального представления о том, что в действительности может совершаться и совершается в атмосфере. Только к концу минувшего XIX в. накопилось достаточно для этого фактов и динамика атмосферы была разработана настолько, что явилась возможность дать действительную, а не гадательную картину Ц. атмосферы. Честь решения вопроса об общем круговороте масс воздуха в атмосфере принадлежит американскому метеорологу Уильяму Феррелю - решения, настолько общего, полного и верного, что все позднейшие исследователи в этой области только разрабатывали детали или вносили дальнейшие дополнения в основные идеи Ферреля. Основною причиною всех движений в атмосфере является неравномерное нагревание различных точек земной поверхности солнечными лучами. Неодинаковость нагревания влечет за собою возникновение разности давлений над различно нагретыми точками; а результатом разности давлений всегда и неизменно явится передвижение масс воздуха от мест более высокого к местам более низкого давления. Поэтому, вследствие сильного нагревания экваториальных широт и очень низкой температуры полярных стран в обоих полушариях, воздух, прилегающий к земной поверхности, должен придти в движение. Если, по имеющимся наблюдениям, подсчитать средние температуры различных широт, то экватор окажется в среднем на 45° теплее полюсов. Для определения направления движения необходимо проследить распределение давления но земной поверхности и в массе атмосферы. Чтобы исключить сильно осложняющее все расчеты неравномерное распределение суши и вод по земной поверхности, Феррель сделал предположение, что и суша, и вода равномерно распределены по параллелям, и подсчитал средние температуры различных параллелей, понижение температуры по мере поднятия на некоторую высоту над земною поверхностью и давление внизу; а затем по этим данным он уже вычислил и давление на некоторых других высотах. Следующая небольшая табличка представляет результат подсчетов Ферреля и дает распределение давления в среднем по широтам на поверхности земли и на высотах 2000 и 4000 м.

Таблица 3. РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЯ ПО ШИРОТАМ НА ПОЫЕРХНОСТИ ЗЕМЛИ И НА ВЫСОТАХ 2000 И 4000 М
Среднее давление в Северном полушарии
На широте: 80 ○ 70 ○ 60 ○ 50 ○ 40 ○ 30 ○ 20 ○ 10 ○
На уровне моря 760,5 758,7 758,7 760,07 762,0 761,7 759,2 757,9
На высоте 2000 м 582,0 583,6 587,6 593,0 598,0 600,9 600,9 600,9
На высоте 4000 м 445,2 446,6 451,9 457,0 463,6 468,3 469,9 470,7
Среднее давление в Южном полушарии
На широте: (экватор) 10 ○ 20 ○ 30 ○ 40 ○ 50 ○ 60 ○ 70 ○
На уровне моря 758,0 759,1 761,7 763,5 760,5 753,2 743,4 738,0
На высоте 2000 м 601,1 601,6 602,7 602,2 597,1 588,0 577,0 569,9
На высоте 4000 м 471,0 471,1 471,1 469,3 463,1 453,7 443,9 437,2

Если оставить пока в стороне самый нижний слой атмосферы, где распределение температуры, давления, а также и течений очень неравномерно, то на некоторой высоте, как видно из таблички, вследствие восходящего тока нагретого воздуха близ экватора, мы находим над этим последним повышенное давление, равномерно уменьшающееся к полюсам и здесь достигающее своей наименьшей величины. При таком распределении давления на этих высотах над земной поверхностью должен образоваться грандиозный поток, охватывающий целое полушарие и относящий поднимающиеся вблизи экватора массы теплого, нагретого воздуха к центрам низкого давления, - к полюсам. Если принять в расчет еще отклоняющее действие центробежной силы, происходящей от суточного вращения земли вокруг своей оси, которое должно отклонить всякое движущееся тело вправо от первоначального направления в северном, влево - в южном полушариях, то на рассматриваемых высотах в каждом полушарии образовавшийся поток превратится, очевидно, в огромный вихрь, переносящий массы воздуха в направлении от юго-запада к северо-востоку в северном, от северо-запада к юго-востоку - в южном полушарии.

Наблюдения над движением перистых облаков и другие подтверждают эти теоретические выводы. По мере того, как суживаются, с приближением к полюсам, круги широт, скорость движения воздушных масс в этих вихрях будет возрастать, но до известного предела; затем она делается более постоянной. Вблизи полюса притекающие массы воздуха должны опускаться вниз, уступая место вновь притекающему воздуху, образуя нисходящий поток, а затем понизу должны течь обратно к экватору. Между обоими потоками должен находиться на некоторой высоте нейтральный слой воздуха, находящегося в покое. Внизу, однако, такого правильного переноса масс воздуха от полюсов к экватору не наблюдается: предшествующая табличка показывает, что в нижнем слое воздуха давление атмосферы будет внизу наивысшим не на полюсах, каким оно должно было бы быть при правильном, соответствующем верхнему, его распределении. Наивысшее давление в нижнем слое падает на широту около 30°-35° в обоих полушариях; следовательно, от этих центров повышенного давления нижние течения будут направляться и к полюсам, и к экватору, образуя две обособленные системы ветров. Причина этого явления, теоретически также разъясненного Феррелем, заключается в следующем. Оказывается, что на некоторой высоте над земною поверхностью, в зависимости от изменения широты места, величины градиента и коэффициента трения, меридиональная слагающая скорости движения масс воздуха может упасть до 0. Это именно и происходит в широтах ок. 30°-35°: здесь на некоторой высоте не только поэтому не существует движения воздуха, по направлению к полюсам, но даже идет, вследствие его непрерывного притока от экватора и от полюсов, его накопление, которое и ведет к повышению в этих широтах давления внизу. Таким образом, у самой поверхности земли в каждом полушарии возникают, как уже упомянуто, две системы течений: от 30° к полюсам дуют ветры, направленные в среднем от юго-запада к северо-востоку в северном, от северо-запада к юго-востоку в южном полушарии; от 30° к экватору дуют ветры от СВ к ЮЗ в северном, от ЮВ к СЗ в южном полушарии. Эти две последние системы ветров, дующих в обоих полушариях между экватором и широтою 31°, образуют как бы широкое кольцо, разделяющее в нижних и средних слоях атмосферы оба грандиозных вихря, переносящие воздух от экватора к полюсам (см. также Давление атмосферы). Там, где образуются восходящие и нисходящие потоки воздуха, наблюдаются затишья; таково именно происхождение экваториального и тропических поясов тишины; подобный же пояс тишины должен, по Феррелю, существовать и на полюсах.

Куда же, однако, девается растекающийся от полюсов к экватору по низу обратный поток воздуха? Но необходимо принять во внимание, что по мере удаления от полюсов размеры кругов широт, а следовательно, и площади поясов равной ширины, занимаемые растекающимися массами воздуха, быстро возрастают; что скорость потоков должна быстро уменьшаться обратно пропорционально увеличению этих площадей; что на полюсах, наконец, опускается сверху вниз сильно разреженный в верхних слоях воздух, объем которого весьма быстро уменьшается по мере возрастания книзу давления. Все эти причины объясняют вполне, почему трудно, и даже прямо невозможно, уследить на некотором расстояния от полюсов за этими обратными нижними потоками. Такова в общих чертах схема общей циркуляционной атмосферы в предположении равномерного распределения суши и вод по параллелям, данная Феррелем. Наблюдения вполне ее подтверждают. Только в нижнем слое атмосферы воздушные течения будут, как это указывает и сам Феррель, много сложнее этой схемы именно вследствие неравномерности распределения суши и вод, и неодинаковости их нагревания лучами солнца и их охлаждения при отсутствии или уменьшении инсоляции; горы и возвышенности также немало влияют на перемещения самых нижних слоев атмосферы.

Внимательное изучение перемещений атмосферы вблизи земной поверхности показывает вообще, что вихревые системы представляют собою основную форму таких перемещений. Начиная с грандиозных вихрей, обнимающих, по Феррелю, каждый целое полушарие, вихрей, как их можно назвать, первого порядка, вблизи земной поверхности приходится наблюдать последовательно уменьшающиеся в своих размерах вихревые системы, до элементарно малых и простых вихрей включительно. Как результат взаимодействия различных по своим скоростям и направлениям потоков в области вихрей первого порядка, вблизи земной поверхности возникают вихри второго порядка - упомянутые в начале настоящей статьи постоянные и временные барометрические максимумы и минимумы, представляющие по своему происхождению как бы производную предыдущих вихрей. Изучение образования гроз привело А. В. Клоссовского и других исследователей к заключению, что и эти явления суть не что иное, как подобные же по строению, но несравненно меньшие по размерам сравнительно с предыдущими, вихри третьего порядка. Эти вихри возникают, по-видимому, на окраинах барометрических минимумов (вихрей второго порядка) совершенно подобно тому, как вокруг крупного углубления, образуемого на воде веслом, которым мы гребем при плавании на лодке, образуются мелкие, весьма быстро крутящиеся и исчезающие водовороты. Совершенно таким же образом барометрические минимумы второго порядка, представляющие собою мощные воздушные круговороты, при своем движении образуют более мелкие воздуховороты, имеющие, по сравнению с образующим их минимумом, очень незначительные размеры.

Если эти вихри сопровождаются электрическими явлениями, что может быть нередко вызвано соответствующими условиями температуры и влажности в притекающем к центру барометрического минимума по низу воздухе, то они являются в виде грозовых вихрей, сопровождаемых обычными явлениями электрического разряда, громом и молнией. Если условия не благоприятствуют развитию грозовых явлений, эти вихри третьего порядка мы наблюдаем в виде быстро преходящих бурь, шквалов, ливней и т. п. Есть, однако, полное основание думать, что и этими тремя категориями, столь различными по масштабу явления, вихревые движения атмосферы не исчерпываются. Строение смерчей, тромбов и т. п. явлений показывает, что и в этих явлениях мы имеем дело также с настоящими вихрями; но размеры этих вихрей четвертого порядка еще меньше, еще незначительнее, чем вихрей грозовых. Изучение движений атмосферы приводит нас, таким образом, к заключению, что перемещения воздушных масс происходят преимущественно - если не исключительно - путем возникновения вихрей. Возникая под влиянием чисто температурных условий, вихри первого порядка, охватывающие каждый целое полушарие, дают начало вблизи земной поверхности вихрям меньших размеров; эти, в свою очередь, являются причиной возникновения еще более мелких вихрей. Происходит как бы постепенная дифференцировка более крупных вихрей в более мелкие; но основной характер всех этих вихревых систем остается совершенно один и тот же, начиная с более крупных и до самых незначительных по своим размерам, даже у смерчей и тромбов.

Относительно вихрей второго порядка - постоянных и временных барометрических максимумов и минимумов - остается сказать еще следующее. Исследования Гофмейера, Тейссеран де Бора и Гильдебрандсона указали на тесную связь между возникновением и особенно перемещением максимумов и минимумов временных с изменениями, претерпеваемыми максимумами и минимумами постоянными. Уже то, что эти последние при всевозможных изменениях погоды в окружающих их областях весьма мало изменяют свои границы или контуры, указывает, что здесь мы имеем дело с некоторыми постоянно действующими причинами, лежащими выше воздействия обычных факторов погоды. По Тейссеран де Бору, разности давления, обусловленные неравномерностью нагревания или охлаждения различных частей земной поверхности, суммируясь под влиянием непрерывного нарастания первичного фактора в течение более или менее продолжительного промежутка времени, дают начало крупным барометрическим максимумам и минимумам. Если первичная причина действует непрерывно или достаточно продолжительно, результатом ее действия явятся постоянные, устойчивые вихревые системы. Достигнув известных размеров и достаточной интенсивности, такие постоянные максимумы и минимумы являются уже определителями или регуляторами погоды на огромных районах в их окружности. Такие крупные, постоянные максимумы и минимумы получили в последнее время, когда выяснилась их роль в явлениях погоды окружающих их стран, название центров действия атмосферы. Вследствие неизменности в конфигурации земной поверхности и вытекающей отсюда непрерывности воздействия первичной причины, вызывающей их существование, положение таких максимумов и минимумов на земном шаре является вполне определенным и неизменным до известной степени. Но, в зависимости от различных условий, их границы и их интенсивность могут в известных пределах изменяться. А эти изменения их интенсивности и их очертаний, в свою очередь, должны отозваться на погоде не только соседних, а иногда даже и довольно отдаленных стран. Так, исследования Тейссеран де Бора вполне установили зависимость погоды в Европе от одного из следующих центров действия: аномалии отрицательного характера, сопровождающиеся понижением температуры сравнительно с нормальною, вызываются усилением и расширением Сибирского максимума или же усилением и надвиганием Азорского максимума; аномалии положительного характера - с повышением температуры против нормальной - находятся в прямой зависимости от перемещения и интенсивности Исландского минимума. Гильдебрандсон пошел в этом направлении еще далее и вполне успешно попытался связать изменения в интенсивности и передвижения двух названных Атлантических центров с изменениями не только Сибирского максимума, но и центров давления на Индийском океане.

Воздушные массы

Наблюдения за погодой получили достаточно широкое распространение во второй половине 19 века. Они были необходимы для составления синоптических карт, показывающих распределение давления и температуры воздуха, ветра и осадков. В результате анализа этих наблюдений сложилось представление о воздушных массах. Это понятие позволило объединять отдельные элементы, выявлять различные условия погоды и давать её прогнозы.

Воздушной массой называется большой объём воздуха, имеющий горизонтальные размеры несколько сотен или тысячи километров и вертикальные размеры – порядка 5 км, характеризующийся примерной однородностью температуры и влажности и перемещающийся как единая система в одном из течений общей циркуляции атмосферы (ОЦА)

Однородность свойств воздушной массы достигается формированием её над однородной подстилающей поверхностью и в сходных радиационных условиях. Кроме того, необходимы такие циркуляционные условия, при которых воздушная масса длительно задерживалась бы в районе формирования.

Значения метеорологических элементов в пределах воздушной массы меняются незначительно – сохраняется их непрерывность, горизонтальные градиенты малы. При анализе метеорологических полей до тех пор, пока мы остаемся в данной воздушной массе, можно с достаточным приближением применять линейную графическую интерполяцию при проведении, например, изотерм.

Резкое возрастание горизонтальных градиентов метеорологических величин, приближающееся к скачкообразному переходу от одних значений к другим, или, по крайней мере, изменение величины и направления градиентов происходит в переходной (фронтальной зоне) между двумя воздушными массами. В качестве наиболее характерного признака той или иной воздушной массы принимается псевдопотенциальная температура воздуха, отражающая и действительную температуру воздуха и его влажность.

Псевдопотенциальная температура воздуха – температура, которую бы принял воздух при адиабатическом процессе, если бы сначала весь содержащийся в нём водяной пар сконденсировался при неограниченно падающем давлении и выпал из воздуха и выделившаяся скрытая теплота пошла бы на нагревание воздуха, а затем воздух был бы приведён под стандартное давление.

Поскольку более тёплая воздушная масса обычно бывает и более влажной, то разность псевдопотенциальных температур двух соседних воздушных масс бывает значительно большей, чем разность их действительных температур. Вместе с тем, псевдопотенциальная температура медленно изменяется с высотой в пределах данной воздушной массы. Это её свойство помогает определять напластование воздушных масс одной над другой в тропосфере.

Масштабы воздушных масс

Воздушные массы имеют тот же порядок, что и основные течения общей циркуляции атмосферы. Линейная протяженность воздушных масс в горизонтальном направлении измеряется тысячами километров. По вертикали воздушные массы простираются вверх на несколько километров тропосферы, иногда до её верхней границы.

При местных циркуляциях, таких, например, как бризы, горно-долинные ветры, фены, воздух в циркуляционном потоке также более или менее обособлен по свойствам и движению от окружающей атмосферы. Однако в этом случае говорить о воздушных массах нельзя, поскольку масштаб явлений здесь будет иной.

Например, полоса, охваченная бризом, может иметь ширину всего 1-2 десятка километров, и потому не получит достаточного отражения на синоптической карте. Вертикальная мощность бризового течения также равна нескольким сотням метров. Таким образом, при местных циркуляциях мы имеем дело не с самостоятельными воздушными массами, а лишь с возмущённым состоянием внутри воздушных масс на небольшом протяжении.

Объекты, возникающие в результате взаимодействия воздушных масс – переходные зоны (фронтальные поверхности), фронтальные облачные системы облачности и осадков, циклонические возмущения, имеют тот же порядок величины, что и сами воздушные массы – сравнимы по площади с большими частями материков или океанов и время их существования – более 2-х суток (табл. 4 ):

Воздушная масса имеет чёткие границы, отделяющие её от других воздушных масс.

Переходные зоны между воздушными массами, обладающими различными свойствами, называются фронтальными поверхностями.

В пределах одной и той же воздушной массы можно с достаточным приближением применять графическую интерполяцию, например, при проведении изотерм. Но при переходе через фронтальную зону из одной воздушной массы в другую линейная интерполяция уже не даст правильного представления о действительном распределении метеорологических элементов.

Очаги формирования воздушных масс

Воздушная масса приобретает чёткие характеристики в очаге формирования.

Очаг формирования воздушных масс должен отвечать определённым требованиям:

Однородность подстилающей поверхности воды или суши, чтобы воздух в очаге подвергался достаточно сходным воздействиям.

Однородность радиационных условий.

Циркуляционные условия, способствующие стационированию воздуха в данном районе.

Очагами формирования обычно бывают области, где воздух опускается, а затем распространяется в горизонтальном направлении - этому требованию отвечают антициклонические системы. Антициклоны чаще, чем циклоны, бывают малоподвижными, поэтому формирование воздушных масс обычно и происходит в обширных малоподвижных (квазистационарных) антициклонах.

Кроме того, требованиям очага отвечают малоподвижные и размытые термические депрессии, возникающие над нагретыми участками суши.

Наконец, формирование полярного воздуха происходит частично в верхних слоях атмосферы в малоподвижных, обширных и глубоких центральных циклонах в высоких широтах. В этих барических системах происходит трансформация (превращение) тропического воздуха, втянутого в высокие широты в верхних слоях тропосферы, в полярный воздух. Все перечисленные барические системы также можно назвать очагами воздушных масс уже не с географической, а с синоптической точки зрения.

Географическая классификация воздушных масс

Воздушные массы классифицируют, прежде всего, по очагам их формирования в зависимости от расположения в одном из широтных поясов – арктическом, или антарктическом, полярном, или умеренных широт, тропическом и экваториальном.

Согласно географической классификации, воздушные массы можно подразделить на основные географические типы по тем широтным зонам, в которых располагаются их очаги:

Арктический или антарктический воздух (АВ),

Полярный, или умеренный, воздух (ПВ или УВ),

Тропический воздух (ТВ). Данные воздушные массы, кроме того, подразделяют на морские (м) и континентальные (к) воздушные массы: мАВ и кАВ, мУВ и кУВ (или мПВ и кПВ), мТВ и кТВ.

Экваториальные воздушные массы (ЭВ)

Что касается экваториальных широт, здесь происходит конвергенция (сходимость потоков) и подъём воздуха, поэтому располагающиеся над экватором воздушные массы обычно приносятся из субтропической зоны. Но иногда выделяют самостоятельные экваториальные воздушные массы.

Иногда, кроме очагов в точном смысле слова, выделяют районы, где зимой воздушные массы трансформируются из одного типа в другой при их перемещении. Это районы в Атлантике южнее Гренландии и в Тихом океане над Беринговым и Охотским морями, где кПВ превращается в мПВ, районы над Юго-восточной частью Северной Америки и к югу от Японии в Тихом океане, где кПВ превращается в мПВ в процессе зимнего муссона, и район на юге Азии, где азиатский кПВ превращается в тропический воздух (также в муссонном потоке)

Трансформация воздушных масс

При изменении циркуляционных условий воздушная масса как единое целое смещается из очага своего формирования в соседние районы, взаимодействуя с другими воздушными массами.

При перемещении воздушная масса начинает изменять свои свойства – они уже будут зависеть не только от свойств очага формирования, но и от свойств соседних воздушных масс, от свойств подстилающей поверхности, над которой проходит воздушная масса, а также от длительности времени, прошедшего с момента образования воздушной массы.

Эти влияния могут вызвать изменения в содержании влаги в воздухе, а также изменение температуры воздуха в результате высвобождения скрытой теплоты или теплообмена с подстилающей поверхностью.

Процесс изменения свойств воздушной массы называется трансформацией или эволюцией.

Трансформация, связанная с движением воздушной массы, называется динамической. Скорости перемещения воздушной массы на разных высотах будут различными, наличие сдвига скоростей вызывает турбулентное перемешивание. Если нижние слои воздуха нагреваются, то возникает неустойчивость и развивается конвективное перемешивание.

Обычно процесс трансформации воздушной массы продолжается от 3 до 7 суток. Пр

Содержание статьи

АТМОСФЕРЫ ЦИРКУЛЯЦИЯ. Основными факторами, влияющими на формирование климата Земли, является солнечная радиация, циркуляция атмосферы и характер подстилающей поверхности. При их совместном влиянии формируется климат в различных районах земного шара. Количество поступающего солнечного тепла зависит от ряда факторов. Определяющим является угол падения солнечных лучей. Поэтому на низких географических широтах поступает значительно больше солнечной энергии, чем на средних и тем более высоких широтах.

Общей циркуляцией атмосферы называют замкнутые течения воздушных масс в масштабах полушария или всего земного шара, приводящие к широтному и меридиональному переносу вещества и энергии в атмосфере. Главной причиной возникновения воздушных течений в атмосфере служит неравномерное распределение тепла на поверхности Земли, что приводит к неодинаковому нагреванию почвы и воздуха в различных поясах земного шара. Таким образом, солнечная энергия является первопричиной всех движений в воздушной оболочке Земли. Кроме притока солнечной энергии к важнейшим факторам, вызывающим возникновение ветра, относятся также вращение Земли вокруг своей оси, неоднородность подстилающей поверхности и трение воздуха о почву. В земной атмосфере наблюдаются воздушные движения самых различных масштабов – от десятков и сотен метров (местные ветры) до сотен и тысяч километров (циклоны, антициклоны, муссоны, пассаты, планетарные фронтальные зоны). Простейшая схема глобальной циркуляции атмосферы была составлена более 200 лет назад. Ее основные положения не потеряли своего значения и до сих пор.

Современные принципы классификации форм атмосферной циркуляции северного полушария Вангенгейма – Гирса. Воздушные массы постоянно перемещаются вокруг земного шара. На скорость их движения влияет неравномерность поступления солнечной радиации и поглощение ее различными участками подстилающей поверхности и атмосферы, вращение Земли, термическое и динамическое взаимодействие атмосферы с подстилающей поверхностью, в том числе и взаимодействие с океаном.

Основной причиной атмосферных движений является неоднородность нагревания различных участков поверхности Земли и атмосферы. Подъем теплого и опускание холодного воздуха на вращающейся Земле сопровождается формированием циркуляционных систем различного масштаба. Совокупность крупномасштабных атмосферных движений получила название общей циркуляции атмосферы.

Атмосфера получает тепло путем поглощения солнечной радиации, за счет конденсации водяного пара и благодаря теплообмену с подстилающей поверхностью. Поступление скрытой теплоты в атмосферу зависит от подъема влажного воздуха. Так тропическая зона Тихого океана является мощным источником тепла и влаги для атмосферы. Значительная теплопередача от поверхности океана происходит зимой там, где холодные воздушные массы приходят в районы теплых морских течений.

Одним из наиболее крупномасштабных звеньев общей циркуляции атмосферы является циркумполярный вихрь. Его формирование обусловлено очагами холода в полярной области и очагами тепла в тропической зоне. Циркумполярное движение и его проявление – западный перенос – являются устойчивой и характерной особенностью общей атмосферной циркуляции. В 1930-е были начаты обстоятельные исследования общей циркуляции атмосферы путем деления всех синоптических процессов на элементарные (ЭСП) и обобщение их в трех формах циркуляции: западной (W), восточной (Е) и меридиональной (С). Процессы западной формы (W) характеризуются развитием зональных составляющих циркуляции и быстрым смещением с запада на восток барических образований. При развитии меридиональных форм циркуляции, когда формируются стационарные волны большой амплитуды, наблюдаются процессы формы Е и С. Распределение воздушных течений на земном шаре тесно связано с распределением давления, температуры и характером циклонической деятельности. Следовательно, в распределении ветра у Земли должна быть определенная зональность. Но фактические направления ветров зимой и летом отличаются от реальных ветров в зональной схеме. Наиболее четкую зональность имеют ветры в приэкваториальной зоне. В северном полушарии зимой и летом преобладают ветры северо-восточного направления, а в южном – ветры юго-восточного направления – пассаты. Яснее всего пассаты выражены над Тихим океаном. Над материками и вблизи них пассаты нарушаются другой системой течений – муссонами, которые возникают из-за циклонической деятельности, связанной с большим перепадом температуры между морем и сушей. Зимой муссон направлен с континента на океан, а летом – с океана на континент. Муссонный перенос воздушных масс представлен в прибрежных районах Восточной Азии и, в частности, в Приморье. Воздушные массы перемещаются как у поверхности Земли, так и на больших высотах от Земли и не только в горизонтальном направлении, но и в вертикальном. Несмотря на то, что вертикальные скорости движения воздуха малы, они играют важную роль в обмене воздуха по вертикали, образовании облаков, осадков и других погодных явлений. Есть и другие особенности в распределении вертикальных движений. Анализ синоптических карт показал, что температурные контрасты полюс – экватор неравномерно распределены по широте. Наблюдается сравнительно узкая зона, где сконцентрирована значительная часть энергии атмосферной циркуляции. Здесь отмечаются максимальные значения барических градиентов, а следовательно, и скоростей ветра. Для таких областей было введено понятие высотной фронтальной зоны (ВФЗ), а связанные с ней сильные западные ветры стали называть струйными течениями или струями. Обычно скорость ветра вдоль оси струи превышает 30 м/с, вертикальный градиент скорости ветра превышает 5 м/с на 1 км, а горизонтальный градиент скорости достигает 10 м/с и более на 100 км. ВФЗ занимает большие географические пространства: ширина ее 800–1000 км, высота 12–15 км и длина 5–10 тыс. км. ВФЗ включает в себя обычно один или несколько фронтов и является местом возникновения подвижных фронтальных циклонов и антициклонов, перемещающихся по направлению основного (ведущего) потока. В периоды сильного развития меридиональности процессов ВФЗ как бы «извивается», огибая высотные гребни с севера и ложбины с юга.

Общая циркуляция атмосферы представляет собой систему крупномасштабных воздушных течений над земным шаром. Эта система доступна изучению с помощью ежедневных синоптических карт, а также находит отображение на средних многолетних картах для земной поверхности и тропосферы.

Воздушные течения.

С планетарным распределением давления связана сложная система воздушных течений. Некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору, и муссоны в средних широтах преобладают воздушные течения западного направления (с Запада на Восток), в которых возникают крупные вихри – циклоны и антициклоны, обычно простирающиеся на сотни и тысячи километров. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т.н. тропические циклоны). В верхней тропосфере и нижней стратосфере часто возникают сравнительно узкие (в сотни километров шириной) струйные течения, с резко очерченными границами, в пределах которых ветер достигает больших скоростей до 100–150 м/с.

Пассаты

(немецкий, единственное число Passat, вероятно, от испанского viento de pasade) – ветер, благоприятствующий переезду), устойчивые на протяжении года воздушные течения в тропических широтах над океанами. В Северном полушарии направление пассатов преимущественно северо-восточное, в Южном – юго-восточное. Между пассатами Северного и Южного полушарий – внутритропическая зона конвергенции; над пассатами в противоположном им направлении дуют антипассаты.

Муссоны

– система воздушных течений, в которой в одном сезоне преобладают ветры одного направления, а в другом – прямо противоположного или близкого к нему. Слово муссон происходит от арабского маусим, что значит сезон. В течение многих столетий арабские моряки называли этим словом систему ветров над Аравийским морем и Бенгальским заливом. В летние месяцы там дуют ветры с юго-запада, а в зимние – с северо-востока. О муссонах жители Ближнего Востока и Индии знали очень давно. Еще в 4–3 вв. до н.э. индийские и персидские мореплаватели использовали закономерности смены ветров при плавании в Аравийском море. В 1 и 2 вв. н.э. сложился великий муссонный путь от берегов Индии в Южно-Китайское море и Китай. Индийские, малайские и китайские мореплаватели летом вели по нему свои парусные суда на восток, а зимой на – запад. Внимание, которое в течение столетий в разных частях мира уделяется муссонам, связано не только с сезонной сменой преобладающих ветров, но и с закономерностями выпадения дождей в период муссона. Отсутствие муссонных дождей приводит к засухам, потере урожая, обмелению рек. В то же время слишком интенсивный муссон с бурными, продолжительными ливнями вызывает наводнения. Специфические признаки муссона – его устойчивость в течение сезона и смена от одного полугодия к другому, т.е. именно его сезонность. Причины муссонных ветров и смена их направления по сезонам связаны с годовым ходом Солнца и приходом солнечного излучения на земную поверхность.

Муссоны распространены в тропиках на огромных территориях от Западной Африки до Юго-Восточной Азии и Индонезии. Муссонная составляющая общей циркуляции атмосферы оказывает существенное влияние и на формирование климата восточных районов азиатского побережья России. Наиболее четко такой муссонный перенос и смена материкового и морского влияния выражены на юге Дальнего Востока и особенно в Приморском крае. В этих широтах муссон можно разделить на две фазы – зимнюю и летнюю: Азия «выдыхает» воздух зимой и «вдыхает» летом. Зимой наиболее ярко проявляется влияние континента. По мере остывания Евразийского материка над ним все чаще формируются области высокого атмосферного давления. Преобладание таких областей ведет к тому, что на картах атмосферного давления при осреднении за зимние месяцы здесь прослеживается огромная область высокого давления, названная сибирским или азиатским антициклоном. В это время здесь формируется мощный северо-западный поток континентального воздуха, с вертикальной мощностью до 4 км – зимний муссон. Летом муссонный перенос в данных широтах обычно возникает вследствие взаимодействия дальневосточной депрессии (области пониженного давления, формирующейся главным образом в бассейне Амура) и областями повышенного давления над окраинными морями (Японским и Охотским) и северо-западной частью Тихого океана. Максимум циклонической деятельности в южных районах Дальнего Востока приходится на лето и весну, минимум – на зиму и осень. Прогрев материка в летний период, меридиональное расположение горных хребтов, в частности, Сихоте-Алиня, образование антициклонов над окраинными морями приводит к тому, что циклоны, смещающиеся с западных районов, замедляют здесь свое движение, блокируются. Эти причины способствуют формированию летней дальневосточной депрессии. Основной особенностью климата южной части российского Дальнего Востока является выпадение осадков преимущественно в теплое время года: с июня по сентябрь выпадает более 60% их годового количества, причем характерной особенностью муссонного климата является то, что в самый дождливый месяц года выпадает осадков почти в 50 раз больше, чем в самый сухой. В континентальном климате это соотношение едва достигает четырех.

Циклон

(от греческого kyklon – кружащийся) – область пониженного давления в атмосфере с минимумом в центре. Поперечник циклона – несколько тысяч километров. Характеризуется системой ветров, дующих против часовой стрелки в Северном полушарии и по часовой – в Южном. Погода при циклонах преобладает пасмурная с сильными ветрами. Это связано с особенностями распределения давления и характером циркуляции воздуха.

Под влиянием трения в нижних слоях атмосферы в циклоне наблюдается, помимо кругового движения воздуха, еще и движение от периферии к центру, и поэтому возникает постоянное вертикальное, восходящее, движение воздуха и его охлаждение по мере подъема. Воздух, охлаждаясь, становится влагонасыщенным, в нем образуются облака, дающие осадки. В циклонах, особенно вблизи их центров, всегда велика разность давления между центром и периферией (т.е. велики так называемые горизонтальные градиенты давления) и, следовательно, постоянно наблюдаются сильные порывистые ветры (вихри). По своему происхождению вихри разделяются на две основные группы: тропические (ураганы, тайфуны) и циклоны умеренных широт.

Тропические циклоны.

Родина тропических вихрей – океанские просторы в приэкваториальной области примерно между 10–15° северной и южной широт, их диаметр – несколько сотен километров, а высота – от 5 до 15 км. Тропические циклоны могут возникать в любое время года в тропических частях всех океанов, за исключением юго-восточной части Тихого океана и южной части Атлантики. Наиболее часто (в 87% случаев) тропические циклоны возникают между широтами 5° и 20°. В более высоких широтах они возникают лишь в 13% случаев. Никогда не отмечалось возникновение циклонов севернее 35° северной широты и южнее 22° южной широты. Тропические циклоны, достигшие значительной интенсивности, в каждом районе имеют свое название. В восточной части Тихого океана и в Атлантике их называют ураганами (от испанского слова «уракан» или английского «харикейн»), в странах полуострова Индостан – циклонами или штормами, на Дальнем Востоке – тайфунами (от китайского слова «тай», что означает сильный ветер). Есть и менее распространенные местные названия: «вилли-вилли» – в Австралии, «вилли-вау» – в Океании и «багио» – на Филиппинах. Тайфунам Тихого океана и ураганам Атлантики присваивают имена согласно установленным спискам. Для тайфунов используются четыре списка имен, для ураганов установлен один. Каждому тайфуну или урагану, образовавшемуся в данном календарном году, кроме имени присваивается порядковый номер двухзначная цифра года: например, 0115, что означает пятнадцатый по счету номер тайфуна в 2001.

Чаще всего они образуются в северной части тропической зоны Тихого океана: здесь, в среднем, за год прослеживается около 30 циклонов. В умеренные широты тропические циклоны выходят в период с конца июня по начало октября, а наиболее активны в августе-октябре. Отличительной особенностью циклонов этой группы является то, что они термически однородны (т.е. нет температурных контрастов между различными частями вихря), в них сосредоточено колоссальное количество энергии, они приносят с собой штормовые ветры и сильные осадки.

Тропические циклоны образуются там, где наблюдается высокая температура поверхности воды (выше 26°), а разность температур вода-воздух более 2°. Это приводит к усилению испарения, увеличению запасов влаги в воздухе, что, в известной степени, определяет накопление тепловой энергии в атмосфере и способствует вертикальному подъему воздуха. Появляющаяся мощная тяга увлекает все новые и новые объемы воздуха, нагревшиеся и увлажнившиеся над водной поверхностью. Вращение Земли придает подъему воздуха вихревое движение, и вихрь становится подобным гигантскому волчку, энергия которого грандиозна. Центральную часть воронки называют «глазом бури». Это феноменальное явление, которое поражает особенностями своего «поведения». Когда глаз бури хорошо выражен, на его границе осадки внезапно прекращаются, небо проясняется, а ветер значительно ослабевает, иногда до штиля. Форма глаза бури может быть самой разной, она постоянно меняется. Иногда встречается даже двойной глаз. Средний диаметр глаза бури в хорошо развитых циклонах равен 10–25 км, а в разрушительных он составляет 60–70 км.

Тропические циклоны в зависимости от их интенсивности:

1. Тропическое возмущение – скорости ветра небольшие (менее 17 м/с).

2. Тропическая депрессия – скорость ветра достигает 17–20 м/с.

3. Тропический шторм – скорость ветра до 38 м/с.

4. Тайфун (ураган) – скорость ветра превышает 39 м/с.

В жизненном цикле тропического циклона выделяют четыре стадии:

1. Стадия формирования. Начинается с появления первой замкнутой изобары (изобара – линия равного давления). Давление в центре циклона опускается до 990 гПа. Лишь около 10% тропических депрессий получает дальнейшее развитие.

2. Стадия молодого циклона или стадия развития. Циклон начинает быстро углубляться, т.е. отмечается интенсивное падение давления. Ветры ураганной силы образуют вокруг центра кольцо радиусом 40–50 км.

3. Стадия зрелости. Падение давления в центре циклона и увеличение скорости ветра постепенно прекращаются. Область штормовых ветров и интенсивных ливней увеличивается в размерах. Диаметр тропических циклонов в стадии развития и в зрелой стадии может колебаться от 60–70 км до 1000 км.

4. Стадия затухания. Начало заполнения циклона роста давления в его центре). Затухание происходит при перемещении тропического циклона в зону более низких температур поверхности воды или при переходе на сушу. Это связано с уменьшением притока энергии (тепла и влаги) с поверхности океана, а при выходе на сушу еще и с увеличением трения о подстилающую поверхность.

Двигаясь в сторону умеренных широт, тропические циклоны постепенно теряют свою силу и затухают.


Тайфуны.

К числу наиболее мощных и разрушительных тропических циклонов относятся тайфуны, они возникают над океаном к северо-востоку от Филиппин. Средняя продолжительность существования тайфуна составляет 11 дней, а максимальная – 18 дней. Минимальное давление, наблюдавшееся в таких тропических циклонах, колеблется в широких пределах: от 885 до 980 гПа. Максимальные суточные суммы осадков достигают 400 мм, а скорость ветра – 20–35 м/с. Основной сезон выхода тайфунов в умеренные широты с июля по сентябрь.

Торнадо.

Сильные штормы на Земле могут вызвать появление необычных, небольших по размерам, но неистовых облаков. Торнадо кружатся со скоростью сотен километров в секунду, а когда они достигают поверхности Земли, сметают практически все на своем пути вдоль длинной и узкой полосы следования. Как правило, торнадо длятся не более нескольких минут, но самые сильные и опасные из них могут продолжаться часами.

Циклоны умеренных широт.

Циклоны умеренных широт менее опасны, они возникают преимущественно в зонах атмосферных фронтов, где встречаются две различные воздушные массы. В северном полушарии самые обширные циклоны обычно наблюдаются над акваториями Атлантического и Тихого океанов. Повторяемость их зависит от времени года и географического района. В среднем, в северном полушарии циклоны над европейской частью континента более часты зимой, над Азиатской – летом. Циклоны имеют диаметр порядка 2–3 тыс. км и более.

Погода в циклоне внетропических широт неоднородна: различают переднюю и тыловую части циклона, левую и правую – по отношению к направлению его движения. В передней части циклона преобладают сплошная слоистообразная облачность теплого фронта, обложные осадки с ветрами южной четверти горизонта. В тылу циклона, за холодным фронтом, погода отличается неустойчивостью, с выпадением осадков ливневого типа, порывистым ветром северо-западной и северной четвертей; облачность может быть с разрывами и даже с кратковременными прояснениями, а летом – конвективного типа. Левая (чаще всего северная) часть циклона характеризуется условиями погоды, которые можно назвать промежуточными между передней и тыловой частями циклона; преобладают ветры восточной и северо-восточной четверти, облака сплошные, осадки обложные, выпадающие с перерывами и постепенно переходящие в кратковременные ливневого типа. Правая южная часть циклона некоторый период его жизни является «теплым сектором» – она заполнена теплой воздушной массой, которая со временем вытесняется наверх. Здесь, в зависимости от сезона и типа воздушной массы, погода может быть разнообразной, но преимущественно без существенных осадков, с туманами или низкой тонкой слоистой облачностью, нередко безоблачная и всегда теплая, с ветрами южной и юго-западной четверти.

Антициклон

– область повышенного давления в атмосфере с максимумом в центре (на уровне моря 1050–1070 гПа). Поперечник антициклона – порядка тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против часовой стрелки – в Южном, малооблачной и сухой погодой и слабыми ветрами.

В зависимости от географического района зарождения различают внетропические и субтропические антициклоны. Возникновение и развитие антициклонов тесно связано с развитием циклонов, практически это единый процесс. В одном районе создается дефицит массы, а в соседнем – избыток. Антициклоны занимают площади, сравнимые с размером материков, над которыми они лучше развиваются зимой,а над океанами – летом. В среднем, повторяемость антициклонов в 2,5–3 раза меньше, чем циклонов.

Годовой ход выражен довольно слабо, но подвижных антициклонов над континентами немного больше, чем над океанами. Есть районы, в которых антициклоны чаще всего становятся малоподвижными и существуют длительное время. От центра антициклона воздух оттекает во все стороны, что исключает возможность сближения и взаимодействия разнородных воздушных масс. В связи с нисходящими движениями воздуха в центральных частях антициклонов преобладает малооблачная погода. Однако при значительной влажности воздуха в холодную половину года в центральной части антициклона могут наблюдаться сплошные облака, а туманы наблюдаются как зимой, так и летом.

В каждом антициклоне погода существенно меняется в различных секторах. На окраинах антициклонов условия погоды, в общих чертах, сходны с условиями погоды в примыкающих секторах соседних циклонов.

Северная окраина антициклона обычно непосредственно связана с теплым сектором соседнего циклона. Здесь в холодное полугодие часто наблюдается сплошная облачность, иногда идут слабые осадки. Нередко отмечаются туманы. Летом в этом секторе антициклона облачность небольшая, в дневные часы могут развиваться кучевые облака.

Западная окраина антициклона примыкает к передней части области низкого давления. В холодное полугодие в этой части антициклона часто отмечаются слоисто-кучевые облака, из которых выпадают слабые осадки. Зона осадков довольно обширная и перемещается вдоль изобар, огибая антициклон по часовой стрелке и претерпевая некоторые изменения. Летом на западной окраине антициклона при высокой температуре воздуха и значительной влажности нередко развиваются кучевые облака и гремят грозы.

Южная окраина антициклона примыкает к северной части циклона. Здесь нередко наблюдаются слоистые облака, из которых зимой выпадают осадки. В этой части антициклона создаются большие перепады давления, поэтому нередко усиливается ветер и возникают метели.

Восточная окраина антициклона граничит с тыловой частью циклона. Летом при неустойчивой воздушной массе в дневные часы здесь образуются облака кучевых форм, выпадают ливневые дожди и гремят грозы. Зимой может наблюдаться безоблачная погода или не сплошная слоистая облачность.

В разных антициклонах наблюдаются значительные различия в погоде, что обусловливается в каждом случае свойствами воздушных масс и зависит от сезона. Поэтому для прогноза погоды свойства каждого антициклона исследуется индивидуально.


Цунами – длинные морские волны, образующиеся в океанах и морях под действием землетрясений, вулканических извержений, а также в результате резкого перепада атмосферного давления, либо при падении с берега в воду масс грунта и льда.

Основным районом, где возникает цунами, является Тихий океан. Из 400 действующих сегодня на земле вулканов 330 расположены в бассейне Тихого океана, здесь наблюдается более 80% всех землетрясений.

«Цунами» в переводе с японского языка означает «волна в гавани». И хотя этот перевод звучит несколько экзотически и носит описательный характер, указанный термин как нельзя лучше характеризует суть явления. Основная природа возникновения цунами – сейсмическая. В участках земной коры, находящихся под дном океана, происходят разрывы, проявляющиеся в виде землетрясений. В случаях, когда эпицентр землетрясений располагается на глубине более 50 км, цунами, как правило, не образуется. Существует и иная трактовка причин образования цунами – это извержение наземных и подводных вулканов. Иногда возникают цунами метеорологического происхождения. Такие «метеоцунами» связаны с выходами на морские акватории тайфунов и ураганов.

Упрощенная схема образования цунами.

Чаще всего волны цунами бывают сейсмического происхождения, при землетрясениях образуются разломы поверхности земной коры – трещины и, как следствие – сбросы, сдвиги и надвиги, приводящие к опусканию или поднятию значительных районов дна. При этом в толще воды происходят мгновенные изменения объема и давления, вызывающие появление волн сжатия и разрежения, которые, достигая поверхности океана, вызывают ее колебания и формируют цунами. Период образовавшихся волн составляет от 2 до 20 мин, т.е. это длинные волны. В открытом море эти волны не заметны, но они несут огромную энергию. Скорость смещения волн цунами на глубокой воде составляет 500–700 км/час. При движении энергия цунами расходуется на преодоление сил вязкости и трения о дно. Интенсивность цунами связана с силой землетрясения. В России для определения интенсивности землетрясения используется 12-ти бальная шкала, в Японии единицей землетрясения служит магнитуда, представляющая собой величину, пропорциональную логарифму максимальной амплитуды горизонтального смешения почвы (дна) на расстоянии 100 км от очага землетрясения. Самые сильные землетрясения имеют магнитуду 8,5.

Основным методом предсказания цунами является сейсмический, основанный на существовании разницы между скоростью распространения сейсмических волн в земной коре и скоростью распространения в океане волн цунами. Сейсмические волны достигают побережья в 50–80 раз быстрее, чем волны цунами. Сейсмическая служба регистрирует землетрясение, определяет его параметры, цунамигенность и передает эту информацию оперативной службе Центра морской гидрометеорологии.

Свыше 99% волн цунами вызываются подводными землетрясениями. При землетрясении под водой образуется вертикальная трещина и часть дна опускается. Дно внезапно перестает поддерживать столб воды, лежащий над ним. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, – среднему уровню моря, – и порождает серию волн.

Ветер

– движение воздуха относительно земной поверхности (горизонтальная составляющая этого движения), иногда говорят о восходящем или о нисходящем ветре, учитывая и его вертикальную составляющую.

Скорость ветра.

Оценка скорости ветра в баллах, так называемая шкала Бофорта , по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными его эффектами, такими, как степень волнения на море, качание ветвей и деревьев, распространение дыма из труб и т.п. Каждая градация по шкале Бофорта носит определенное название. Так, нулю шкалы Бофорта соответствует штиль, т.е. полное отсутствие ветра. Ветер в 4 балла, по Бофорту называется умеренным и соответствует скорости 5–7 м/сек; в 7 баллов – сильным, со скоростью 12–15 м/сек; в 9 баллов – штормом, со скоростью 18–21 м/сек; наконец, ветер в 12 баллов по Бофорту – это уже ураган, со скоростью свыше 29 м/сек. У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4–8 м/сек и редко превышают 12–15 м/сек. Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек. В тропических ураганах скорости ветра доходят до 65 м/сек, а отдельные порывы – до 100 м/сек. В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек. В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70–100 м/сек. Скорость ветра у земной поверхности измеряется анемометрами разной конструкции. Приборы для измерения ветра на наземных станциях устанавливаются на высоте 10–15 м над земной поверхностью.

Таблица 2. СИЛА ВЕТРА.
Шкала Бофорта для определения силы ветра
Баллы Визуальные признаки на суше Скорость ветра, км/ч Термины, определяющие силу ветра
0 Спокойно; дым поднимается вертикально Менее 1,6 Штиль
1 Направление ветра заметно по отклонению дыма, но не по флюгеру 1,6–4,8 Тихий
2 Ветер ощущается кожей лица; шелестят листья; поворачиваются обычные флюгеры 6,4–11,2 Легкий
3 Листья и мелкие веточки находятся в постоянном движении; развеваются легкие флаги 12,8–19,2 Слабый
4 Ветер поднимает пыль и бумажки; раскачиваются тонкие ветви 20,8–28,8 Умеренный
5 Качаются покрытые листвой деревья; появляется рябь на водоемах суши 30,4–38,4 Свежий
6 Качаются толстые ветви; слышен свист ветра в электропроводах; трудно удерживать зонт 40,0–49,6 Сильный
7 Качаются стволы деревьев; трудно идти против ветра 51,2–60,8 Крепкий
8 Ломаются ветви деревьев; практически невозможно идти против ветра 62,4–73,6 Очень крепкий
9 Небольшие повреждения; ветер срывает дымовые колпаки и черепицу с крыш 75,2–86,4 Шторм
10 На суше бывает редко. Деревья выворачиваются с корнями. Значительные разрушения строений 88,0–100,8 Сильный шторм
11 На суше бывает очень редко. Сопровождается разрушениями на большом пространстве 102,4–115,2 Жестокий шторм
12 Сильные разрушения (Баллы 13–17 были добавлены Бюро погоды США в 1955 и применяются в шкалах США и Великобритании) 116,8–131,2 Ураган
13 132,8–147,2
14 148,8–164,8
15 166,4–182,4
16 184,0–200,0
17 201,6–217,6

Направление ветра.

Под направлением ветра подразумевают направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. И 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад. Шестнадцать румбов, указывающих направление, откуда дует ветер, имеют сокращенные обозначения:

Таблица 3.
С N В E Ю S 3 W
CCB NNE ВЮВ ESE ЮЮЗ SSW ЗСЗ WNW
CB NE ЮВ SE ЮЗ SW СЗ NW
BCB ENE ЮЮВ SSE ЗЮЗ WSW ССЗ NNW
N – норд, E – ост, S – зюйд, W – вест

Эдвард Кононович

Литература:

Eris Chaisson, Steve McMillan Astronomy today. Prentice-Hall, Inc. Upper Saddle River, 2002
Интернет-ресурсы: http://ciencia.nasa.gov/
http://spaceweather.com



Атмосфера - наиболее подвижная, динамичная часть географической оболочки. Это объясняется, во-первых, ее газообразным состоянием, во-вторых, спецификой ее теплового режима. Атмосфера нагребается преимущественно снизу, от земной поверхности, поэтому в ней часто возникают вертикальные, а следовательно, и горизонтальные движения.

Тепловые машины. В механическую энергию атмосферных движений переходит 1-2 % усваиваемой земной поверхностью солнечной энергии. Переход осуществляется в процессе работы так называемых тепловых машин. Разработка идеи о тепловых машинах географической оболочки принадлежит советскому ученому академику В. В. Шулейкину. Тепловой машиной называют систему, в которой тепловая энергия превращается в механическую. Каждая тепловая машина состоит из двух основных элементов нагревателя и холодильника, которые связываются между собой потоком вещества - теплоносителя. Благодаря разности температур теплоноситель перемещается от нагревателя к холодильнику, а вместе с ним переносится и теплота, часть теплоты при этом расходуется на движение теплоносителя.

Наиболее крупной тепловой машиной в географической оболочке является система экватор - полюсы. Ее называют тепловой машиной первого рода. С ней связаны наиболее масштабные движения в атмосфере. Различия в нагревании материков и океанов приводят к возникновению тепловых машин второго рода. С ними связывают возникновение муссонов в умеренных и субтропических широтах. Однако существуют и другие представления о природе возникновения муссонов.

В географической оболочке существует множество других тепловых контрастов: внутренний водоем - окружающая его суша, горы - равнины, ледники - поверхности без льда и т. д. В каждом таком случае можно говорить о своего рода тепловой машине, в которой происходит преобразование части тепловой энергии в механическую.

Коэффициент полезного действия тепловых машин в географической оболочке невелик. Это объясняется как небольшой разницей температур нагревателей и холодильников, так и большими потерями энергии на теплообмен с окружающей средой. Возникновение движения воздуха в атмосферных тепловых машинах рассмотрим на упрощенном примере.

Как известно, давление в любой точке атмосферы равно весу вышележащего столба воздуха. При равномерном нагревании земной поверхности и атмосферы изменение давления с высотой происходит одинаково во всех точках, что можно изобразить с помощью изобар (линий, соединяющих точки с одинаковым атмосферным давлением), проведенных на вертикальном разрезе атмосферы (рис. III. 6, а). Поступление дополнительного тепла в точку В приведет к расширению воздуха и к подъему изобар вверх (рис. III. 6, б). Это не вызовет изменения давления у земной поверхности, однако в атмосфере возникнет разность давления по горизонтали, причем горизонтальный барический градиент будет направлен в сторону точки А. Перенос воздуха в этом направлении на высоте приведет к увеличению массы воздуха над точкой А, а следовательно, и к увеличению давления воздуха в этой точке (т. е. на уровне земной поверхности). Теперь уже у земной поверхности возникает барический градиент, но направленный в противоположную сторону, т. е. к точке Б (рис. III. 6, в). Соответственно в этом направлении начнется перенос воздуха у земной поверхности.

Таким образом в теплых районах у земной поверхности возникают области пониженного давления, в холодных - повышенного, а на высоте - наоборот. Так образуются замкнутые вертикальные конвективные ячейки (кольца) циркуляции - элементарные тепловые машины.

Крупномасштабные вертикальные кольца циркуляции наблюдаются в низких широтах. В экваториальной зоне воздух поднимается вверх. В верхней тропосфере он направляется в сторону тропиков в виде антипассата. На широте 30-35° происходит опускание воздуха, откуда он направляется к экватору в виде пассата (см. рис. III. 8). Это вертикальное кольцо циркуляции было названо ячейкой Гадлея в честь английского ученого XVIII в., изучавшего пассатную циркуляцию. В наше время выяснилось, что пассаты и антипассаты связаны не только с процессами в вертикальных конвективных ячейках, т. е. с процессами термической природы, но и с динамическими процессами. Подробнее этот вопрос разбирается на занятиях по метеорологии и климатологии.

Основные закономерности атмосферной циркуляции. Совокупность движений атмосферного воздуха образует атмосферную циркуляцию. Основа ее возникновения - неравномерное распределение тепла в атмосфере, т. е. термический фактор. Возникающие движения преобразуются далее под влиянием отклоняющей силы вращения Земли (силы Кориолиса), трения о земную поверхность и ряда других факторов и приобретают сложную структуру.

Общее представление о закономерностях движений воздуха можно получить на основе анализа среднего многолетнего распределения атмосферного давления и преобладающих ветров у земной поверхности в январе и июле (см. Физико-географический атлас мира, с. 40-41). В распределении атмосферного давления проявляются две основные закономерности: с одной стороны, зональность, с другой - влияние материков и океанов. Зональность четко прослеживается на рис. III. 7, где приведена осредненная по широте величина атмосферного давления. Наблюдается чередование зон высокого и низкого давления. В области экватора давление ниже, чем в окаймляющих его тропических и субтропических областях. Высокое давление в этих поясах сменяется низким в умеренных и субполярных широтах. К полюсам происходит небольшое увеличение давления. Соответственно такому распределению давления формируется система ветров (см. Физико-географический атлас мира, с. 40-41). От субтропической области высокого давления в сторону экватора направлены пассаты, отклоняющиеся от градиента давления под действием силы Кориолиса и приобретающие восточную составляющую. В умеренных широтах господствующий перенос - западный, в полярных- восточный. Следует подчеркнуть, что это - осредненная картина, которая полностью совпадает с реальным распределением лишь в отдельные моменты. Изменчивость и непостоянство - характерные черты атмосферной циркуляции.

Не следует думать, что в природе существует простая причинная цепь: неоднородность в распределении тепла - распределении давления - распределении ветров. В общем виде такая последовательность возникновения цепи физических воздействий действительно наблюдается, однако реальное распределение трех названных характеристик зависит от их взаимодействия между собой и со многими другими факторами. Например, исходное распределение тепла мы связываем обычно с поступлением солнечной радиации на земную поверхность. Оно создает термическую неоднородность и тем самым обусловливает возникновение разности атмосферного давления, а следствием последней является ветер. Ветер, возникнув как результат перечисленных выше факторов, сам становится мощным фактором, воздействующим на первые два. Воздушные массы переносят тепло, влагу, минеральные соли и тем самым перераспределяют энергию на поверхности Земли. Последнее в свою очередь вызывает перераспределение атмосферного давления и системы ветров. На эти процессы влияет облачность - мощный регулятор радиационного и теплового обмена между земной поверхностью, атмосферой и космическим пространством. В результате картина настолько усложняется, что однозначно невозможно определить цепь причинно-следственных событий.

В средних и высоких широтах перенос воздуха в больших масштабах осуществляется в виде вихревых потоков - циклонов и антициклонов. Циклон - движущаяся восходящая система потоков воздуха, образующих спираль, закручивающуюся в южном полушарии по часовой стрелке, в северном - против часовой стрелки. Поэтому в северном полушарии при перемещении циклонов с запада на восток (это доминирующее направление движения циклонов в широкой полосе от 40 до 80° широты) в передней части циклона происходит перенос воздуха с юга на север, в тыловой - с севера на юг. В южном полушарии наблюдается аналогичный процесс с той лишь разницей, что в передней части наблюдается заток воздуха с севера на юг, в тыловой - с юга на север. Одновременно в циклонах осуществляются вертикальные движения - в центральной части циклона воздух поднимается вверх.

В антициклонах воздух движется по спирали от центра, где наблюдается высокое давление. Одновременно происходит опускание воздуха над центром антициклона.

В циклонах и антициклонах формируются особые погоды. На территории, занятой циклоном, наблюдается низкое давление, как правило, выпадают атмосферные осадки, происходит резкая смена направления и скорости ветра. Для антициклонов характерно высокое давление, чаще всего малооблачная устойчивая погода без осадков.

Распространение циклонов и антициклонов на земной поверхности характеризуется определенными закономерностями. В областях преимущественного распространения циклонов на климатических картах вырисовываются минимумы давления (Физико-географический атлас, с. 40-41), в областях распространения антициклонов - максимумы давления. Соответственно минимумам и максимумам распределяются атмосферные осадки (там же, с.42- 43). Увеличение осадков в циклонах связано с поднятием воздуха на атмосферных фронтах. В процессе поднятия воздух охлаждается. При определенной температуре происходит конденсация или сублимация содержащегося в воздухе водяного пара. Образовавшиеся водяные капли или кристаллы льда при достижении достаточных размеров падают на земную поверхность. В антициклонах воздух опускается, сжимается, благодаря этому нагревается и удаляется от точки насыщения.

В экваториальной зоне вследствие малых значений силы Кориолиса (sin ф составляет один из множителей в выражении, определяющем эту силу) циклоны и вообще вихревые системы не образуются. Большое количество атмосферных осадков в этой зоне связано с конвективным поднятием воздуха.

Таким образом, основные (фоновые) закономерности распределения атмосферных осадков связаны с характером циркуляционных процессов. Карта атмосферных осадков позволяет увидеть множество деталей в их распределении, связанных с влиянием рельефа и других факторов.

На рис. III. 8 дана схема общей циркуляции атмосферы с учетом основных типов движения в атмосфере (пассатов, вихревых систем, восточных ветров в полярных районах и вертикальных колец). В целом циркуляция атмосферы складывается из зональных, меридиональных и вертикальных движений. Зональные движения (вдоль параллелей) преобладают. Они на порядок интенсивнее меридиональных и на два порядка - вертикальных. Хотя меридиональные движения и слабее зональных, их значение велико. Меридиональные потоки осуществляют межширотный обмен воздуха. Именно благодаря меридиональному переносу (который имеет место и в океане) реальное распределение температуры на земной поверхности менее контрастное, чем солярное, - теоретически рассчитанное по радиационному переносу энергии (табл. III. 1).

Вертикальные движения (их главные потоки изображены на рис. III. 8 в виде колец) сильно уступают горизонтальным движениям по интенсивности. Однако они также играют исключительно важную роль, поскольку без них вообще была бы невозможна циркуляция атмосферы.

Типы атмосферной циркуляции. В отдельные периоды соотношение между зональными и меридиональными потоками в атмосфере меняется. Соответственно этому исследователи выделяют несколько типов атмосферной циркуляции, которые можно свести к двум основным - широтному (зональному) и меридиональному.

При широтном типе циркуляции контрасты между низкими и высокими широтами возрастают, а погодные условия характеризуются сравнительно слабой изменчивостью. При меридиональном типе циркуляции обмен воздушными массами между теплыми и холодными районами обусловливает резкую изменчивость погоды, а вследствие этого - и резкую изменчивость всего комплекса физико-географических процессов.

Типы атмосферной циркуляции постоянно сменяют друг друга. Однако в течение нескольких, следующих друг за другом лет (до 15) часто наблюдается преобладание (иногда весьма четко выраженное) одного типа циркуляции. Причина чередования типов не совсем ясна. Возможно, что она связана с солнечной активностью. Высказываются предположения и о существовании в атмосфере (лучше сказать в системе атмосфера - океан - земная поверхность) собственных ритмов.

В последние 15-20 лет на земном шаре отмечено учащение экстремальных явлений погоды (сильные засухи и одновременно исключительно дождливые сезоны, частые ураганы, жестокие морозы и др.). Некоторые ученые связывают их с деятельностью человека, все в более широких масштабах воздействующего на природную среду. Другие считают, что они обусловлены преобладанием в современную эпоху меридионального типа циркуляции (один из этапов колебания климата), вызывающего экстремальные процессы в атмосфере вследствие более активного обмена холодных полярных и теплых тропических масс воздуха.

В атмосфере наблюдаются также местные циркуляции - движения воздуха, связанные с формами рельефа, ледниками, взаимодействием суши и водоемов и другими факторами. Они получили название горно-долинных, склоновых и ледниковых ветров, бризов, фенов и др. Их роль в перераспределении на земной поверхности тепла, влаги и других параметров также значительна, хотя и имеет локальный характер.

Однако, несмотря на постоянные переносы воздуха, в целом ат-мосфера сохраняет состояние, близкое к равновесному. Все переносы связаны между собой и образуют гигантский атмосферный круговорот. Механическая энергия атмосферы постепенно рассеивается и превращается в теплоту, которая затем преобразуется в длинноволновое излучение и направляется в Космос или к земной поверхности. Другая часть механической энергии передается океану при трении воздушных масс о водную поверхность.

Если бы поступление солнечной энергии не возобновляло термическую неоднородность земной поверхности, атмосферная циркуляция вскоре бы прекратилась (примерно за две недели). Еще быстрее это произошло бы на невращающейся Земле при отсутствии силы Кориолиса. Однако непрерывное поступление солнечной радиации к Земле приводит к постоянному воспроизведению основных элементов циркуляции.