Из пушки в космос. Звезда смерти: космическое оружие

Предмет запрета: выведение на орбиту вокруг Земли любых объектов с ядерным оружием или любыми другими видами оружия массового уничтожения, установка такого оружия на небесных телах и размещение его в космическом пространстве каким-либо иным образом.

Основной запрещающий документ: Договор о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела (Генеральная Ассамблея ООН)

Ратифицировало государств (на январь 2012 года): 101

На околоземной орбите летает много военных космических аппаратов — американские GPS (NAVSTAR) и российские ГЛОНАСС, а также многочисленные спутники наблюдения, разведки и связи. Но оружия на орбите пока нет, хотя попытки вывести его в космос предпринимались неоднократно. Результатом стало понимание того факта, что обычным оружием в космосе воевать можно разве что с гипотетическими инопланетными захватчиками. А размещение ядерного оружия, как и любого другого оружия массового уничтожения, было запрещено резолюцией Генеральной Ассамблеи ООН. Тем не менее, несмотря на такой запрет, проекты по размещению и обычного, и ядерного оружия на околоземной орбите разрабатывались.

В начале 1960-х годов военные уже присматривались к космическому пространству, но совершенно не представляли, как будут выглядеть военные действия в космосе. По аналогии с воздушной войной представлялось нечто вроде космических крепостей с атомными бомбами, пушками и пулеметами.

Орбитальная артиллерия

В начале 1960-х никто не знал, как будет выглядеть война в космосе. Военные представляли себе «космические крепости», вооруженные бомбами (в том числе атомными), ракетами, пушками и пулеметами, окруженные роем истребителей и сходящиеся в битве на орбите (напомним, что Джордж Лукас снял свои «Звездные войны» только в 1977 году). Поэтому и в СССР, и в США вполне серьезно проектировалось космическое оружие — от управляемых ракет «космос-космос» до космической артиллерии. В СССР разрабатывались боевые корабли — разведчик «Союз Р» и вооруженный ракетами перехватчик «Союз П» (1962−1965), «Звезда» 7К-ВИ, оснащенная пулеметом (1965−1967), и даже орбитальная пилотируемая станция (ОПС) «Алмаз» с установленной на ней пушкой. Правда, ракеты «космос-космос» и космический пулемет так и не «нюхнули космоса», а вот пушке повезло больше.

Установленная на «Алмазе» авиационная скорострельная пушка конструкции Нудельмана — Рихтера НР-23 (модификация хвостового орудия реактивного бомбардировщика Ту-22) предназначалась для защиты от спутников-инспекторов и перехватчиков противника на расстоянии более 3000 м. Орудие выплевывало 950 снарядов массой 200 г каждый со скоростью 690 м/с и создавало отдачу в 218,5 кгс, которую компенсировали два маршевых двигателя тягой по 400 кгс или двигатели жесткой стабилизации тягой по 40 кгс.

Взрыв на орбите

Что будет, если взорвать в верхних слоях атмосферы (30−100 км и выше) ядерный боеприпас? Взрывной волны там нет, и основным поражающим фактором в таком случае будет являться гамма-излучение и электромагнитный импульс (ЭМИ). Мощный поток гамма-квантов вызовет ионизацию нижележащих атмосферных газов, образуя массу быстрых электронов и относительно медленных ионов. Электроны взаимодействуют с магнитным полем Земли, образуя на короткое время мощнейшие токи. Между ионизированным слоем и поверхностью Земли на несколько минут возникнет гигантская разность потенциалов (напряженность поля порядка десятков кВ/м). Все это приведет к образованию мощного электромагнитного импульса (ЭМИ), который наведет в любых проводниках в радиусе действия высокое напряжение и выведет из строя практически любую не защищенную специальным образом электронную технику, линии электросвязи, электропередач и трансформаторные подстанции, а также на длительное время (многие часы) нарушит радиосвязь. Радиус поражения ЭМИ-оружия огромен — при ядерном взрыве на высоте 500 км он, согласно оценкам, составляет более 2000 км! Недостаток ЭМИ-оружия — его «неразборчивость»: оно одинаково эффективно поражает как свою, так и чужую электронику.

В апреле 1973 года «Алмаз-1», он же «Салют-2», был запущен в космос, а в следующем году состоялся первый полет «Алмаз-2» («Салют-3») с экипажем. Хотя никаких орбитальных перехватчиков противника на орбите не было, эта станция все-таки дала первый (и последний) космический пушечный залп. Когда срок службы станции истек, 24 января 1975 года перед сводом с орбиты из пушки против вектора орбитальной скорости выпустили очередь снарядов (сгоревших в атмосфере), чтобы выяснить, как стрельба влияет на динамику ОПС. Испытания прошли успешно, но на этом век артиллерии на орбите закончился.

Орбитальный меч

В конце 1970-х в США поставили амбициозную задачу создать надежную систему ПРО, которая могла бы перехватывать высокоскоростные боеголовки баллистических ракет. В качестве идеального средства рассматривались лазеры, позволяющие перехватывать цель со скоростью света и размещенные на орбите. Чтобы кардинально уменьшить расходимость пучка и увеличить мощность, в рамках проекта «Эскалибур» в США попытались создать орбитальный рентгеновский лазер. В качестве рабочего тела он использовал полностью ионизированную плазму, в которую превращались тонкие (0,1−0,5 мм) длинные (10 м) медные или цинковые стержни при взрыве 30-кт ядерного заряда.


За 50 лет развития военно-космическая доктрина претерпела значительные изменения. Орбитальные боевые крепости остались уделом фантастики, а вот противоспутниковые ракеты стали реальностью. Ракеты SM-3 (на фото) системы Aegis, установленной на ракетных крейсерах классов Arleigh Burke и Ticonderoga, позволяют сбивать спутники на низкой околоземной орбите.

Плазма начинала расширяться со скоростью порядка 50 км/с, но для накачки и излучения короткого (менее 1 нс) лазерного импульса требовалось примерно 30 нс, так что диаметр плазмы едва успевал превысить 1−2 мм. Каждый заряд испарял и ионизировал около сотни стержней, которые должны были иметь индивидуальное наведение, обеспечивая передачу 1-нс импульса с энергией 5−6 кДж на расстояние до 100 км. Такие заряды либо размещались на орбите заранее, либо при обнаружении запусков советских ракет стартовали с субмарин.

На бумаге выходило красиво, а вот в реальности… 26 марта 1983 года в подземной шахте на полигоне в штате Невада в рамках программы Cabra был произведен первый и единственный взрыв рентгеновского лазера с ядерной накачкой мощностью в 30 кт. Все стержни были ориентированы на одну цель, энергия импульса составила 130 кДж, но высокую расходимость победить не удалось — размер пятна на расстоянии в 100 км по расчетам составлял почти десяток метров.

в Избранное в Избранном из Избранного 7

Эта пушка создавалась на базе НС-23 (вооружались Ил-10, Ла-9, Ла-11, МиГ-9, МиГ-15, Як-15). Принципиальными отличиями были двухстороннее ленточное питание и больший темп стрельбы. Для этого были введены ускорители отката и наката. Работа автоматики пушки основана на принципе использования энергии отдачи при коротком ходе ствола. Пушка имела двухстороннее непрерывное ленточное питание. Боеприпасами служили патроны пушки НС-23. Перезаряжание пневматическое. Запирание канала поршневое. Первоначально для серийного производства HP-23 была установлена живучесть 3000 выстрелов. Министр вооружений Устинов потребовал от ОКБ-16 и завода в течение года довести живучесть до 6000 выстрелов, что в основном было достигнуто. Для уменьшения отдачи был введен гидробуфер. Проработка HP-23 начата в декабре 1946 года, а а 1951 г. были закончены работы по доводке. НР-23 предназначалась, в частности, для замены 20-мм авиапушки Б-20 на тяжёлом бомбардировщике Ту-14. Ла-15 с новыми пушками был принят на вооружение в 1948 году. Ею вооружались самолеты Ту-4, МиГ-15-бис и ряд других. Пушки серийно производились с 1948 по 1956 г. на заводах № 2 и № 525. В 1957 г. производилась только сборка пушек из задела деталей.

Ею вооружались самолеты Ту-4, МиГ-15-бис, Ту-14 и ряд других.

Длина ствола 1450 мм. Габариты пушки: длина 2018 мм, ширина 165 мм, высота 136 мм. Вес пушки 39 кг. Темп стрельбы 800-950 выстр./мин. Начальная скорость снаряда 680 м/с.

Программа ОПС (орбитальная пилотируемая станция) «Алмаз»

Визир панорамно-обзорного устройства ПОУ-11

ОКС «Салю́т-3» (ОПС-2 или № 102) массой 18,5 т была выведена на орбиту ракетой-носителем «Протон» 25 июня 1974 г. Перигей орбиты составлял 213 км, апогей - 253 км, наклонение 51,6°. Станция закончила свою работу 25 января 1975 г., пробыв на орбите 213 суток (90 дней) и обеспечив пилотируемый полёт 13 суток.

1-й экипаж (командир, полковник Павел Попович и бортинженер, подполковник Юрий Артюхин) на станцию доставил КК «Союз-14» 4 июля 1974 г. За 15 суток они выполнили всю программу.

2-й экипаж (подполковник Геннадий Сарафанов и подполковник-инженер Лев Дёмин) стартовал на КК «Союз-15», должен был пристыковаться 27 августа 1974 г., но из-за неисправности в системе сближения и стыковки «Игла» стыковка была отменена, и экипаж приземлился. 23 сентября возвращаемая капсула доставила на Землю фотоплёнки и другие материалы, а ОПС по команде ЦУПа была спущена с орбиты 24 января 1975 г.

Мало кто знает, что под именем мирного гражданского «Салюта» скрывалась военная орбитальная станция «Алмаз», предназначенная для сбора секретной информации прежде всего о военной мощи Соединенных Штатов. Последнее не противоречило международному космическому праву, ибо по нему границы государства распространяются на высоту не более 100 км, а станция летала намного выше. Разработчикам ОПС (орбитальной пилотируемой станции) было известно, что в США ведутся работы по военным спутникам-инспекторам и перехватчикам. Были приняты меры по защите «Алмаза» от аппаратов подобного рода: ОПС оснащалась модификацией авиационной пушки конструкции Нудельмана-Рихтера НР-23 (хвостового орудия реактивного бомбардировщика Ту-22). Дальность стрельбы против орбитальных целей должна была составлять более 3000 м. Орудие делало 950 выстрелов в минуту. Снаряд массой 200 г летел со скоростью 690 м/с. По утверждению разработчиков станции, в наземных испытаниях на дальности более километра залп из пушки перерезал пополам металлическую бочку из-под бензина. Отдача пушки при стрельбе в космосе компенсировалась за счет включения маршевых двигателей или ЖРД жесткой стабилизации (отдача пушки была эквивалентна тяге 218,5 кгс и станцию надо было стабилизировать, с чем легко справлялись два маршевых двигателя тягой по 400 кгс каждый или двигатели жесткой стабилизации тягой по 40 кгс).

Пушка устанавливалась жестко «под брюхом» ОПС. Её можно было наводить в нужную точку через прицел, поворачивая всю станцию вручную или посредством дистанционного управления, чтобы сопровождать цель. Стрельбой из пушки управлял программно-контрольный автомат (ПКА), который вычислял залп, требуемый для разрушения цели при времени полета снаряда до нее от 1 до 5 секунд.

Атаковать кого-либо «Алмаз» не мог – какой смысл использовать в качестве космического истребителя пилотируемый наблюдательный пункт массой под 20 тонн, с гигантским фотоаппаратом и другой не менее ценной начинкой? А вот обороняться – вполне, и ни один спутник-агрессор не устоял бы…

25 июня 1974 года вывели на орбиту «Салют-3», он же «Алмаз-2». 3 июля к ней стартовал корабль «Союз-14» с командиром Павлом Поповичем и бортинженером Юрием Артюхиным. В одном из интервью Павел Романович лишь чуть-чуть приоткроет тайну того полета: «В космос мы отправились на очень интересной машине и занимались мы специальными вопросами, то есть космической разведкой». «Отцы» военных космических программ Советского Союза. Помощник Главкома ВВС по космосу генерал Николай Каманин. «Отцы» военных космических программ Советского Союза. Генеральный конструктор ОКБ-52 Владимир Челомей. И дальше: «У нас все было: и мощная оптика, фотооборудование, инфракрасные приборы и много всякого еще. Мы отлично видели нужные нам засекреченные объекты. Перехватили даже американскую станцию «Skylab», которая была первой и единственной американской космической станцией с тремя астронавтами на борту. Мы их вычислили в семидесяти километрах от нас, сфотографировали, а сами остались незамеченными».

24 января 1975 г., когда станция «Алмаз-2» («Салют-3») полностью выполнила полет по основной и дополнительной программам, пушка дала первый (и последний!) залп. Испытывали пушку космонавты Павел Попович и Юрий Артюхин. Испытания прошли успешно, хотя палили, что называется, «в белый свет как в копеечку», и снаряды, выпущенные против вектора орбитальной скорости, вошли в атмосферу и сгорели даже раньше станции.

Ни космических инспекторов, ни орбитальных перехватчиков американцы так и не создали. Шаттл, который советские военные позиционировали как «потенциально возможное оружие обезглавливающего удара и противоспутниковой обороны», к тому времени ещё не летал. И на следующем «Алмазе» («Салют-5», 22 июня 1976 года – 8 августа 1977 года) пушки уже не было.

Впоследствии более совершенную военную станцию «Алмаз-3» («Салют-5») собирались вооружить ракетами «космос-космос», имевшими дальность стрельбы - более 100 км. Это намного больше, чем у космической пушки, стрелявшей всего на 3 км. «Как и предусматривалось ранее, для обороны вместо пушки (система «Щит-1») на станцию устанавливались два снаряда «космос - космос» (система «Щит-2») конструкции того же КБ, руководимого А.Э. Нудельманом», писал в «Новостях космонавтики» Владимир Поляченко, бывший в 70-е годы главным ведущим конструктором по теме «Алмаз». Но снаряды созданы не были, а вскоре была свернута и вся пилотируемая военная программа. Сама же конструкция «Алмаза» до сих пор используется в мирных целях - его переделали сначала в станцию «Мир», а затем в жилой отсек Международной космической станции.

Источник

buran.ru написал: …Однако советские эксперты, внимательно следившие за «завязыванием» проекта шаттла и не знавшие о новом американском спутнике-шпионе, выбранные габариты полезного отсека и грузоподъемность шаттла могли объяснить только желанием «американской военщины» иметь возможность инспектировать и при необходимости снимать (точнее сказать, захватывать) с орбиты советские пилотируемые станции серии «ДОС» (долговременные орбитальные станции) разработки ЦКБЭМ и военные ОПС (орбитальные пилотируемые станции) «Алмаз» разработки ОКБ-52 В.Челомея. На ОПС, кстати, «на всякий случай» была установлена автоматическая пушка конструкции Нудельмана-Рихтера.

pensioner-72 написал: Космическая пушка под «брюхом Алмаза», или авиационная пушка конструкции Нудельмана-Рихтера НР-23 (Россия).

Уважаемые Коллеги : для сгорания пороха нужен.. кислород

Журнал «Огонёк».com написал ogoniok.com/4916/30 - В космосе есть чем застрелиться!

25 июня 1974 года в космос полетела космическая станция «Салют-3» с экипажем в составе двух космонавтов. На первый взгляд, это было похоже на очередной рядовой космический полет. «Салюты» были советским аналогом американского гражданского космического корабля Skylab, в задачи которого входило проведение экспериментов — типа что происходит с человеческим организмом во время длительного полета. Кроме того, в эпоху холодной войны он был призван набирать пропагандистские очки.

Но название «Салют-3» было лишь прикрытием. На самом деле, «Салют-3» был военной космической станцией «Алмаз-2».

В задачи станций «Алмаз» входило наблюдение за поверхностью Земли по типу пилотируемой орбитальной лаборатории ВВС США, которая работала на орбите в 1960-е годы. Замысел состоял в том, что выгодное положение на высоте 270 километров давало хороший обзор и превращало станцию в идеальный наблюдательный пункт. Америка от своей пилотируемой орбитальной лаборатории отказалась, а вот Советы в период с 1973 по 1976 годы запустили три космических корабля «Алмаз».

Но у "Салюта-3"/"Алмаза-2″ имелось одно серьезное отличие. Это была не просто военная космическая станция. Она была вооружена. «Алмаз-2» был оснащен маленькой пушкой с целью проведения эксперимента на предмет того, смогут ли советские космические корабли обороняться от американского противоспутникового оружия.

Подробностей известно немного, но со временем кое-какая информация все же стала всплывать. Как пишет ведущий западный эксперт по советской космической программе Джеймс Оберг (James Oberg), «согласно опубликованным данным, которые подтвердил командир корабля Павел Попович, на станции была установлена модифицированная советская авиационная пушка для перехвата самолетов. Это была пушка Нудельмана-Рихтера, похожая на те модели, которыми оснащались МиГ-19, МиГ-21 и Су-7 ».

Некоторые источники считают, что это была 23-миллиметровая пушка, в то время как другие полагают, что калибр у нее был 30 миллиметров. «Ствол пушки был направлен параллельно продольной оси станции, а наведение оружия на цель осуществлялось изменением ориентации космического аппарата при помощи прицельного экрана на посту управления», — пишет Оберг. Википедия сообщает, что боекомплект пушки составлял 32 снаряда.

Очевидно, испытательные стрельбы проводились посредством дистанционного управления с Земли в то время, когда космонавтов на борту станции не было. Это значит, что «Алмаз» вел огонь из своего оружия, хотя и не в боевых условиях. «24 января 1975 года состоялись испытания специальной системы на борту „Салюта-3“, которые дали положительные результаты на дальности от трех тысяч до 500 метров, — указывается в статье Encyclopedia Astronautica . — Нет сомнений, что это были испытания бортовой 23-миллиметровой авиационной пушки Нудельмана (другие источники утверждают, что это была 30-миллиметровая пушка Нудельмана НР-30). Космонавты подтвердили, что в ходе испытаний спутниковая мишень была уничтожена».

Пушка на станции «Алмаз» определенно не была наступательным оружием типа взрывающего планеты луча «Звезды смерти» или водородных бомб, которых очень боялись американцы, запаниковавшие в 1950-е годы из-за полетов советских спутников. Они думали, что эти бомбы вот-вот посыплются им на головы. Но у специалистов разные мнения относительно того, насколько эффективной была бы эта пушка в космическом бою.

Оберг пишет: «На расстоянии менее километра она могла быть чрезвычайно эффективной, если не вести огонь поперек орбитального движения станции, так как в этом случае по правилам орбитальной механики пули должны были вернуться обратно на станцию!»

Тони Уильямс (Tony Williams), создающий историю пушек и пулеметов, рассказал The National Interest: «Вибрация определенно создавала проблемы. Ее обнаружили, когда из установленной на борту станции пушки стали стрелять на земле. Это значит, что испытательные стрельбы в космосе проводились только во время непилотируемых полетов. Отдачу приходилось компенсировать двигательной установкой и рулевым управлением. Безвоздушное пространство не должно было создавать проблем, но у меня есть подозрения, что экстремальные температуры создавали сложности».

Эксперт по военным действиям в космосе Пол Жимански (Paul Szymanski) считает, что стрелять из пушки в космосе можно, но при этом возникнут некоторые проблемы, особенно в плане управления огнем. «Траектория выпущенного снаряда будет искривленной из-за притяжения (так же, как на земле), и поэтому в механизме прицеливания это необходимо учесть. В расчет нужно принять и огромные скорости, на которых летят „Алмаз“ и цель», — рассказал этот специалист The National Interest. Кроме того, при уничтожении высокоскоростной космической цели на малой дальности «Алмаз» мог пострадать от быстролетящих обломков.

Советская космическая пушка была оборонительным оружием — но от кого она должна была оборонять? От вымышленных космических пехотинцев в той знаменитой и странной сцене из фильма про Джеймса Бонда «Лунный гонщик»? Противоспутниковое оружие существует — согласно имеющейся информации, его разрабатывает Китай; да и американцы в 2006 году при помощи противоракеты уничтожили один из своих неисправных спутников. Однако эта техника пока не до конца проверена.

В любом случае, жалко будет того бедного космонавта, который попытается сбить ракету, летящую со скоростью восемь километров в секунду.


«Космические» снаряды Джеральда Бюлля


Как известно, все новое - это хорошо забытое старое. На примере материала предыдущей главы мы убедились, что развитие техники во многом основывается на этом общеизвестном соображении.


Раз за разом конструкторская мысль на очередном этапе возвращается к старым «забытым» схемам, чтобы возродить их в новом качестве под новые задачи. Электроракетные двигатели и использование атомной энергии, солнечные паруса и антигравитация - все это было придумано еще в первой четверти XX века, но обретает воплощение лишь сегодня.


Не осталась забытой и идея космической пушки, предложенная, как мы помним, еще Исааком Ньютоном, получившая развитие в романах Жюля Верна, Фора и Граффиньи и нашедшая воплощение в программе создания сверхдальнобойного орудия «Фау-3».


Однако при всей кажущейся бесперспективности этих проектов с наступлением космической эры и появлением потребности в дешевых всепогодных средствах доставки различных аппаратов на околоземную орбиту вновь заговорили о пушках. Разумеется, речь уже не шла о пилотируемом полете, но небольшие спутники таким способом в космос запустить возможно, и идея получила второе (или третье?) рождение.


Этим она прежде всего обязана талантливому канадскому конструктору - доктору Джеральду Бюллю.


Джеральд Бюль родился в 1928 году в канадской провинции Онтарио. Его карьера началась с ошеломляющих успехов - в 22 года Бюлль стал самым молодым доктором, когда-либо защищавшим диссертацию в Торонтском университете.


С 1961 года он преподавал в Макгильском университете, а в 1964 году возглавил канадский Институт космических исследований. Именно на должности директора этого института Бюлль получил возможность реализовать идею пушки, способной забрасывать снаряды на суборбитальную и орбитальную высоту.



В 1961 году Департамент исследований в области вооружений выделил доктору Бюллю 10 миллионов долларов в рамках совместной научной программы, инициированной министерствами обороны США и Канады и получившей название «Высотная исследовательская программа» («High Altitude Research Program», «HARP»).


На начальном этапе работ по программе доктор Бюлль брался доказать, что сверхдальнобойные пушки можно использовать для запуска научных и военных грузов на суборбитальные высоты. Стартовая площадка была возведена на острове Барбадос, а запуски осуществлялись в сторону Атлантики. В качестве «космической» пушки использовалось 16-дюймовое (406-миллиметровое) орудие ВМФ США весом в 125 тонн. Стандартный ствол длиной 20 метров был заменен на новый - 36-метровый. В период с 1963 по 1967 год доктор Бюлль осуществил более двухсот экспериментальных запусков с помощью этого орудия.


Первый снаряд «Martlet 1» длиной 1,78 метра и весом 205 килограммов Джеральд Бюлль представил заказчику в июне 1962 года. Снаряд был изготовлен из толстой листовой стали, внутри корпуса размещалось оборудование для радиотелеметрического контроля за ходом полета. Кроме того, на снаряде смонтировали специальное приспособление для выпуска цветного дыма, по которому можно было вести наблюдение за траекторией снаряда и произвести, оценку влияния высотных воздушных потоков на летательный аппарат.


«Martlet 1» был запущен 21 января 1963 года. Полет продолжался 145 секунд, и в ходе него снаряд достиг высоты в 26 километров и упал в 11 километрах от места старта.



Второй запуск оказался столь же успешен, и исследовательская группа проекта «HARP» приступила к разработке новой серии снарядов «Martlet 2», которые уже можно было использовать в качестве суборбитальных летательных аппаратов.


В рамках серии «Martlet 2» были сконструированы снаряды трех основных модификаций: 2А, 2В и 2С. Внешне они почти не отличаются друг от друга, но изготовлены из разных материалов. Типичный снаряд «Martlet 2» имеет стрелообразную форму с диаметром корпуса в 13 сантиметров и длиной 1,68 метра. В нижней части корпуса приварены четыре скошенных стабилизатора. Полезная нагрузка снаряда составляет 84 килограмма, общий вес вместе с выстрелом - приблизительно 190 килограммов.


Перед суборбитальными летательными аппаратами «Martlet 2» ставилась задача подробного изучения физического состояния верхних слоев атмосферы. Эта информация имела для министерств обороны США и Канады жизненно важное значение, поскольку, как мы помним, в то же самое время велись работы по созданию стратосферных гиперзвуковых самолетов и новых ракетных систем, а данных о свойствах воздушной среды на больших высотах не хватало. Полезный груз «Martlet 2» включал магнитометры, температурные датчики, электронные измерители плотности и даже метеолабораторию «Langmuir». Для того чтобы аппаратура после старта могла функционировать нормально, весь измерительный блок заливался эпоксидной смолой, которая предохраняла компоненты системы от смещения и повреждений при ускорении в 15 000 g.


Согласно первоначальным расчетам, скорость для снарядов серии «Martlet 2» не должна была превышать 1400 м/с, а максимально достижимая высота - 125 километров. Однако благодаря целому ряду усовершенствований (удлинение ствола пушки, использование новых видов пороха и способов его поджигания) удалось выйти на гораздо большие высоты.


Скорость снаряда подняли до 2100 м/с, и 19 ноября 1966 года «Martlet 2C» достиг рекордной высоты - 180 километров при полетном времени 400 секунд.


Кроме того, за цикл испытаний доктору Бюллю удалось снизить стоимость запуска полезного груза на суборбитальную высоту до 3000 долларов за килограмм.


Перспективы «Высотной исследовательской программы» («HARP»)


30 июня 1967 года, в результате резкого «похолодания» в отношениях между США и Канадой, вызванного войной во Вьетнаме, канадский Департамент исследований в области вооружений официально объявил о закрытии «Высотной исследовательской программы».


Проект был свернут в тот самый момент, когда группа под руководством доктора Бюлля работала над созданием самого миниатюрного космического аппарата в истории человечества - реактивного снаряда «Martlet 2G-1» с твердотопливной ступенью. Вес полезной нагрузки, выводимой этим снарядом на орбиту, не превышал 2 килограммов - оптимум для «нано-спутников», разрабатываемых сегодня в НАСА. Сам снаряд при этом был 4,3 метра в длину и 30 сантиметров в диаметре. Общий вес снаряда с выстрелом составлял 500 килограммов.


Среди других, весьма перспективных, направлений программы «HARP» можно назвать работы над сериями реактивных снарядов «Martlet 3» и «Martlet 4». Эти снаряды, имеющие твердотопливных ступени, фактически уже являлись компактными ракетами, начальную часть траектории которых задавала пушка. Наибольший интерес для нас представляет серия «Martlet 4». Поговорим о ней подробнее.


Первоначально программа «HARP» не предусматривала создание орбитальных средств доставки, ориентируясь лишь на задачу изучения верхних слоев атмосферы. Только в 1964 году, когда дополнительное соглашение между канадским Департаментом исследований и правительством США обеспечило гарантированное финансирование программы еще на три года, в группе доктора Бюлля всерьез заговорили об орбитальных запусках. Однако руководство Департамента прохладно отнеслось к этой затее, и до самого закрытия программы энтузиастам орбитальных запусков не удалось «протолкнуть» серию «Martlet 4».



Согласно оставшемуся на бумаге проекту реактивные многоступенчатые снаряды «Martlet 4» можно было использовать для вывода на околоземную орбиту полезных грузов весом от 12 до 24 килограммов. В первой версии проекта снаряды имели две (или три) твердотопливные ступени, в более поздних - ступени с жидким топливом.


Первая ступень типовой модификации снаряда «Martlet 4», содержащая 735 килограммов твердого топлива, имела шесть стабилизаторов. При прохождении через ствол пушки стабилизаторы должны были находиться в сложенном положении, а при выходе - выпрямиться, придавая снаряду движение вращения вокруг продольной оси со скоростью 4,5–5,5 оборотов в секунду - таким образом обеспечивалась гироскопическая устойчивость снаряда на протяжении начального участка полета, заданного выстрелом пушки. Поскольку движение снаряда на этом участке подчинялось законам элементарной баллистики (то есть зависело только от мощности заряда, угла наклона орудия и аэродинамики снаряда), отпадала необходимость в сложной системе управления и контроля. Первая ступень должна была запуститься на высоте 27 километров и выгореть в течении 30 секунд, давая тягу в 6900 килограммов.


Вторая и третья ступени «Martlet 4» также были твердотопливными (181,5 и 72,6 килограмма топлива соответственно) и обеспечивали полет снаряда в стратосфере и мезосфере, выводя полезный груз на высоту до 425 километров.


Между второй и третьей ступенями конструкторы разместили блок управления и ориентации. Он должен был включиться сразу после отделения первой ступени, поддерживая заданные программой углы крена и тангажа. Заметим, что в 60-е годы еще не существовало интегральных схем, а традиционные механические гироскопы не могли быть применены в блоке управления и ориентации, поскольку не выдержали бы чудовищных перегрузок. Для решения этой проблемы к разработке были привлечены специалисты из Университета Макгила и Лаборатории баллистики армии США. В результате была спроектирована совершенно новая система ориентации. Она состояла из аналогового модуля, получающего информацию от нескольких датчиков, закрепленных на корпусе снаряда, и сравнивающего поступающие данные с эталоном. Скорость вращения вокруг продольной оси определялась с помощью акселерометра, угол тангажа - двумя инфракрасными датчиками. Дополнительная информация поступала также от двух светочувствительных элементов, ориентированных по солнцу.


Отдельные компоненты системы управления и ориентации прошли «обкатку» на устойчивость к перегрузкам на испытательном полигоне в Квебеке для их запуска использовалась малая 155-миллиметровая пушка, способная придать контейнеру с элементами системы ускорение более 10 000 g.




Важнейшим преимуществом реактивных снарядов «Martlet 4» перед ракетными транспортными средствами был малый период предполетной подготовки. Конструкторы полагали, что такая подготовка займет всего лишь несколько часов против нескольких недель или даже месяцев для многоступенчатой ракеты-носителя. При необходимости можно было запускать от четырех до шести снарядов «Martlet 4» в день, невзирая на погодные условия.


Малые суборбитальные пушки


Работы Джеральда Бюлля в Канаде привлекли внимание ученых военно-промышленного комплекса США. Как мы уже неоднократно отмечали ранее, американским конструкторам, работавшим над созданием перспективных летательных аппаратов, не хватало данных о физических свойствах и химическом составе верхних слоев атмосферы. Часть вопросов была снята в рамках совместных работ по программе «HARP». Однако для решения частных задач американцы использовали малые пушки, позволявшие выводить небольшие зонды на высоты до 70 километров.


В начале марта 1960 года генерал-лейтенант Артур Традье, руководитель исследовательских программ армии США, поручил подчиненной ему Лаборатории баллистики оценить возможность использования артиллерии для запуска метеорологических зондов. К июлю ученые Лаборатории на опыте доказали, что соответствующим образом сконструированный зонд выдержит воздействие перегрузок, возникающих при выстреле, и работа закипела.


В качестве исходного орудия для суборбитальных запусков использовалась армейская пушка калибром 120 миллиметров и длиной ствола 8,9 метра. Пушки этого класса были очень удобны в применении и обладали необходимой мобильностью - их можно было доставлять к огневой позиции на железнодорожной платформе или в кузове специального грузовика.


Стартовые комплексы на основе 120-миллиметровых пушек были построены на испытательных полигонах острова Барбадос, Квебека, в штатах Аляска, Вирджиния, Нью-Мексико, Аризона С их помощью на суборбитальные высоты запускались небольшие зонды различного назначения (серия суборбитальных снарядов «BRL»): дипольный отражатель, траектория которого отслеживалась радаром, дрейфующий метеозонд с парашютом, возвращаемые контейнеры и тому подобное. Стоимость одного запуска колебалась в пределах от 300 до 500 долларов США.


Эксплуатация малых «суборбитальных» пушек продемонстрировала высокую эффективность такого рода запусков при изучении атмосферы, и вскоре на смену 120-миллиметровым пушкам пришли новые - с калибром 175 миллиметров и длиной ствола 16,8 метра. Эти пушки позволяли запускать в три раза более тяжелые грузы на высоту свыше 100 километров.



Соответственно, расширился и список используемых зондов. Помимо традиционного набора дипольных отражателей новые снаряды несли в себе капсулы с нитратом цезия для создания искусственных облаков и метеолаборатории «Langmuir» с телеметрическим управлением.


Стартовый комплекс на основе 175-миллиметровой пушки оказался, впрочем, менее надежной системой, чем его предшественники. Снаряды часто не достигали расчетной высоты, и тогда группа доктора Бюлля, используя накопленный опыт, предложила проект твердотопливного снаряда «Martlet 3E», который мог служить разгонной ступенью для грузов, запускаемых с помощью 175-миллиметровой пушки.


При этом расчетный потолок поднимался до 250 километров.


Снаряды «Martlet 3E» могли заменить собой всю серию «Martlet 3», освободив главное 406-миллиметровое орудие для орбитальных запусков. Но, к сожалению, и этому проекту было суждено остаться на бумаге.


Проект «Вавилон»


Несмотря на закрытие программы «HARP», доктор Джеральд Бюлль не утратил интереса к теме «космических» пушек. Более того, в 1968 году он получил премию Маккарди - самую престижную канадскую награду за исследования, связанные с космосом. В поисках новых инвесторов Бюлль основал собственную «Корпорацию по исследованию космоса». Используя свои связи в Пентагоне, он заключил сделку с Израилем. В 1973 году бюллевская «Корпорация» поставила туда около 50 тысяч артиллерийских снарядов. Тогда же конструктор познакомился с будущим командующим израильской артиллерии генералом Абрахамсом Давидом. Бюлль с восторгом говорил, что генерал - «единственный человек, который аккумулирует все возможности, чтобы построить суперпушку». Наверное, именно потому, что генерал Давид был «единственным» заинтересованным лицом, реализовать свой проект в Израиле Бюллю не удалось.


В середине 70-х доктор Бюлль вступил в контакт с южноафриканским правительством. Его фирма, при негласном попустительстве ЦРУ, поставила Претории 55 тысяч снарядов вместе с документацией по их изготовлению. ЮАР, изолированная ООН от рынков оружия, щедро платила за смертоносный товар. Дела шли неплохо, и конструктор решил расширить свой бизнес. С его помощью в ЮАР стали создаваться самые современные 155-миллиметровые орудия. Но вскоре подробности этой сделки стали достоянием гласности, и в 1980 году Бюлль попал за решетку по обвинению в незаконной продаже военных технологий в страны «третьего мира». «Корпорация по исследованию космоса» была ликвидирована.


После освобождения доктор Бюлль перебрался в Бельгию, где продолжил свою деятельность в качестве эксперта по артиллерии. В марте 1988 года он заключил контракт с правительством Ирака на строительство трех сверхдальнобойных пушек: одного 350-миллиметрового орудия-прототипа (проект «Малый Вавилон») и двух полноразмерных 1000-миллиметровых орудий (проект «Вавилон»).



Если верить расчетам доктора Бюлля, то главные орудия при весе выстрела в 9 тонн могли отправить 600-килограммовый груз на расстояние свыше 1000 километров, а реактивный снаряд весом в 2 тонны с полезной нагрузкой в 200 килограммов - на околоземную орбиту. При этом стоимость вывода на орбиту килограмма полезного груза не должна была превысить 600 долларов.


Проекту присвоили обозначение РС-2, и в официальных бумагах он проходил как проект новейшего нефтехимического комплекса. Сооружением стартовой площадки занималась британская строительная корпорация под руководством Кристофера Коулея.


Длина орудия проекта «Вавилон» достигала 156 метров при весе 1510 тонн. Ствол орудия был сборным и состоял из 26 фрагментов. Сила отдачи при выстреле должна была составить 27000 тонн, что эквивалентно взрыву небольшого ядерного устройства и могло вызвать сейсмическое возмущение во всем мире.


В кругах военных специалистов хорошо известно, что отношение длины ствола к калибру орудия должно находиться в пределах от 40 до 70, у гаубиц - от 20 до 40. Эти значения вытекают из принципа действия орудийного ствола. Первичное ускорение снаряд получает под воздействием ударной волны, образующейся при воспламенении метательного вещества (разгоняющего заряда), а далее на снаряд в стволе давят газы - продукты горения этого вещества. К выходному отверстию их давление постепенно снижается. Поэтому ствол не может быть как угодно длинным - в какой-то момент трение между снарядом и стенками канала станет больше, чем воздействие газов. Существуют также пределы, касающиеся дальности стрельбы и зависимости от мощности разгоняющего заряда. Они связаны с тем, что скорость воспламенения современных метательных веществ значительно ниже скорости распространения ударной волны. Поэтому с увеличением массы заряда, еще до его полного сгорания, снаряд может вылететь из ствола.


С этой точки зрения, пушка «Вавилон» - абсурд и фантазия безумного инженера. Но Джеральд Бюлль нашел решение проблемы в документации на проект сверхдальнобойной пушки «Фау-3»: можно увеличить скорость снаряда в стволе за счет дополнительных, последовательно воспламеняемых зарядов.


Проект «Фау-3» потерпел крах из-за невозможности воспламенять размещенные в канале ствола промежуточные заряды точно в нужный момент. Технических средств, обеспечивающих требуемые миллисекунды, тогда не нашлось. Заряд срабатывал то слишком рано и тормозил снаряд, грозивший разорваться внутри ствола, то с опозданием, не выполняя свои ускоряющие функции. Бюлль решил проблему синхронизации с помощью прецизионных конденсаторов.


Их, кстати, в апреле 1990 года конфисковали в лондонском аэропорту Хитроу и поначалу думали, что они будут применяться в качестве взрывателей для атомных бомб. На самом же деле эти конденсаторы должны были обеспечить точность последовательных воспламенений дополнительных зарядов с погрешностью в пикосекунды! Воспламеняющие устройства срабатывали бы по команде пневматических дат чиков, реагирующих на изменение давления в канале ствола.


В 156-метровом стволе «Большого Вавилона» предполагалось разместить 15 промежуточных зарядов. Они обеспечили бы снаряду, вылетающему из пушки, начальную скорость примерно 2400 м/с. Естественно, дополнительное ускорение тоже имеет свои пределы - Бюлль, похоже, приблизился к ним вплотную. В его конструкции снаряд разгоняется все быстрее и быстрее и в конце концов достигает скорости распространения давления горящей газопороховой смеси промежуточного заряда.


Пушка-прототип «Малый Вавилон» весом 102 тонны была построена к маю 1989 года. Ее огневая позиция размещалась в 145 километрах севернее Багдада, и в ходе испытаний планировалось отправить снаряд на расстояние 750 километров.


Иракский дезертир показал позднее, что пушку собирались использовать для доставки боеголовок с химической или бактериологической начинкой на территорию противника, а также для уничтожения вражеских разведывательных спутников.


Первоначально израильская разведка, работающая в Ираке, не обращала внимания на проект «Вавилон», считая его авантюрой, но когда иракское правительство подключило доктора Булла к разработкам в области создания межконтинентальной многоступенчатой ракеты на основе советских ракет «Скад», конструктору было сделано предупреждение.


Однако Бюлль отказался разорвать контракт с Ираком и 22 марта 1990 года был убит при загадочных обстоятельствах.


Пушки проекта «Вавилон» так и не достроили. Согласно решению Совета Безопасности ООН, принятому после окончания операции «Буря в пустыне», они были уничтожены под контролем международных наблюдателей.


«Сверхвысотная исследовательская программа» («SHARP»)


Несколько по-другому к проблеме создания «космической» пушки подошел американский конструктор Джон Хантер из Национальной Лаборатории Лоренса в Ливерморе (Калифорния). Его разработки нашли отражение в «Сверхвысотной исследовательской программе» («SHARP», «Super High Altitude Research Project»).



Изучая в 1985 году материалы проекта электромагнитной пушки, создаваемой в рамках программы «СОИ», Джон Хантер пришел к выводу, что более эффективным оружием для решения задачи уничтожения баллистических ракет противника на значительных высотах может оказаться «газовая» пушка.


Есть еще одно правило для артиллериста-конструктора - скорость снаряда не может превышать скорость газов в стволе. Для того чтобы увеличить эту скорость (а следовательно, и высоту, и дальность полета снаряда), Хантер предложил заменить обычные продукты сгорания водородом, который имеет гораздо меньшую молекулярную массу и большую скорость. Исследуя архивы, американский конструктор установил, что в 1966 году инженеры НАСА уже испытывали маленькую водородную пушку, выстреливавшую снаряды со скоростью 2,5 км/с. На основе этой разработки Джон Хантер построил компьютерную модель двухкамерной газовой пушки, дульная скорость которой могла бы достигнуть 8 км/с. Проектом Хантера заинтересовались, и Лаборатория Лоренса получила деньги на строительство полноразмерной газовой пушки, предназначенной для запуска снарядов с космической скоростью; разработка получила название «Сверхвысотной исследовательской программы».


Двухмодульная газовая пушка Хантера состояла из Г-образного ствола длиной 82 метра и так называемого «блока накачки», представлявшего собой герметичную трубу диаметром 36 сантиметров и длиной 47 метров. В стальную трубу накачки подается газообразный метан и поджигается.


Расширяясь, газ толкает поршень весом в тонну по трубе накачки, сжимая и нагревая водород, находящийся с другой стороны поршня. Когда давление водорода достигает 4000 атмосфер, приводится в движение снаряд, находящийся у начала ствола, в прямом угле Г-образной конструкции.


Ствол, разумеется, был герметизирован, и в момент вылета снаряд должен был выбивать пластмассовую крышку. Сила отдачи снималась тремя водяными компенсаторами: одним 10-тонным и двумя 100-тонными.


Экспериментальная газовая пушка была построена на испытательном полигоне взрывчатых веществ Лаборатории Лоренса в 1992 году. Первые испытания состоялись в декабре, при этом 5-килограммовый снаряд, выпущенный из пушки, смог развить скорость 3 км/с. Чтобы еще увеличить скорость, Хантер предлагал сделать снаряд ракетным и двухступенчатым, причем полезная нагрузка должна была составить 66 % от общего веса снаряда.


Однако 1 миллиард долларов, необходимый специалистам Лаборатории для продолжения экспериментов с запуском меньших снарядов на космическую орбиту, так и не был выделен. В результате все работы по программе «SHARP» оказались свернуты.



В 1996 году пушка Хантера была использована для изучения характера обтекания моделей прямоточного воздушно-реактивного двигателя при скоростях около 9 Махов.


«Пусковая компания имени Жюля Верна»


В 1996 году, после отказа правительства США финансировать дальнейшие этапы программы «SHARP», Джон Хантер основал фирму под претенциозным названием «Пусковая компания Жюля Верна» («Jules Verne Launcher Company»).


Первоначально компания планировала построить прототип пусковой установки, подобной газовой пушке Лаборатории Лоренса. На прототипе, размер снарядов которого не должен был превышать 1,3 миллиметра, Хантер со товарищи собирались обкатать новые идеи и отработать технологии, связанные с созданием пушки-гиганта. Сама же пушка-гигант, согласно их планам, должна быть построена в горе на Аляске, что позволило бы выводить полезные грузы на орбиты с высоким наклонением. Согласно расчетам Хантера, с помощью этой пушки можно было бы достигнуть дульной скорости 7 км/с, отправляя снаряды весом 3300 килограммов (габариты: диаметр - 1,7 метра, длина - 9 метров) на низкую околоземную орбиту высотой 185 километров.


В перспективе же полезную нагрузку можно было бы увеличить до 5000 килограммов.



По своей конструкции космическая пушка «Пусковой компании имени Жюля Верна» представляет собой комбинацию из газовой пушки Лаборатории Лоренса и «лунной» пушки Гвидо фон Пирке. Здесь имеется камера сгорания, где поджигается подаваемый из резервуара-хранилища метан, блок накачки с водородом, а также боковые наклонные камеры, внутри которых размещаются заряды, при подрыве придающие снаряду дополнительные импульс и ускорение.


«Пусковая компания имени Жюля Верна» планирует получить заказы на запуски более 1500 тонн полезных грузов в год. При этом предполагается, что стоимость запуска килограмма груза на орбиту будет в 20 раз меньше, чем стоимость такого же запуска при использовании ракетной техники.


Весь стартовый комплекс должен окупиться и начать приносить дивиденды после 50-го запуска.


Проблема только в том, что Джон Хантер до сих пор не нашел инвестора, готового финансировать этот амбициозный проект стоимостью в несколько миллиардов долларов.


Лазерная пушка


Тем временем в Национальной Лаборатории Лоренса в Ливерморе проходит предварительную «обкатку» еще более фантастический проект. На этот раз речь идет об использовании мощного лазера, луч которого должен вытолкнуть снаряд на околоземную орбиту.


Лазерный стартовый комплекс был предложен специалистами Лаборатории Лоренса в рамках «Программы перспективных технологий» («Advanced Technology Program», «ATP»), направленной на разработку теоретических основ альтернативных концепций космических кораблей.


Принцип действия этого комплекса довольно необычен.


Лазерный луч, направляемый с земли, нагревает специальное вещество, которым покрыта нижняя часть снаряда, имеющая форму параболоида. Испаряясь, это вещество создает реактивную тягу, толкающую снаряд вверх. При выходе в безвоздушное пространство параболическая чашка отбрасывается и в действие вступает обычный твердотопливный двигатель, зажигаемый опять же лазерным лучом.


Снаряд, запускаемый лазерным стартовым комплексом, имеет следующие параметры: диаметр - 2 метра, начальная масса - 1000 килограммов, полезная нагрузка, выводимая на высоту до 1000 километров, - 150 килограммов. Потребляемая лазером мощность не должна превышать 100 МВт, время действия импульса - 800 секунд.



Разумеется, подобный комплекс пока остается лишь красивой фантазией, весьма далекой от воплощения. Тем не менее опыты, проведенные на моделях в Лаборатории Лоренса, доказали возможность создания подобной схемы старта.


Электромагнитные пушки-катапульты


Впервые идею электромагнитной пушки (или электромагнитной катапульты) предложили в 1915 году российские инженеры Подольский и Ямпольский, использовав принцип линейного электродвигателя, изобретенного еще в XIX столетии русским физиком Борисом Якоби. Они создали проект магнитно-фугальной пушки с 50-метровым стволом, обвитым катушками индуктивности. Предполагалось, что разгоняемый электротоком снаряд достигнет начальной скорости 915 м/с и улетит на 300 километров. Проект отвергли как несвоевременный.


Однако уже в следующем году французы Фашон и Виллепле предложили аналогичную артсистему, причем на испытаниях ее модели 50-граммовый снаряд разгонялся до 200 м/с. Изобретатели утверждали, что электромагнитные пушки окажутся дальнобойнее обычных; кроме того, их стволы не будут перегреваться при длительной стрельбе. Но скептики подметили, что для такой установки потребуется ствол длиной не менее 200 метров, который придется удерживать несколькими стационарными фермами, лишь незначительно меняя угол его наклона, а о наводке по горизонтали говорить не придется. Да и для обеспечения энергией даже простейшей электромагнитной пушки потребуется соорудить рядом с ней целую электростанцию…


Эксперименты с электромагнитными метательными системами были вновь продолжены только после Второй мировой войны. Наиболее серьезный проект электромагнитной пушки-катапульты, предназначенной для запуска небольших снарядов на околоземную орбиту, разрабатывался в середине 80-х годов Национальной лабораторией в Альбукерке (США) под руководством Уильяма Корна. Была даже построена модель стартового комплекса, представляющего собой шестиступенчатый электромагнитный ускоритель. Он рассчитан на разгон снаряда массой 4 килограмма и диаметром 139 миллиметров. Позже появился проект десятиступенчатого ускорителя, предназначенного для запуска 400-килограммовых снарядов калибром 750 миллиметров.


Интересен также проект стартового комплекса, разрабатываемый в американском Научно-исследовательском центре Льюиса. Он предназначен для отправки в космос контейнеров с радиоактивными отходами и включает несколько технических и пусковых площадок, помещений для подготовки снарядов-контейнеров, подземных хранилищ, центра управления «стрельбами», станций радиолокационного слежения.


Согласно расчетам сотрудников центра Льюиса затраты на сооружение подобного объекта могут составить 6,4 миллиарда долларов, а ежегодные эксплуатационные расходы - 58 миллионов. С другой стороны, та экономия, которую получит атомная энергетика, если радиоактивные отходы с долгоживущими изотопами будут удаляться за пределы Солнечной системы, покроет любые расходы.


Процесс запуска контейнера с радиоактивными отходами будет выглядеть следующим образом. Отработавшие на АЭС стержни привезут на стартовый комплекс и направят в пункт переработки. Там отходы перегрузят из транспортных контейнеров в экранированные капсулы, представляющие собой части орбитального снаряда. Устройство такого снаряда, изготовленного из тугоплавкого вольфрама, зависит от назначения и вида полезной нагрузки, но в любом случае корпус должен обладать минимальным аэродинамическим сопротивлением, для движения по направляющему рельсу ствола потребуются сбрасываемые после выстрела башмаки, а для стабилизации при полете в атмосфере - стабилизаторы.


Незадолго перед пуском смонтированный снаряд переместят в магазин, а оттуда - в зарядное устройство. За ним расположен газодинамический участок доускорения, переходящий в ствол-рельсотрон, изготовленный из меди. Сначала предлагали ствол квадратного сечения, однако после опытов, проведенных в Ливерморской лаборатории, предпочли круглый в сечении, «пушечный», окруженный множеством соленоидных катушек, объединенных в блоки.


Перед запуском катушки возбуждаются переменным током с возрастающей частотой. Так, на одном из опытных образцов метательной установки на первый блок подавали напряжение с частотой 4,4 кГц, на второй - до 8,8 кГц, на третьем она возрастала до 13,2 кГц и так далее.


Каждый блок катушек, взаимодействуя с несущимся по рельсотрону снарядом, будет как бы подхватывать и разгонять его до тех пор, пока скорость не достигнет расчетной.


При этом блоки оснащаются собственными генераторами с фотоэлектрическими переключателями, срабатывавшими при приближении снаряда к фиксированным точкам в стволе. Кроме того, генераторы связаны с мультиплексором, под ключенным к усилителям мощности соленоидов.


Такие электромагнитные пушки предпочтительнее размещать в шахтах; при этом для снижения энергозатрат их предлагают устраивать в горах, на высотах 2,5–3 километров.


Для придачи снаряду дополнительного ускорения при выходе за пределы действия земного притяжения его оснастят силовой установкой. В качестве топлива пока намечена комбинация гидрозина-трифторида хлора, обладающая большой плотностью и достаточным удельным импульсом.


В Советском Союзе также неоднократно выдвигались проекты электромагнитных пушек-катапульт. Например, в начале 70-х годов на страницах научно-популярных журналов всерьез обсуждался проект гигантской станции-катапульты, находящейся на околоземной орбите и служащей промежуточным пунктом на пути космических кораблей к другим планетам.


В качестве источника энергии на борту станции-катапульты планировалось использовать ядерную энергетическую установку - реактор и преобразователь тепловой энергии в электрическую. Энергия должна была аккумулироваться в накопителях на основе сверхпроводящих электромагнитов - криогенных систем с электромагнитными катушками, охлаждаемыми до условий сверхпроводимости. Ускорительная система «пушки» состояла из цепочки соленоидов. Катушки подключались таким образом, что секции, через которые уже прошел снаряд (или космический корабль), выталкивают его, а секции, расположенные впереди, втягивают аппарат. Для подключения катушек в такой последовательности необходима специальная сильноточная коммутационная аппаратура, создание которой - отдельная и серьезная проблема.


К сожалению, все эти проекты так и остались на бумаге.


Главная причина столь прохладного отношения к мощным электромагнитным пушкам-катапультам состоит в том, что перед человечеством пока не стоит задачи, требующей резкого увеличения грузопотока между Землей и космосом. Если такая задача завтра появится, можно не сомневаться, что все эти «бумажные» разработки будут немедленно востребованы…

Мечту Жюля Верна — отправиться из пушки на Луну — многие считают смешной, но на протяжении десятилетий к ней вновь и вновь возвращаются инженеры и учёные. Пусть людей запускать в космос таким способом никак не получится, крохотные спутники вполне могут выдержать перегрузки при выстреле. Так что ещё рано говорить, кто будет «смеяться хорошо».

Космические пушки (space gun), различные варианты которых в фантазиях изобретателей всплывали не раз и не два, сулят сокращение стоимости доставки грузов на низкую околоземную орбиту примерно на порядок. Само собой, для такого экзотического запуска подойдут не любые предметы, но его ориентировочная цена в $550 за килограмм достаточно заманчива, чтобы попытаться воплотить давнюю идею в жизнь.

Так полагает Джон Хантер (John Hunter), американский учёный и инженер, президент и один из основателей компании Quicklaunch , поставившей своей целью организовать вывод небольших аппаратов в космос при помощи пушки длиной... 1,1 километра.

Главная изюминка новой системы – морское базирование, оно несёт с собой массу преимуществ (иллюстрация John Hunter/Quicklaunch/Google Tech Talks).

Как видим, ствол пушки со вспомогательными системами должен плавать в морской пучине под некоторым углом к горизонту. Нижний край всей конструкции по идее располагается на глубине примерно 490 м, а срез ствола — в нескольких метрах над водой.

Такой приём изящно решает проблему искривления чудовищного ствола под собственным весом (вздумай инженеры построить подобную пушку на суше). Заодно облегчается наведение установки по азимуту (что необходимо для изменения наклонения орбит). Также пушку легко будет отбуксировать в любое желаемое место на экваторе (оптимальном для запуска космических аппаратов).


Одним из вариантов применения космической пушки может стать доставка ракетного топлива на околоземную орбиту. Пусть в каждом пуске его удастся взять с собой немного, зато низкая стоимость одного выстрела позволит направить вверх целую флотилию снарядов, которые «припаркуются» у станции-заправщика.
От неё уже могут получать своё топливо межпланетные корабли, отправляющиеся к Луне или Марсу. Это снизит, в свою очередь, массу полезной нагрузки, которую необходимо поднимать наверх для реализации таких проектов (иллюстрация John Hunter/Quicklaunch/Google Tech Talks).

А вот то, чего, вероятно, не знал Жюль Верн: достичь приличных скоростей с пороховым зарядом невозможно, сколько его в орудие ни заталкивай. Снаряд не полетит быстрее, чем способны расширяться горячие газы данного состава, а этот параметр зависит от скорости звука в рабочем теле. Именно поэтому некогда были изобретены легкогазовые пушки (Light gas gun): в них снаряд толкает расширяющийся гелий (либо водород). Их низкая молекулярная масса — ключ к успеху. Именно к этому семейству относится космическая пушка от компании Quicklaunch.

Тут надо сказать, что на легкогазовых пушках Хантер собаку съел. В национальной лаборатории Лоуренса в Ливерморе (Lawrence Livermore National Laboratory) он возглавлял проект самой крупной легкогазовой пушки в мире — SHARP (Super High Altitude Research Project), успешно проработавшей с 1992 по 1995 год.

В первой секции (калибром 36 см и длиной 82 м) этой L-образной установки сжигался метан, продукты его сгорания толкали однотонный стальной поршень, который сжимал водород, расположенный по другую свою сторону. Когда давление достигало 4 тысяч атмосфер, разрушался специальный предохранитель, водород поступал во второй ствол (10 см на 47 м), разгоняя в нём снаряд весом в 5 кило до 3 километров в секунду.


После 1995 года пушку SHARP изредка задействовали для испытаний миниатюрных моделей гиперзвуковых аппаратов (фотографии daviddarling.info, astronautix.com, John Hunter/Quicklaunch/Google Tech Talks).

В дальнейшем эту пушку планировали модифицировать, научив её стрелять вверх (вообще-то она лежала горизонтально) и заодно подняв скорость снарядов до 7 км/с, что позволило бы говорить уже о космических запусках. Но эти планы не были реализованы, в основном по финансовым причинам.

Надо заметить, что легкогазовые пушки значительно меньшего размера и со снарядами гораздо меньшей массы добивались и больших скоростей — до 11 км/с. Но тут уж о практическом применении для космических запусков и говорить не приходится, разве что вам вдруг потребуется вывести на орбиту стальную детальку весом в несколько граммов.

Данным орудиям, впрочем, космос никогда и не снился. Изучение обтекания тел на гиперзвуке, поведения материалов при огромных давлениях и температурах (развиваемых в момент удара скоростного снаряда в мишень), моделирование эрозии космических аппаратов при воздействии микрометеоритов и подобные научные опыты — это и есть работа существующих ныне легкогазовых пушек. Чтобы превратить такие в пушки космические, потребовалось заметно пересмотреть их устройство.

Схема новой пушки Хантера: 1 – снаряд, 2 – клапан, 3 – камера сгорания (она же теплообменник), 4 – водород (иллюстрация Popular Science).

В Quicklaunch Хантер избавился от поршня. В новой системе природный газ сгорает внутри специальной камеры-теплообменника, которая окружена второй камерой — с водородом. Тепло передаётся через стенки, в результате чего температура водорода вырастает до 1430 градусов Цельсия.

Как только давление достигнет требуемой величины, специальный сдвижной клапан открывается и горячий водород начинает разгонять снаряд по стволу.

После вылета аппарата на конце ствола немедленно перекрывается диафрагма, сводя к минимуму потери водорода, — его потом снова охладят и сожмут, чтобы использовать в следующем запуске.


Сдвижной клапан показан светло-красным (иллюстрация John Hunter/Quicklaunch/Google Tech Talks).

По расчётам Джона и его соратников, орудие Quicklaunch должно «швырять» 450-килограммовые аппараты со скоростью шесть километров в секунду. И хотя перегрузка при выстреле достигнет 5000 g, уже сейчас вполне реально создавать крошечные спутники, электроника которых переживёт такой старт.

Кроме того, одним из грузов в пушечном запуске могут стать самые простые и не требующие нежного обращения материалы снабжения для космических станций (питьевая вода, в частности).

Траектория подъёма будет довольно пологой, но сильно нагреться от трения о воздух снаряды суперпушки не успеют, так как покинут атмосферу менее чем через 100 секунд. Кроме того, Хантер обдумывает вариант защиты с нанесением на внешнюю поверхность аппаратов сгорающей обмазки.

До первой космической скорости данные аппараты должны разгонятся уже наверху. На высоте 100 км такой снаряд сбросит обтекатели и включит собственный миниатюрный ракетный двигатель.


Схема полёта подкалиберного космического снаряда, выпущенного из пушки Quicklaunch. В данном варианте в атмосфере аппарат защищает сбрасываемая оболочка (иллюстрации John Hunter/Quicklaunch/Google Tech Talks).

То, что снаряд с высокой начальной скоростью без забот преодолеет первый участок пути с плотной атмосферой и даже выйдет в космос, было доказано ещё в 1966 году. Тогда американо-канадская исследовательская суперпушка из проекта