Дипольный момент системы точечных зарядов. Дипольный момент молекулы и связи

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай - полное отсутствие зарядов - нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды - в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему - два равных по величине и противоположных по знаку точечных заряда +q и –q , находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем .

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

Рис. 3.7. Линии напряженности электрического поля электрического диполя

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является . Введем вектор l , направленный от отрицательного заряда (–q ) к положительному (+q ), тогда вектор р , называемый электрическим моментом диполя или просто дипольным моментом , определяется как

Рассмотрим поведение «жесткого» диполя - то есть расстояние которого не меняется - во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F 1 = +qE , а на отрицательный - противоположно направленная и равная F 2 = –qE . Вращающий момент этой пары сил равен

Так как ql = р , то М = рЕ sin или в векторных обозначениях

(Напомним, что символ

означает векторное произведение векторов а и b .) Таким образом, при неизменном дипольном моменте молекулы () механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E .

Под действием момента сил М диполь поворачивается, при этом совершается работа

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е . В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым . Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила F paвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е . Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x , а положительный заряд расположен в точке с координатой х + l . Представим себе, что величина напряженности поля зависит от координаты х . Тогда равнодействующая сила F paвн равна

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x , то

и проекция равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика - керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания - электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

где , - величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором - по всем отрицательным зарядам системы.

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

где l -вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Энергия системы точечных зарядов. Энергия заряженного проводника.

Даже у отдельного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением так что плотность энергии на расстоянии r от заряда равна

За элемент объема можно принять сферический слой толщиной dr, по площади равный 4πr 2 . Полная энергия будет

Энергия заряженного конденсатора. Пусть потенциал обкладки конденсатора, на которой находится заряд +q , равен, а потенциал обкладки, на которой находится заряд -q , равен. Энергия такой системы

Энергию заряженного конденсатора можно представить в виде

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга.

Слева силовые линии диполя, справа - пример диполя (молекула воды).

Дипольный момент - векторная физическая величина, характеризующая электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

Простейшая система зарядов, имеющая ненулевой дипольный момент - это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда н а расстояние между зарядами и направлен от отрицательного заряда к положительному, или:

Где - величина положительного заряда, - вектор с началом в отрицательном заряде и концом в положительном.

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Диэлектрики и их классификация. Определение вектора поляризации и диэлектрической восприимчивости. Поляризация полярных и неполярных диэлектриков.

Диэлектрик (изолятор) - вещество, плохо проводящее электрический ток.

Основное свойство диэлектрика - способность поляризоваться во внешнем электрическом поле.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей под воздействием внешнего электрического поля, других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации называют просто поляризацией.



Диэлектрическая восприимчивость (поляризуемость) вещества - физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χ ε - коэффициент линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:

, где ε 0 - электрическая постоянная; произведение ε 0 χ ε называется абсолютной диэлектрической восприимчивостью .

В случае вакуума χ ε = 0 .

У диэлектриков, как правило, она положительна. Диэлектрическая восприимчивость измеряется в ничём (безразмерная величина).

Ряд диэлектриков проявляют особые физические свойства. К ним относятся пьезоэлектрики (которые могут либо под действием деформации индуцировать электрический заряд на своей поверхности, или наоборот), пироэлектрики (поляризация в отсутствие внешних воздействий), сегнетоэлектрики (обладающие в определённом интервале температур собственным дипольным моментом), и.т.д.

ДИПОЛЬНЫЙ МОМЕНТ электрический, векторная величина, характеризующая асимметрию распределения положит. и отрицат. зарядов в электрически нейтральной системе. Два одинаковых по величине заряда +q и -q образуют электрич. диполь с дипольным моментом m = q l, где l - расстояние между зарядами. Для системы из n зарядов q i радиусы-векторы к-рых r i , В и мол. системах центры положит. зарядов q А совпадают с положениями (радиусы-векторы r A), а электронное распределение описывается плотностью вероятности r (r). В этом случае дипольный момент дипольного момента направлен от центра тяжести отрицат. зарядов к центру тяжести положительных. В хим. литературе дипольному моменту иногда приписывают противоположное направление. Часто вводят представление о дипольных моментах отдельных хим. связей, векторная сумма к-рых дает дипольный момент . При этом дипольный момент связи определяют двумя положит. зарядами ядер , образующих связь, и распределением отрицат. (электронного) заряда. Д ипольный момент хим. связи обусловлен смещением электронного облака в сторону одного из . Связь наз. полярной, если соответствующий дипольный момент существенно отличается от нуля. Возможны случаи, когда отдельные связи в , а суммарный дипольный момент равен нулю; такие наз. неполярными (напр., СО 2 и CCl 4). Если же дипольный момент отличен от нуля, наз. полярной. Напр., Н 2 О полярна; суммирование дипольных моментов двух полярных связей ОН также дает отличный от нуля дипольный момент, направленный по биссектрисе НОН. Порядок величины дипольного момента определяется произведением заряда (1,6 . 10 - 19 Кл) на длину хим. связи (порядка 10 - 10 м), т. е. составляет 10 - 29 Кл . м. В справочной литературе дипольные моменты приводят в дебаях (Д или D), по имени П. Дебая; 1 Д = 3,33564 . 10 - 30 Кл . м. Спектроскопич. методы определения дипольных моментов основаны на эффектах расщепления и сдвига спектральных линий в электрич. поле (). Для линейных и типа симметричного волчка известны точные выражения, связывающие дипольный момент со штарковским расщеплением линий . Этот метод дает наиб. точные значения величины дипольного момента (до 10 - 4 Д), причем экспериментально определяется не только величина, но и направление дипольного момента. Важно, что точность определения дипольного момента почти не зависит от его абс. величины. Это позволило получить весьма точные значения очень малых дипольных моментов ряда , к-рые нельзя надежно определить др. методами. Так, дипольный момент равен 0,085 b 0,001 Д, 0,364 b 0,002 Д, 0,780 b 0,001 Д, 0,375 b 0,01 Д, 0,796 b 0,01 Д. Область применения метода ограничена, однако, небольшими , не содержащими тяжелых элементов. Направление дипольного момента м. б. определено экспериментально и по второго порядка. Др. группа методов определения дипольного момента основана на измерениях диэлектрич. проницаемости е в-ва. Этими методами измерены дипольные моменты более 10 тыс. в-в. Переход от измеряемого значения e , чистой или разбавл. р-ра, т. е. макроскопич. характеристики , к величине дипольного момента основан на теории . Считается, что при наложении электрич. поля на его полная Р (средний дипольный момент единицы объема) складывается из наведенной, или индуцированной, Р м и ориентационной Р ор и связана с m ур-нием Ланжевена - Дебая:

где М - мол. масса, d - плотность, a - , N A - , k - , Т - абс. т-ра. Измерения диэлектрич. проницаемости проводят в постоянном поле или при низких частотах, обеспечивающих полную ориентацию по полю. При наиб. распространенном варианте метода - измерениях в разбавл. р-рах неполярных р-рителей - предполагается аддитивность растворенного в-ва и р-рителя. Сопоставление дипольных моментов нек-рых орг. соед., полученных разными методами, показано в таблице.


Важнейшая область применения данных о дипольных моментах -структурные исследования, установление , конформационного и изомерного состава в-ва, его зависимости от т-ры. Величины дипольных моментов позволяют судить о и зависимости этого распределения от характера отдельных заместителей. В общем случае структурная интерпретация дипольных моментов требует сравнения эксперим. величин со значениями, полученными квантовомех. расчетом либо при помощи аддитивной векторной схемы с использованием дипольных моментов отдельных связей и атомных групп. Последние находят либо по интенсивностям колебат. полос поглощения, либо путем векторного разложения дипольных моментов нек-рых симметричных . Расчеты с использованием векторной аддитивной схемы могут учитывать разл. проявления стереохим. нежесткости, напр., затрудненное или своб. внутр. вращение . Высокосимметричные мол. структуры, обладающие центром , двумя взаимно перпендикулярными осями вращения или осями, перпендикулярными плоскости , не должны иметь дипольных моментов. По наличию или отсутствию дипольного момента можно в отдельных случаях выбрать для нее ту или иную структуру без к.-л. теоретич. расчетов. Так, равенство нулю эксперим. дипольного момента димера аминооксидибутилборана (ф-ла I) служит доказательством того, что он существует в виде устойчивой кресловидной , обладающей центром . Наоборот, наличие дипольного момента у тиантрена (ф-ла II, X = S) и селенантрена (II, X = Se), равных 1,57 Д и 1,41 Д соотв., исключает для них центросимметричную структуру, в частности плоскую.



===
Исп. литература для статьи «ДИПОЛЬНЫЙ МОМЕНТ» : Минкин В. И., Осипов О. А., Жданов Ю. А., Дипольные моменты в . Л., 1968; Осипов О. А., Минкин В. И., Гарновский А. Д., Справочник по дипольным моментам, 3 изд.. М., 1971; Exner О., Dipole moments in organic chemistry, Stuttg., 1975. В. И. Muнкин.

Страница «ДИПОЛЬНЫЙ МОМЕНТ» подготовлена по материалам .

До сих пор предполагалось, что заряды и их поля находятся в вакууме. В последующих параграфах мы рассмотрим, какое влияние на электрическое поле и на взаимодействие электрических зарядов оказывает вещественная среда - проводники и диэлектрики.

Электрический диполь это система, состоящая из двух одинаковых по значению, но разных по знаку точечных заряда (+q,- q), расстояние ℓ между которыми (плечо диполя) значительно меньше расстояния до рассматриваемых точек поля (рис.12.16).

Основной характеристикой диполя является его электрический, или дипольный момент.

Дипольный момент –это вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный произведению заряда │q│ на плечо ℓ.

(12.35)

Единица электрического момента диполя – кулон-метр (Кл۰м).

Если диполь поместить в однородное электростатическое поле напряжён-ностью Е (рис.12.17), то на каждый из его зарядов действует сила: на положительныйF + = +qE, на отрицательный F - = - qE. Эти силы равны по модулю, но противоположны по направлению. Они образуют пару сил, плечо которой ℓsinα, и создают момент пары сил М. Вектор
направлен перпендикулярно векторами(см.рис. – на нас). Модуль
определяется соотношениемM=qEℓsinα, где α – угол между векторами и.

M=qEℓsinα=рЕsinα

или в векторной форме

(12.36)

Таким образом, на диполь в однородном электрическом поле действует вращающий момент, зависящий от электрического момента, ориентации диполя в поле и напряжённость поля.

В однородном поле момент пары сил стремится повернуть диполь так, чтобы векторы ии были параллельны.

§ 12.6 Поле диполя

Определим напряжённость электростатического поля в точке, лежащей посередине на оси диполя (рис.12.18). Напряжённость поля в точке О равна векторной сумме напряжённостейи, создаваемых положительным и отрицательным зарядом в отдельности.

На оси диполя между зарядами -q и +q векторы напряжённости инаправлены в одну сторону, поэтому результирующая напряжённость по модулю равна их сумме.

Если же находить напряжённость поле в точке А, лежащей на продолжении оси диполя (рис.12.18), то векторы ибудут направлены в разные стороны и результирующая напряжённость по модулю равна их разности:

(r - расстояние между средней точкой диполя и точкой, лежащей на оси диполя, в которой определяется напряжённость поля).

Пренебрегая в знаменателе величиной , так какr >>ℓ получим

(р- электрический момент диполя).

Напряжённость поля в точке С, лежащей на перпендикуляре, восстановленном из средней точки диполя (рис.12.19). Так как расстояние от зарядов +q и - q до точки В одинаковое r 1 = r 2 , то

Вектор результирующей напряжённости в точке В по модулю равен

Из рисунка видно, что
, тогда

Напряжённость поля диполя в произвольной точке определяется по формуле

(12.39)

(р- электрический момент диполя, r - расстояние от центра диполя до точки, в которой определяется напряжённость поля, α - угол между радиус-вектором r и плечом диполя ℓ).


Дипольный момент электрический, векторная величина, характеризующая асимметрию распределения положительных и отрицательных зарядов в электрически нейтральной системе. Два одинаковых по величине заряда +q и -q образуют электрический диполь с дипольный момент m = q l, где l - расстояние между зарядами. Для системы из n зарядов q i радиусы-векторы которых r i , В и молекулярных системах центры положительных зарядов q А совпадают с положениями (радиусы-векторы r A), а электронное распределение описывается плотностью вероятности r(r ).

В этом случае дипольный момент Вектор дипольный момент направлен от центра тяжести отрицательных зарядов к центру тяжести положительных. В хим. литературе дипольный момент молекулы иногда приписывают противоположное направление. Часто вводят представление о дипольный момент отдельных хим. связей, векторная сумма которых дает дипольный момент молекулы. При этом дипольный момент связи определяют двумя положительными зарядами ядер атомов, образующих связь, и распределением отрицательного (электронного) заряда.

Дипольный момент химической связи обусловлен смещением электронного облака в сторону одного из атомов. Связь называют полярной, если соответствующий дипольный момент существенно отличается от нуля. Возможны случаи, когда отдельные связи в . а суммарный дипольный момент молекулы равен нулю; такие молекулы наз. неполярными (напр., молекулы СО 2 и CCl 4). Если же дипольный момент молекулы отличен от нуля, молекула наз. полярной. Напр., молекула Н 2 О полярна; суммирование дипольных моментов двух полярных связей ОН также дает отличный от нуля дипольный момент, направленный по биссектрисе НОН.

Порядок величины дипольный момент молекулы определяется произведением заряда (1,6.10 - 19 Кл) на длину химической связи (порядка 10 - 10 м), т. е. составляет 10 - 29 Кл.м. В справочной литературе дипольный момент молекул приводят в дебаях (Д или D), по имени П. Дебая; 1 Д = 3,33564.10 - 30 Кл.м.

Спектроскопические методы определения дипольного момента молекул основаны на эффектах расщепления и сдвига спектральных линий в электрическом поле (эффект Штарка). Для линейных молекул и молекул типа симметричного волчка известны точные выражения, связывающие дипольный момент со штарковским расщеплением линий . Этот метод дает наиб. точные значения величины дипольный момент (до 10 - 4 Д), причем экспериментально определяется не только величина, но и направление вектора дипольный момент Важно, что точность определения дипольный момент почти не зависит от его абсолютной величины. Это позволило получить весьма точные значения очень малых дипольный момент ряда молекул . которые нельзя надежно определить другими методами. Так, дипольный момент равен 0,085 b 0,001 Д, 0,364 b 0,002 Д, пропина 0,780 b 0,001 Д, толуола 0,375 b 0,01 Д, азулена 0,796 b 0,01 Д. Область применения метода микроволновой спектроскопии ограничена, однако, небольшими молекулами, не содержащими тяжелых элементов. Направление вектора дипольный момент молекулы может быть определено экспериментально и по эффекту Зеемана второго порядка.

Другая группа методов определения дипольных моментов основана на измерениях диэлектрической проницаемости ε вещества. Этими методами измерены дипольные моменты молекул более 10 тыс. веществ. Переход от измеряемого значения ε газа, чистой жидкости или разбавленного раствора, то есть макроскопической характеристики диэлектрика, к величине дипольного момента основан на теории поляризации диэлектриков. Считается, что при наложении электрического поля на диэлектрик его полная поляризация Р (средний дипольный момент единицы объема) складывается из наведенной, или индуцированной, поляризации Р м и ориентационной поляризации Р ор и связана с m ур-нием Ланжевена - Дебая:

где М - мол. масса, d - плотность, a - поляризуемость молекулы, N A - число Авогадро, k - постоянная Больцмана, Т - абсолютная температура. Измерения диэлектрической проницаемости проводят в постоянном поле или при низких частотах, обеспечивающих полную ориентацию молекул по полю. При наиболее распространенном варианте метода - измерениях в разбавленных растворах неполярных растворителей - предполагается аддитивность поляризаций растворенного вещества и растворителя.

Сопоставление дипольных моментов полярных молекул некоторых органических соединений, полученных разными методами, показано в таблице.

Важнейшая область применения данных о дипольных моментах молекул - структурные исследования, установление конформации молекул, конформационного и изомерного состава вещества, его зависимости от температуры. Величины дипольного момента молекул позволяют судить о распределении электронной плотности в и зависимости этого распределения от характера отдельных заместителей. В общем случае структурная интерпретация дипольный момент требует сравнения экспериментальных величин со значениями, полученными квантово-механическим расчетом либо при помощи аддитивной векторной схемы с использованием дипольных моментов отдельных связей и атомных групп. Последние находят либо по интенсивностям колебательных полос поглощения, либо путем векторного разложения дипольный момент некоторых симметричных молекул. Расчеты с использованием векторной аддитивной схемы могут учитывать различные проявления стереохимической нежесткости, например, затрудненное или свободной внутреннее вращение молекулы. Высокосимметричные молекулярные структуры, обладающие центром инверсии, двумя взаимно перпендикулярными осями вращения или осями, перпендикулярными плоскости симметрии, не должны иметь дипольный момент. По наличию или отсутствию дипольного момента молекулы можно в отдельных случаях выбрать для нее ту или иную структуру без каких-либо теоретических расчетов. Так, равенство нулю экспериментального дипольный момент димера аминооксидибутилборана (формула I) служит доказательством того, что он существует в виде устойчивой кресловидной конформации, обладающей центром инверсии. Наоборот, наличие дипольный момент у тиантрена (формула II, X = S) и селенантрена (II, X = Se), равных 1,57 Д и 1,41 Д соотв., исключает для них центросимметричную структуру, в частности плоскую.