Адипиновая кислота. Свойства и применение

Адипи́новая кислота́ (гександио́вая кислота ) НООС(СН 2) 4 СООН - двухосновная предельная карбоновая кислота . Обладает всеми химическими свойствами, характерными для карбоновых кислот .

Образует соли, большинство из которых растворимо в воде.

Получение

Промышленное получение

В промышленности адипиновую кислоту получают главным образом двухстадийным окислением циклогексана . На первой стадии (жидкофазное окисление воздухом при 142-145 °C и 0,7 МПа) получают смесь циклогексанона и циклогексанола :

\mathsf{2C_6H_{12} \xrightarrow [-H_2O]{3/2O_2,t,p,kat:Co(C_{17}H_{35}COO)_2} C_6H_{11}OH + C_6H_{10}O}

Органическое вещество следует приливать к окислителю по каплям, поскольку при этой реакции выделяется много тепла.

Другие возможные способы получения

Адипиновую кислоту можно получить также следующими способами:

  • Окислением циклогексана 50-70%-ной HNO 3 при 100-200 °C и 0,2-1,96 МПа или N 2 O 4 при 50 °C:

\mathsf{C_6H_{12} + 2,5O_2 \xrightarrow{t,HNO_3/N_2O_4} COOH(CH_2)_4COOH + H_2O}

  • Окислением циклогексанона озоном или HNO 3:

\mathsf{C_6H_{10}O \xrightarrow{O_3/HNO_3} COOH(CH_2)_4COOH}

  • Из ТГФ по схеме:

Применение

Адипиновая кислота - сырьё в производстве полигексаметиленадипинамида (~90 % всей производимой кислоты), её эфиров, полиуретанов ; пищевая добавка E355 для придания кислого вкуса пищевым продуктам (в частности, в производстве безалкогольных напитков). Является основным компонентом различных средств для химического удаления накипи .

Используется также для удаления остаточного клеящего материала после заполнения швов между керамическими облицовочными плитками.

Мировое производство

Мировое производство адипиновой кислоты - свыше 2,6 млн т/год (по состоянию на 2012 год) .

Литература

  1. Имянитов Н. С, Рахлина Е. Н. / Новый способ производства адипиновой кислоты. // Химическая промышленность. 1987. - № 12. - С. 708-711.

См. также

Напишите отзыв о статье "Адипиновая кислота"

Литература

  • Кнунянц И. Л. и др. т.1 А-Дарзана // Химическая энциклопедия. - М .: Советская энциклопедия, 1988. - 623 с. - 100 000 экз.

Примечания

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907.

Отрывок, характеризующий Адипиновая кислота

Уже было начало июня, когда князь Андрей, возвращаясь домой, въехал опять в ту березовую рощу, в которой этот старый, корявый дуб так странно и памятно поразил его. Бубенчики еще глуше звенели в лесу, чем полтора месяца тому назад; всё было полно, тенисто и густо; и молодые ели, рассыпанные по лесу, не нарушали общей красоты и, подделываясь под общий характер, нежно зеленели пушистыми молодыми побегами.
Целый день был жаркий, где то собиралась гроза, но только небольшая тучка брызнула на пыль дороги и на сочные листья. Левая сторона леса была темна, в тени; правая мокрая, глянцовитая блестела на солнце, чуть колыхаясь от ветра. Всё было в цвету; соловьи трещали и перекатывались то близко, то далеко.
«Да, здесь, в этом лесу был этот дуб, с которым мы были согласны», подумал князь Андрей. «Да где он», подумал опять князь Андрей, глядя на левую сторону дороги и сам того не зная, не узнавая его, любовался тем дубом, которого он искал. Старый дуб, весь преображенный, раскинувшись шатром сочной, темной зелени, млел, чуть колыхаясь в лучах вечернего солнца. Ни корявых пальцев, ни болячек, ни старого недоверия и горя, – ничего не было видно. Сквозь жесткую, столетнюю кору пробились без сучков сочные, молодые листья, так что верить нельзя было, что этот старик произвел их. «Да, это тот самый дуб», подумал князь Андрей, и на него вдруг нашло беспричинное, весеннее чувство радости и обновления. Все лучшие минуты его жизни вдруг в одно и то же время вспомнились ему. И Аустерлиц с высоким небом, и мертвое, укоризненное лицо жены, и Пьер на пароме, и девочка, взволнованная красотою ночи, и эта ночь, и луна, – и всё это вдруг вспомнилось ему.
«Нет, жизнь не кончена в 31 год, вдруг окончательно, беспеременно решил князь Андрей. Мало того, что я знаю всё то, что есть во мне, надо, чтобы и все знали это: и Пьер, и эта девочка, которая хотела улететь в небо, надо, чтобы все знали меня, чтобы не для одного меня шла моя жизнь, чтоб не жили они так независимо от моей жизни, чтоб на всех она отражалась и чтобы все они жили со мною вместе!»

Возвратившись из своей поездки, князь Андрей решился осенью ехать в Петербург и придумал разные причины этого решенья. Целый ряд разумных, логических доводов, почему ему необходимо ехать в Петербург и даже служить, ежеминутно был готов к его услугам. Он даже теперь не понимал, как мог он когда нибудь сомневаться в необходимости принять деятельное участие в жизни, точно так же как месяц тому назад он не понимал, как могла бы ему притти мысль уехать из деревни. Ему казалось ясно, что все его опыты жизни должны были пропасть даром и быть бессмыслицей, ежели бы он не приложил их к делу и не принял опять деятельного участия в жизни. Он даже не понимал того, как на основании таких же бедных разумных доводов прежде очевидно было, что он бы унизился, ежели бы теперь после своих уроков жизни опять бы поверил в возможность приносить пользу и в возможность счастия и любви. Теперь разум подсказывал совсем другое. После этой поездки князь Андрей стал скучать в деревне, прежние занятия не интересовали его, и часто, сидя один в своем кабинете, он вставал, подходил к зеркалу и долго смотрел на свое лицо. Потом он отворачивался и смотрел на портрет покойницы Лизы, которая с взбитыми a la grecque [по гречески] буклями нежно и весело смотрела на него из золотой рамки. Она уже не говорила мужу прежних страшных слов, она просто и весело с любопытством смотрела на него. И князь Андрей, заложив назад руки, долго ходил по комнате, то хмурясь, то улыбаясь, передумывая те неразумные, невыразимые словом, тайные как преступление мысли, связанные с Пьером, с славой, с девушкой на окне, с дубом, с женской красотой и любовью, которые изменили всю его жизнь. И в эти то минуты, когда кто входил к нему, он бывал особенно сух, строго решителен и в особенности неприятно логичен.
– Mon cher, [Дорогой мой,] – бывало скажет входя в такую минуту княжна Марья, – Николушке нельзя нынче гулять: очень холодно.
– Ежели бы было тепло, – в такие минуты особенно сухо отвечал князь Андрей своей сестре, – то он бы пошел в одной рубашке, а так как холодно, надо надеть на него теплую одежду, которая для этого и выдумана. Вот что следует из того, что холодно, а не то чтобы оставаться дома, когда ребенку нужен воздух, – говорил он с особенной логичностью, как бы наказывая кого то за всю эту тайную, нелогичную, происходившую в нем, внутреннюю работу. Княжна Марья думала в этих случаях о том, как сушит мужчин эта умственная работа.

Князь Андрей приехал в Петербург в августе 1809 года. Это было время апогея славы молодого Сперанского и энергии совершаемых им переворотов. В этом самом августе, государь, ехав в коляске, был вывален, повредил себе ногу, и оставался в Петергофе три недели, видаясь ежедневно и исключительно со Сперанским. В это время готовились не только два столь знаменитые и встревожившие общество указа об уничтожении придворных чинов и об экзаменах на чины коллежских асессоров и статских советников, но и целая государственная конституция, долженствовавшая изменить существующий судебный, административный и финансовый порядок управления России от государственного совета до волостного правления. Теперь осуществлялись и воплощались те неясные, либеральные мечтания, с которыми вступил на престол император Александр, и которые он стремился осуществить с помощью своих помощников Чарторижского, Новосильцева, Кочубея и Строгонова, которых он сам шутя называл comite du salut publique. [комитет общественного спасения.]
Теперь всех вместе заменил Сперанский по гражданской части и Аракчеев по военной. Князь Андрей вскоре после приезда своего, как камергер, явился ко двору и на выход. Государь два раза, встретив его, не удостоил его ни одним словом. Князю Андрею всегда еще прежде казалось, что он антипатичен государю, что государю неприятно его лицо и всё существо его. В сухом, отдаляющем взгляде, которым посмотрел на него государь, князь Андрей еще более чем прежде нашел подтверждение этому предположению. Придворные объяснили князю Андрею невнимание к нему государя тем, что Его Величество был недоволен тем, что Болконский не служил с 1805 года.
«Я сам знаю, как мы не властны в своих симпатиях и антипатиях, думал князь Андрей, и потому нечего думать о том, чтобы представить лично мою записку о военном уставе государю, но дело будет говорить само за себя». Он передал о своей записке старому фельдмаршалу, другу отца. Фельдмаршал, назначив ему час, ласково принял его и обещался доложить государю. Через несколько дней было объявлено князю Андрею, что он имеет явиться к военному министру, графу Аракчееву.
В девять часов утра, в назначенный день, князь Андрей явился в приемную к графу Аракчееву.
Лично князь Андрей не знал Аракчеева и никогда не видал его, но всё, что он знал о нем, мало внушало ему уважения к этому человеку.
«Он – военный министр, доверенное лицо государя императора; никому не должно быть дела до его личных свойств; ему поручено рассмотреть мою записку, следовательно он один и может дать ход ей», думал князь Андрей, дожидаясь в числе многих важных и неважных лиц в приемной графа Аракчеева.
Князь Андрей во время своей, большей частью адъютантской, службы много видел приемных важных лиц и различные характеры этих приемных были для него очень ясны. У графа Аракчеева был совершенно особенный характер приемной. На неважных лицах, ожидающих очереди аудиенции в приемной графа Аракчеева, написано было чувство пристыженности и покорности; на более чиновных лицах выражалось одно общее чувство неловкости, скрытое под личиной развязности и насмешки над собою, над своим положением и над ожидаемым лицом. Иные задумчиво ходили взад и вперед, иные шепчась смеялись, и князь Андрей слышал sobriquet [насмешливое прозвище] Силы Андреича и слова: «дядя задаст», относившиеся к графу Аракчееву. Один генерал (важное лицо) видимо оскорбленный тем, что должен был так долго ждать, сидел перекладывая ноги и презрительно сам с собой улыбаясь.
Но как только растворялась дверь, на всех лицах выражалось мгновенно только одно – страх. Князь Андрей попросил дежурного другой раз доложить о себе, но на него посмотрели с насмешкой и сказали, что его черед придет в свое время. После нескольких лиц, введенных и выведенных адъютантом из кабинета министра, в страшную дверь был впущен офицер, поразивший князя Андрея своим униженным и испуганным видом. Аудиенция офицера продолжалась долго. Вдруг послышались из за двери раскаты неприятного голоса, и бледный офицер, с трясущимися губами, вышел оттуда, и схватив себя за голову, прошел через приемную.

Адипиновой кислотой называется пищевая добавка, причисляемая к группе антиоксидантов. Если говорить о ней с физической точки зрения, то вещество представляет собой кристаллы, не имеющие цвета. С химической точки зрения добавка обладает всеми свойствами, которые характерны для карбоновых кислот. Способна образовывать соли, которые обладают высокой степенью растворения в воде. Этот антиоксидант может иметь синтетическое или природное происхождение. Адипиновая кислота обладает способностью защищать продукты питания от порчи, прогоркания, процессов окисления. Какой класс опасности адипиновой кислоты? Класс опасности адипиновой кислоты второй.

Сфера применения

Европейским союзом адипиновая кислота утверждена как пищевая добавка, которая разрешена к использованию в производстве пищевых продуктов. Однако данное вещество еще полностью не изучено, в связи с этим точный статус неизвестен. Именно поэтому его применение в некоторых странах попросту запрещено ввиду возможного ее вреда для человеческого здоровья.

В природной среде кислота содержится в сахарном тростнике и соке сахарной свеклы. В промышленных целях ее получают путем химического синтеза из циклогексана. Данный метод является одним из наиболее популярных.

Сферы применения:

  • в качестве пищевой добавки под номером Е355 с целью придания продуктам питания кислого вкуса, в том числе во время производства безалкогольных напитков;
  • в качестве сырья при производстве полигексаметиленадипинамида, ее эфиров и полиуретанов;
  • с целью удаления остатков материала, которые остаются после заполнения швов, образующихся между керамическими плитками;
  • как основной ингредиент средств, которые предназначены для удаления накипи;
  • с целью получения промежуточных продуктов синтеза;
  • в оттеночных ополаскивателях и иных средствах для окрашивания волос;
  • в качестве смазочных масел и пластификаторов, поскольку обладает высокой степенью этерификации в ди- и моноэфиры, образует полиэфиры с гликолями.

На территории государств, где данная пищевая добавка признана пригодной для применения, она используется как регулятор кислотности во время изготовления напитков, карамельных конфет, иных продуктов питания с целью поддержания необходимого уровня водородного показателя. Добавляется в некоторые виды ароматизированных сухих десертов, однако только в строго установленном количестве, которое не должно превосходить 1 г на килограмм готового продукта. В порошковых смесях с целью приготовления напитков допускается до четырех грамм кислоты на килограмм продукта, в желеобразных десертах – не более шести грамм на килограмм продукта. Часто используется как добавка в начинку для кондитерских и хлебобулочных изделий.

Вред или польза?

Многие среди пищевых добавок, как и любое вещество при превышении допустимой дозы, способны нанести ущерб человеческому здоровью. И этот факт не требует доказательств. Воздействие разнообразных добавок на человека обусловлено индивидуальными особенностями, количеством используемого вещества. Исследования, которые проводятся в сфере влияния антиоксиданта на человеческий организм, еще не завершены.

Популярные статьи Читать больше статей

02.12.2013

Все мы много ходим в течение дня. Даже если у нас малоподвижный образ жизни, мы все равно ходим – ведь у нас н...

605131 65 Подробнее

10.10.2013

Пятьдесят лет для представительниц прекрасного пола – это своеобразный рубеж, перешагнув который каждая вторая...

444583 117 Подробнее

02.12.2013

В наше время бег уже не вызывает массу восторженных отзывов, как это было лет тридцать назад. Тогда общество б...

354689 41 Подробнее

а) В промышленности адипиновую кислоту получают главным образом двухстадийным окислением циклогексана. На первой стадии (жидкофазное окисление воздухом при 142-145°С и 0,7 МПа) получают смесь циклогексанона и циклогексанола, разделяемую ректификацией. Циклогексанон используют для производства капролактама. Циклогексанол окисляют 40-60%-ной HNO 3 при 55°С (катализатор NH 4 VO 3); выход адипиновой кислоты 95%.

б) окислением циклогексена озоном или HNO 3 ;

в) из ТГФ по схеме:

г) карбонилированием ТГФ в ангидрид адипиновой кислоты, из которого действием Н2О получают кислоту.

Метод получения 1. (лабораторный синтез)

В 5-литровую круглодонную колбу, снабженную механической мешалкой, термометром и делительной воронкой емкостью 1 л, помешают 2100 г (16,6 моль) 50%-ной азотной кислоты (уд. вес 1,32; в вытяжном шкафу). Кислоту нагревают почти до кипения и добавляют 1 г ванадата аммония. Пускают в ход мешалку и медленно через делительную воронку добавляют 500 г (5 моль) циклогексанола. Сперва добавляют 40-50 капель циклогексанола и реакционную смесь размешивают до начала реакции (4-5 мин.), что становится заметным по выделению окислов азота (весьма важно, чтобы окисление началось до того, как будет прибавлено значительное количество циклогексанола, в противном случае реакция может стать бурной. Необходимо вести реакцию в хорошо действующем вытяжном шкафу.). Затем реакционную колбу помещают в баню со льдом и содержимое колбы охлаждают до тех пор, пока температура смеси не достигнет 55-60°С. После этого как можно скорее прибавляют циклогексанол, поддерживая температуру в пределах, указанных выше. К концу окисления (после того как прибавлено 475 г циклогексанола) ледяную баню удаляют; иногда колбу приходится даже нагревать для того, чтобы поддерживать необходимую температуру и чтобы избежать циклизации адипиновой кислоты.

Перемешивание продолжают еще 1 час после прибавления всего количества циклогексанола. Затем смесь охлаждают до 0°С, адипиновую кислоту фильтруют с отсасыванием, промывают 500 мл ледяной воды и сушат на воздухе в течение ночи.

Выход белых кристаллов с т. пл. 146-149°С составляет 395-410 г. Выпариванием маточных растворов можно получить еще 30-40 г продукта с т. пл. 141-144°С (в смеси с глутаровой и янтарной кислотами). Общий выход сырой адипиновой кислоты: 425-440г, или 58-60% от теоретического выхода. Полученный продукт для большинства целей достаточно чист; однако более чистый продукт может быть получен перекристаллизацией сырой адипиновой кислоты из 700 мл концентрированной азотной кислоты уд. веса 1,42. Потери при очистке составляют около 5%. Перекристаллизованная адипиновая кислота плавится при 151-152 С.



Примечания.

1. Имеется предположение не применять катализатора, если температуру реакционной смеси, после начала реакции, поддерживать при 85-900 (Хартман, частное сообщение).

2. Применялся технический циклогексанол, практически не содержащий фенола. Более 90% продукта кипело в пределах 158-1630.

3. Весьма важно, чтобы окисление началось до того, как будет прибавлено значительное количество циклогексанола, в противном случае реакция может стать бурной. Необходимо ваести реакцию в хорошо действующем вытяжном шкафу.

4. Азотнокислые маточные растворы содержат значительные количества адипиновой кислоты в смеси с глутаровой и янтарной кислотами. Оказалось, что разделение этих кислот кристаллизацией практически нецелесообразно. Однако, если азотную кислоту удалить выпариванием, а оставшуюся смесь кислот этерифицировать этиловым спиртом,то можно получить смесь этиловых эфиров янтарной (т. кип. 121-1260/20мм), глутаровой (т. кип. 133-1380/20мм) и адипиновой т. кип. (142-1470/20мм) кислоты. Эти сложные эфиры можно успешно разделить перегонкой.

5. Следующая видоизмененная пропись может дать лучший выход. В 3-хлитровую колбу, снабженную мешалкой, обратным холодильником и капелоьной воронкой, укрепленными в асбестовых пробках, пропитанных жидким стеклом, помещают 1900мл 50%-ной азотной кислоты (1262мл азотной кислоты уд. веса 1,42, разбавленной до 1900мл) и 1г ванадата аммония. Колбу помещают на водяную баню, нагретую до 50-600, и очень медленно, при работающей мешалке, прибавляют 357г (3,5мол.) технического циклогексанола таким образом, чтобы температура бани поддерживалась при 50-600. Эта операция продолжается 6-8ч. Реакцию завершают нагреванием водяной бани до кипения, пока не прекратится выделение окислов азота (около 1 часа). Горячую реакционную смесь сливают с помощью сифона и дают ей охладиться. Выход сырой адипиновой кислоты: 372г (72% теоретич.).

Асбестовые пробки, пропитанные жидким стеклом, приготовляют из тонкого асбестового листа, нарезанного в полоски шириной 2,5см. Полоски смачивают раствором жидкого стекла и затем наматывают, например, на форштосс холодильника до получения пробки нужного размера. После сборки прибора пробки покрывают жидким стеклом и оставляют для затвердевания на ночь.

6. Азотнокислые маточные растворы после кристаллизации могут заменять часть свежей кислоты в последующих операциях окисления.

7. Адипиновую кислоту можно также перекристаллизовать из 2,5-кратного (по весу) количества воды или 50%-ного спирта. Однако эти растворители дают менее удовлетворительные результаты, чем азотная кислота.

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегиды и кетоны представляют собой соединения, функциональной группой которых является карбонильная группа. В альдегидах карбонильная группа связана с углеводородным остатком и атомом водорода, а в кетонах – с двумя углеводородными остатками.

альдегиды

В зависимости от строения углеводородных остатков альдегиды и кетоны подразделяют на насыщенные, ненасыщенные и ароматические. В ароматических альдегидах и кетонах карбонильный атом углерода связан непосредственно с ароматическим кольцом.

Первые члены гомологического ряда насыщенных альдегидов имеют тривиальные названия:

СН3 СН2 СН2 СН2 СН=О валериановый альдегид и т.д.

Для альдегидов других типов и для некоторых кетонов также используются тривиальные названия, например:

CH2 =CHCH=O

акролеин (акриловый альдегид)

CH3 CH=CHCH=O

кротоновый альдегид

коричный альдегид

бензальдегид

CH3 C

C CH2 CH3

www.mitht.ru/e-library

ацетон ацетофенон пропиофенон бензофенон

1. Способы получения

1.1. Окисление алкенов

1.1.1. Озонолиз алкенов

При озонировании алкенов и последующем разложении озонида водой образуются карбонильные соединения. В зависимости от строения алкена образуется либо одно карбонильное соединение (если алкен симметричный), либо смесь двух карбонильных соединений. При получении этим способом альдегидов гидролиз озонида проводят в присутствии цинка, который предотвращает возможное окисление альдегида образующейся при гидролизе перекисью водорода. Для получения, например, бензальдегида можно подвергнуть озонолизу стильбен (1,2-дифенилэтен).

стильбен

2-Бутанон можно получить при озонолизе 3,4-диметил-3- гексена.

1. O3

CH3 CH2

C=CCH2 CH3

2 CH3 CH2

2. H2 O

1.1.2. Окисление алкенов в присутствии хлорида палладия

www.mitht.ru/e-library

В промышленности простейшие альдегиды и кетоны получают окисление алкенов кислородом в присутствии дихлорида палладия в качестве катализатора. Так, при окислении этилена получают уксусный альдегид, а при окислении пропена – ацетон:

CH2 =CH2 CH3 CH=O

PdCl2

CH3 CH=CH2 CH3 CCH3

PdCl2 O

1.2. Гидратация алкинов

При гидратации по Кучерову ацетилена образуется уксусный альдегид, в то время как гидратация других алкинов приводит к кетонам, причем только в случае алкинов с концевой тройной связью и симметричных диалкилацетиленов образуется один продукт, а при гидратации несимметричных диалкилацетиленов – смесь двух продуктов. Проиллюстрируем это на трех примерах:

CHCH CH2 =CHOHCH3 CH=O

HgSO4 , H2 SO4

CH3 C

C=CH2

CCH3

HgSO4 , H2 SO4

CH3 C=CHCH2 CH3

CH3 CCH2 CH2 CH3

CH3 C

CCH2 CH3

CH3 CH=CCH2 CH3

CH3 CH2

CCH2 CH3

www.mitht.ru/e-library

1.3. Получение ароматических альдегидов и кетонов ацилированием аренов

Ароматические кетоны получают ацилированием аренов по Фриделю-Крафтсу. Ацилирующими реагентами могут быть как хлорангидриды карбоновых кислот, так и ангидриды карбоновых кислот, но и в том, и в другом случае используется электрофильный катализатор – трихлорид алюминия, поскольку реакция протекает как электрофильное замещение.

AlCl3

AlCl3

Бензальдегид, как и другие ароматические альдегиды нельзя получить таким образом, поскольку галогеноангидридов и ангидрида муравьиной кислоты не существует. Поэтому для синтеза ароматических альдегидов арены формилируют (т.е. вводят в качестве ацила формильную группу) с помощью других реагентов: либо по Гаттерману – Коху действием смеси монооксида углерода и хлороводорода в присутствии трихлорида алюминия, либо по Гаттерману действием смеси циановодорода и хлороводорода в присутствии трихлорида алюминия.

H HCN, HCl

AlCl3

AlCl3

1.4. Гидролиз геминальных дигалогенидов

Альдегиды и кетоны можно получать гидролизом геминальных дигалогенопроизводных. Образующиеся при гидролизе геминальные диолы представляют собой крайне неустойчивые соединения, которые превращаются в соответствующее карбонильное соединение с отщеплением молекулы воды.

www.mitht.ru/e-library

Используя этот способ получения, можно превратить толуол в бензальдегид следующим образом:

CH 3 2Cl

CHCl2

1.5. Окисление и дегидрирование спиртов до альдегидов и кетонов

При окислении или дегидрировнии первичных спиртов образуются альдегиды, из вторичных спиртов – кетоны (см. Химические свойства спиртов).

В качестве примеров приведем получение бензальдегида дегидрированием бензилового спирта и получение ацетона окислением дихроматом калия в серной кислоте изопропилового спирта.

CH2 OHCu, t

CHCH3

K2 Cr2 O7

CH3 CCH3

H2 SO4

1.6. Получение альдегидов и кетонов из карбоновых кислот и их производных

1.6.1. Восстановление ацилгалогенидов до альдегидов

Альдегиды получают гидрированием галогенангидридов карбоновых кислот на частично дезактивированном («отравленном») палладии (реакция Розенмунда).

1.6.2. Пиролиз кальциевых солей карбоновых кислот

www.mitht.ru/e-library

При нагревании кальциевых солей карбоновых кислот образуются кетоны симметричного строения.

CaCO3

Если пиролизу подвергнуть смешанную кальциевую соль двух различных карбоновых кислот, то продуктом реакции окажется несимметричный кетон. Например, смешанная кальциевая соль уксусной и фенилуксусной кислот при пиролизе превращается в бензилметилкетон, а из соли муравьиной и бензойной кислот можно получить бензальдегид.

CH2 CO

OCCH3

CH2 C CH3

CaCO3

O Ca 2

O Ca 2

Этим методом удобно получать циклические кетоны с размером цикла от 5 до 7 атомов углерода пиролизом кальциевых солей соответствующих дикарбоновых кислот. Например, циклопентанон образуется из адипината кальция:

адипинат кальция

1.6.3. Синтез кетонов из нитрилов карбоновых кислот реакцией Гриньяра

www.mitht.ru/e-library

В нитрилах карбоновых кислот атом углерода цианогруппы является электрофильным центром, к которому могут присоединяться нуклеофильные реактивы Гриньяра. Продукт этого присоединения при гидролизе превращается в так называемый имин, который далее гидролизуется до кетона.

R C=NMgX H 2 O

H 2 O R C=O

NH 3

Так, например, ацетофенон (метилфенилкетон) можно получить взаимодействием ацетонитрила (нитрила уксусной кислоты) и фенилмагнийбромида с последующим гидролизом.

CH C=NMgBr 2H 2 O

Возможен и другой вариант синтеза ацетофенона реакцией Гриньяра: из бензонитрила (нитрила бензойной кислоты) и метилмагнийиодида.

2. Химические свойства

Химическое поведение альдегидов и кетонов обусловлено наличием очень полярной карбонильной группы (дипольный момент связи С=О около 2,5 D).

R + _

R" C O

Относительно большой частичный положительный заряд на атоме углерода придает альдегидам и кетонам электрофильные свойства, поэтому основной тип реакций этого класса соединений –

нуклеофильное присоединение (Ad N ) по карбонильной группе.

2.1. Кислотно-основные свойства и кето-енольная таутомерия

www.mitht.ru/e-library

Альдегиды и кетоны, имеющие в α-положении к карбонильной группе хотя бы один атом водорода, проявляют заметныекислотные свойства (рКа ~20), поскольку сопряженное основание стабилизировано р-π-сопряжением.

граничные структуры сопряженного основания

Для таких альдегидов и кетонов возможна кето-енольная таутомерия. Кето-енольная таутомерия – это явление, связанное с существованием вдинамическом равновесии двух (или более) структурных изомеров, отличающихся расположением атома водорода – или у атома углерода в α-положении, или у атома кислорода

– и распределением π-электронной плотности – или между атомами углерода и кислорода карбонильной группы, или между карбонильным атомом углерода и α-атомом углерода. Это явление легко понять, если представить себе процесс протонирования сопряженного основания: а именно, протон может присоединиться как к атому углерода, от которого он был оторван основанием В, так и к атому кислорода, на котором во второй граничной структуре сопряженного основания локализован отрицательный заряд.

альдегид или кетон

Положение кето-енольного равновесия зависит от строения карбонильного соединения. Для обычных альдегидов и кетонов оно сильно сдвинуто в сторону значительно более термодинамически устойчивой карбонильной формы. Так, в обычных условиях в кетоенольном равновесии для такого кетона, как ацетон, содержится всего лишь 2,4∙10-4 % енола.

CH 3 C O CH2 =C OH

CH3 CH3

www.mitht.ru/e-library

При возможности стабилизации енольной формы ее содержание в равновесии может быть и значительно больше. Ацетоуксусный эфир (этиловый эфир 3-оксобутановой кислоты) в обычных условиях представляет собой смесь кетонной и енольной форм, в которой представлено около 7% последней. По сравнению с ацетоном это почти в 30000 раз больше, что объясняется термодинамической стабилизацией енольной формы в результате образования обширной системы р-π-π-сопряжения и внутримолекулярной водородной связи.

CH 3C CH 2C OC 2H 5 CH 3C CH C OC 2H 5

O H O

Если в α-положении к карбонильной группе атомы водорода отсутствуют, то такой альдегид или кетон заметных кислотных свойств не проявляет, и, разумеется, кето-енольная таутомерия для такого альдегида или кетона невозможна. Например, формальдегид или бензальдегид не имеют в α-положении к карбонильной группе атомов водорода (в формальдегиде вообще нет α- положения), поэтому кислотность этих соединений чрезвычайно мала, и кето-енольной таутомерии для них нет.

Основность альдегидов и кетонов обусловлена относительной доступностью неподеленной пары электронов атома кислорода карбонильной группы.

Основность альдегидов и кетонов невысока, однако она играет заметную роль в реакциях нуклеофильного присоединения, поскольку в протонированной форме электрофильность атома углерода значительно выше. Поэтому реакции нуклеофильного присоединения могут катализироваться кислотами.

2.2. Реакции нуклеофильного присоединения

www.mitht.ru/e-library

Взаимодействие альдегидов и кетонов с нуклеофильными агентами осуществляется по следующему общему механизму:

R C=O+Z HR C Z HR C Z

Нуклеофил Z–Н (очень часто при нуклеофильном центре имеется атом водорода) присоединяется к электрофильному атому углерода карбонильной группы за счет неподеленной пары электронов нуклеофильного центра, образуя аддукт (продукт присоединения), в котором на бывшем карбонильном кислороде находится отрицательный заряд, а бывший нуклеофильный центр заряжается положительно. Этотбиполярный ион стабилизируется переносом протона от положительно заряженного атома Z к отрицательно заряженному атому кислорода. Образовавшийся при этом продукт часто претерпевает дальнейшие превращения, например, отщепление воды.

В качестве нуклеофилов, реагирующих с альдегидами и кетонами, могут выступать различные соединения, в которых нуклеофильные центры находятся на атомах кислорода (О-нуклеофилы), серы (S-нуклеофилы), азота (N-нуклеофилы), углерода (С- нуклеофилы) и других атомах.

Реакционная способность альдегидов и кетонов в реакциях нуклеофильного присоединения зависит от электрофильности кар-

бонильной группы: чем больше частичный положительный заряд на атоме углерода, тем легче происходит присоединение нук-

леофила . Поскольку в молекулах альдегидов при карбонильном атоме углерода содержится только один углеводородный остаток, проявляющий электронодонорные свойства, а в молекулах кетонов таких остатков два, то естественно предположить, что в общем случаеальдегиды более реакционноспособны в реакциях нуклеофильного присоединения, чем кетоны . Электроноакцептор-

ные заместители, особенно вблизи карбонильной группы, увеличивают электрофильность карбонильного углерода и, следовательно, повышают реакционную способность. Определенное значение имеет и стерический фактор: поскольку при присоединении атом углерода карбонильной группы изменяет гибридизацию (sp2 → sp3 ), то чем объемнее заместители при карбонильном атоме углерода, тем большие пространственные затруднения возникают при этом переходе. Например, в ряду: формальдегид, уксусный альдегид,

Номенклатура
Тривиальное название адипиновая кислота
Систематическое название гександиовая кислота
Другое название 1,4-бутандикарбоновая кислота
Брутто формула C 6 O 4 H 10
Свойства
Молярная масса 146,14 г/моль
Внешний вид бесцветные кристаллы
Плотность 1,36 г/см 3
Растворимость в воде (г на 100г) 1,44 (15 °C); 5,12 (40 °C);
34,1 (70 °C)
Растворимость в этаноле ,
ацетоне , диэтиловом эфире
ограниченно растворима
Температура плавления 153 °C
Температура разложения 210-240 °C
Температура кипения

(при 100 мм.рт.ст.)

265 °C
Температура
декарбоксилирования
300-320 °C
Константы кислотности K 1 3,7·10 −5 ; K 2 0,53·10 −5
Динамическая вязкость (η) 4,54 МПа·с (160 °C)
Абсолютная величина
дипольного момента (μ)
13,47·10 −30 Кл·м
Энтальпия сгорания (ΔH 0 сгор) -2800 кДж/моль
Энтальпия плавления (ΔH 0 пл) 16,7 кДж/моль
Энтальпия испарения (ΔH 0 исп) 18,7 кДж/моль

Адипи́новая кислота (гександиовая кислота ) НООС(СН 2) 4 СООН - двухосновная предельная карбоновая кислота . Обладает всеми химическими свойствами, характерными для карбоновых кислот . Образует соли, большинство из которых растворимо в воде. Легко этерифицируется в моно- и диэфиры. С гликолями образует полиэфиры. Соли адипиновой кислоты - адипинаты . При взаимодействии с NH 3 и аминами даёт аммонийные соли, при дегидратации превращающиеся в адипамиды . С диаминами образует полиамиды , с NH 3 в присутствии катализатора при 300-400 °C - адиподинитрил .

Получение

В промышленности адипиновую кислоту получают главным образом двухстадийным окислением циклогексана . На первой стадии (жидкофазное окисление воздухом при 142-145 °C и 0,7 МПа) получают смесь циклогексанона и циклогексанола , разделяемую ректификацией . Циклогексанон используют для производства капролактама . Циклогексанол окисляют 40-60%-ной HNO 3 при 55 °C (катализатор - NH 4 VO 3); выход адипиновой кислоты при этом способе производства составляет ~95 %.

Перспективным способом производства адипиновой кислоты является гидрокарбонилирование бутадиена.

Адипиновую кислоту можно получить также следующими способами:

  • Окислением циклогексана 50-70%-ной HNO 3 при 100-200 °C и 0,2-1,96 МПа или N 2 O 4 при 50 °C;
  • Окислением циклогексена озоном или HNO 3 ;
  • Из ТГФ по схеме:
  • Карбонилированием ТГФ в ангидрид адипиновой кислоты, из которого действием H 2 O получают кислоту.

Применение

Адипиновая кислота - сырьё в производстве полигексаметиленадипинамида (~90 % всей производимой кислоты), её эфиров, полиуретанов; пищевая добавка E355 для придания кислого вкуса (в частности, в производстве безалкогольных напитков). Основной компонент различных средств для удаления накипи . Используется также для удаления остаточного материала после заполнения швов между керамическими плитками.

Свойства эфиров адипиновой кислоты

Метиладипинат применяют для электрохимического синтеза диметилсебацината. Диаллиладипинат - отвердитель полиэфирных смол. Этиладипинат - добавка к этилированному бензину для повыщения октанового числа .

Мировое производство

Мировое производство адипиновой кислоты - свыше 2,5 млн т/год (по состоянию на 2008 год).

Литература

  1. Имянитов Н.С, Рахлина Е. Н. / Новый способ производства адипиновой кислоты. // Химическая промышленность. 1987. - № 12. - С. 708-711.

См. также

Литература

  • Кнунянц И. Л. и др. т.1 А-Дарзана // Химическая энциклопедия. - М .: Советская энциклопедия, 1988. - 623 с. - 100 000 экз.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

Wikimedia Foundation . 2010 .

Смотреть что такое "Адипиновая кислота" в других словарях:

    - (лат.). Образуется действием азотной кислоты на жиры. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. адипиновая кислота (лат. adeps (adipis) жар) органическое соединение алифатического ряда; твердый бесцветный… … Словарь иностранных слов русского языка

    адипиновая кислота - Пищевая кислота, получаемая окислением циклогексана, содержащая основного вещества не менее 99,6 %, представляющая собой белый кристаллический порошок без запаха с кислым вкусом. [ГОСТ Р 53045 2008] Тематики пищевые добавки Обобщающие термины… … Справочник технического переводчика

    HOOC(CH2)4COOH, бесцветные кристаллы, tпл 153 .C. Сырье в производстве полиамидов, пластификаторов, смазочных масел … Большой Энциклопедический словарь

    НООС(СН2)4СООН, бесцветные кристаллы, tпл 153ºC. Сырьё в производстве полиамидов, пластификаторов, смазочных масел. * * * АДИПИНОВАЯ КИСЛОТА АДИПИНОВАЯ КИСЛОТА, HOOC(CH2)4COOH (1,4 бутандикарбоновая кислота), молекулярная масса 146,14, бесцветные … Энциклопедический словарь

    адипиновая кислота - adipo rūgštis statusas T sritis chemija formulė HOOC(CH₂)₄COOH atitikmenys: angl. adipic acid rus. адипиновая кислота ryšiai: sinonimas – heksano dirūgštis … Chemijos terminų aiškinamasis žodynas

    Бутан 1,4 дикарбоновая кислота, предельная двухосновная кислота ациклического ряда; аминопроизводное А. к. аминоадипиновая кислота один из конечных продуктов аминокислотного обмена; производные А. к. амино и кето адипиновые кислоты… … Большой медицинский словарь

    Двухосновная органическая кислота, HOOC(CH2)4COOH. Бесцветные кристаллы, tпл 149 150°С. Основной метод получения А. к. окисление Циклогексанона азотной кислотой или кислородом воздуха в присутствии солей марганца (катализатор). А. к.… … Большая советская энциклопедия

    НООС(СН2)4СООН, двухосновная карбоновая кислота, бесцв. кристаллы, tпл 153 °С. Сырьё в произ ве полиамидов, пластификаторов, смазочных масел … Естествознание. Энциклопедический словарь

    С6Н10О4 получается окислением азотной кислотой жиров (свиного сала, кокосового масла и др.) или себациновой кислоты (см.). В чистом состоянии имеет вид полупрозрачных листочков или плоских игл, плавящихся при 148° 149°, легко растворяющихся в… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (1,4 бутандикарбоновая к та) НООС(СН 2)4 СООН, мол. м. 146,14; бесцв. кристаллы; т. пл. 153 … Химическая энциклопедия