Ядерный взрыв. Ядерное оружие Как происходит ядерный взрыв

Время: 0 с. Расстояние: 0 м (точно в эпицентре).
Инициация взрыва ядерного детонатора.

Время: < 0,0000001 c. Расстояние: 0 м. Температура: до 100 млн.°C.
Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (10 6 —10 7 м/с). Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: < 10 −7 c. Расстояние: 0 м.
До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ-излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10 −7 c. Расстояние: 2 м. Температура: 30 млн.°C.
Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду, и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 с падает до 1% плотности окружающего воздуха; температура за 2,6 с падает до 7—8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2—3 с падает до несколько ниже атмосферного.

Время: 1,1×10 −7 c. Расстояние: 10 м. Температура: 6 млн.°C.
Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд, такова, что их свободный пробег до захвата частицами воздуха - порядка 10 м, и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха; отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию, и длина их пробега сокращается, рост сферы замедляется.

Время: 1,4×10 −7 c. Расстояние: 16 м. Температура: 4 млн.°C.
В целом от 10−7 до 0,08 секунд идёт первая фаза свечения сферы с быстрым падением температуры и выходом ~1% энергии излучения, большей частью в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1,7×10 −7 c. Расстояние: 21 м. Температура: 3 млн.°C.
Пары бомбы в виде клубов, плотных сгустков и струй плазмы, как поршень, сжимают впереди себя воздух и формируют ударную волну внутри сферы — внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами, и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают среагировать никак — даже практически не нагреваются, а, оказавшись внутри сферы под потоком излучения, испаряются мгновенно.

Время: 0,000001 c. Расстояние: 34 м. Температура: 2 млн.°C. Скорость 1000 км/с.
С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются, и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться, и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы, и, начиная где-то с 36—37 м, появляется волна повышения плотности — будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001 c. Расстояние: 34 м. Температура: 2 млн.°C.
Внутренний скачок и пары бомбы находятся в слое 8—12 м от места взрыва, пик давления до 17000 МПа на расстоянии 10,5 м, плотность в ~4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутреннего скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.

Время: 0,000034 c. Расстояние: 42 м. Температура: 1 млн.°C.
Условия в эпицентре взрыва первой советской водородной бомбы (400 кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра, или в 5—6 м от основания башни с зарядом, располагался железобетонный бункер со стенами толщиной 2 м для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м - разрушен.

Время: 0,0036 c. Расстояние: 60 м. Температура: 600 тыс.°C.
С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.
Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т.н. сильный скачок — единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014 c. Расстояние: 110 м. Температура: 400 тыс.°C.
Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10, 20 и 30 м; животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва «Тринити» (21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м).

Время: 0,004 c. Расстояние: 135 м. Температура: 300 тыс.°C.
Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы.

Время: 0,007 c. Расстояние: 190 м. Температура: 200 тыс.°C.
На гладком и как бы блестящем фронте ударной волны образуются большие «волдыри» и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10% атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огненной сферы («канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01 c. Расстояние: 214 м. Температура: 200 тыс.°C.
Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015 c. Расстояние: 250 м. Температура: 170 тыс.°C.
Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028 c. Расстояние: 320 м. Температура: 110 тыс.°C.
Человек развеивается потоком плазмы (скорость ударной волны равна скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.

Время: 0,073 c. Расстояние: 400 м. Температура: 80 тыс.°C.
Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотермической сферы диамером ~320 м - до 2% атмосферной. На этом расстоянии в пределах 1,5 с нагрев до 30000°C и падение до 7000°C, ~5 с удержание на уровне ~6500°C и снижение температуры за 10—20 с по мере ухода огненного шара вверх.

Время: 0,079 c. Расстояние: 435 м. Температура: 110 тыс.°C.
Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание первой фазы свечения. Убежище типа метро, облицованное чугунными тюбингами с монолитным железобетоном и заглублённое на 18 м, по расчёту, способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения.
При температурах во фронте сжатия ниже 80 тыс.°C новые молекулы NO 2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной, и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает, и детали как бы снова разгорающейся сферы становятся не видны.

Время: 0,1 c. Расстояние: 530 м. Температура: 70 тыс.°C.
Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает вторая фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99% энергии излучения взрыва, в основном в видимом и ИК-спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1—0,3 с, время реакции на ожог 0,15—0,2 с).

Время: 0,15 c. Расстояние: 580 м. Температура: 65 тыс.°C. Радиация: ~100000 Гр.
От человека остаются обугленные осколки костей (скорость ударной волны - порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25 c. Расстояние: 630 м. Температура: 50 тыс.°C. Проникающая радиация: ~40000 Гр.
Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутации, а подошедшая через долю секунды огненная сфера обугливает останки.
Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных железобетонных труб диаметром 1,5 м с толщиной стенок 0,2 м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4 c. Расстояние: 800 м. Температура: 40 тыс.°C.
Нагрев объектов до 3000°C. Проникающая радиация ~20000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ), разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС. ДОТы становятся небоеспособны на дистанции 250 м.

Время: 0,73 c. Расстояние: 1200 м. Температура: 17 тыс.°C. Радиация: ~5000 Гр.
При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом ударной волны до 900°C. Человек — стопроцентная гибель от действия ударной волны.
Разрушение убежищ, рассчитанных на 200 кПа (тип А-III, или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы, к этому времени она выделила ~20% световой энергии.

Время: 1,4 c. Расстояние: 1600 м. Температура: 12 тыс.°C.
Нагрев объектов до 200°C. Радиация - 500 Гр. Многочисленные ожоги 3—4 степени до 60-90% поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами; летальность сразу или до 100% в первые сутки.
Танк отбрасывается на ~10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30—50 м.

Время: 1,6 c. Расстояние: 1750 м. Температура: 10 тыс.°C. Радиация: ок. 70 Гр.
Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни.
Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельно стоящих, рассчитанных на 100 кПа (тип А-IV, или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9 c. Расстояние: 1900 м. Температура: 9 тыс.°C.
Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч; из них 100—150 м (0,3—0,5 пути) - свободный полёт, а остальное расстояние — многочисленные рикошеты о грунт. Радиация около 50 Гр — молниеносная форма лучевой болезни, 100% летальность в течение 6-9 суток.
Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше — вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3—4 м. Огненная сфера в это время достигает максимальных размеров (диаметром ~2 км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре — будущую ножку гриба.

Время: 2,6 c. Расстояние: 2200 м. Температура: 7,5 тыс.°C.
Тяжёлые поражения человека ударной волной. Радиация ~10 Гр — крайне тяжёлая острая лучевая болезнь, по сочетании травм 100% летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным железобетонным перекрытием и в большинстве убежищ ГО.
Разрушение грузовых автомобилей. 0,1 МПа — расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8 c. Расстояние: 2800 м. Температура: 7,5 тыс.°C.
Радиация 1 Гр — в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) - гораздо больше.
Давление менее 0,1 МПа — городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6 c. Расстояние: 3600 м. Температура: 4,5 тыс.°C.
Средние поражения человека ударной волной. Радиация ~0,05 Гр — доза неопасна. Люди и предметы оставляют «тени» на асфальте.
Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05—0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом — один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению силой 10 баллов.
Сфера перешла в огненный купол, как пузырь, всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.

Время: 10 c. Расстояние: 6400 м. Температура: 2 тыс.°C.
Окончание эффективного времени второй фазы свечения, выделилось ~80% суммарной энергии светового излучения. Оставшиеся 20% неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035—0,05 МПа).
На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной на ~20 м с начальной скоростью ~30 км/ч.
Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению силой 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее скорости подъёма гриба, настигает облако, проходит насквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15 c. Расстояние: 7500 м.
Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела.
Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02—0,03 МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02—0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению силой 6 баллов, урагану 12 баллов со скоростью ветра до 39 м/с. Гриб вырос до 3 км над эпицентром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35 c. Расстояние: 14 км.
Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров; в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению силой 4-5 баллов, шторму 9—11 балов со скоростью ветра 21—28,5 м/с. Гриб вырос до ~5 км, огненное облако светит всё слабее.

Время: 1 мин. Расстояние: 22 км.
Ожоги первой степени, в пляжной одежде возможна гибель.
Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров. Гриб поднялся до 7,5 км, облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5 мин. Расстояние: 35 км.
Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах— актуально морозной зимой плюс возможность порезов летящими осколками.
Гриб поднялся до 10 км, скорость подъёма ~220 км/ч. Выше тропопаузы облако развивается преимущественно в ширину.

Время: 4 мин. Расстояние: 85 км.
Вспышка похожа на большое и неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах.
Гриб поднялся свыше 16 км, скорость подъёма ~140 км/ч.

Время: 8 мин. Расстояние: 145 км.
Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота гриба - до 24 км, облако 9 км в высоту и 20—30 км в диаметре, своей широкой частью оно «опирается» на тропопаузу. Грибовидное облако выросло до макси-мальных размеров и наблюдается ещё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10—20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов. Расстояние: 300-500 км.
Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4—4 Гр.

Время: ~10 месяцев.
Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км); выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.
===============

Руководство по планированию действий местных служб на последствия ядреного взрыва в городской среде

Целью данного руководства является предоставление рекомендаций для планирования конкретных действий в случае городского ядерного взрыва с целью максимального сохранения жизни граждан… Руководство разработано для мероприятий по реагированию в среде с сильно разрушенной инфраструктуры в течение первых нескольких дней (т.е. 24 - 72 часов), когда вероятно, что многие ресурсы Федеральных служб все еще будут на пути к инциденту.

Глава 1 - ядерные эффекты и последствия детонации в городской среде

Как правило, при рассмотрении сценариев ядерного взрыва совершаемых террористами, эксперты предполагают использование маломощного ядерного устройства взрываемого на земле.
Мощность взрыва в данном контексте предполагается в диапазоне от долей килотонны (KT) до 10 КТ. Описания и планирования факторов, предусмотренных в настоящем документе, основаны на информации Департамента Национальной Безопаности (DHS) Национальная сценарного планирования (NPS) # 1, в котором описывается ядерной взрыв устройства из 10 KT взорванного на уровне земли в городской среде. Воздействия ядерного взрыва менее 10 KT будет меньше, однако, соотношение не является линейным.

Рисунок 1.1: Характеристика зон разрушений для 10 кт ядерного взрыва наложенный на условную городскую застройку.

Рисунок 1.2: Характеристика ущерба зонах разрушений 0,1, 1 и 10 KT ядерных взрывов (круги идеализированы здесь для целей моделирования)

Рисунок 1.6: Размеры опасных (DF) зон для 0.1KT, 1.0KT и 10KT в которой рано или поздно прямые угрозы от выпадения радиоактивности существует. В зоне DF величина облучения превышает 10 Р / ч. Зона DF начнет сокращаться сразу и относительно быстро с течением времени.

Таблица 1.4: Пример дозы распада с раннего выпадения как функция времени после ядерного взрыва; адаптировано из Глесстон и Dolan12

Рисунок 1.7. Добавление 10 мР / ч границей LD, MD, SD, и DF зоны (зоны ограниченного заражения на 0,01 Р / ч при 10 KT сценарии можно продлить за 100 км)

Рисунок 1.8. Время и последовательности изменения размера DF зоны и границы заражения с радиацией 0,01 Р / ч для сценария взрыва 10 кт
Таблица 1.5: Вероятность летального исхода от острого радиационного воздействия в зависимости от поглощенной дозы (для взрослых), для использования в процессе принятия решений после короткого терма облучения адаптировано из НКРЗ, AFRRI, МАГАТЭ, МКРЗ и Mettler


Рисунок 3.1: Строительные сооружения в качестве защитного фактора от радиации - Числа представляют фактор снижения дозы. Фактором снижения дозы от 10 указывает, что человек в этой области будут получать 1/10th дозы человека на открытом пространстве. Фактор снижения дозы в 200 указывает, что человек в этой области будут получать 1/200th дозы.


2000 ядерных взрывов

Создатель атомной бомбы Роберт Оппенгеймер в день первого испытания своего детища сказал: «Если бы на небе разом взошли сотни тысяч солнц, их свет мог бы сравниться с сиянием, исходившим от Верховного Господа… Я — есть Смерть, великий разрушитель миров, несущий гибель всему живому». Эти слова были цитатой из «Бхагавад Гиты», которую американский физик прочитал в оригинале.

Фотографы из Лукаут Маунтэйн стоят по пояс в пыли, поднятой ударной волной после ядерного взрыва (фото 1953 года).


Название испытания: Umbrella
Дата: 8 июня 1958 года

Мощность: 8 килотонн

Подводный ядерный взрыв был произведён в ходе операции «Hardtack». В качестве мишеней использовались списанные корабли.

Название испытания: Chama (в рамках проекта «Доминик»)
Дата: 18 октября 1962 года
Место: Остров Джонстон
Мощность: 1.59 мегатонн

Название испытания: Oak
Дата: 28 июня 1958 года
Место: Лагуна Эниветок в Тихом океане
Мощность: 8.9 мегатонн

Проект «Апшот-Нотхол», испытание «Энни». Дата: 17 марта 1953 г.; проект: Апшот-Нотхол; испытание: Энни; место: Нотхол, полигон в Неваде, сектор 4; мощность: 16 кт. (Photo: Wikicommons)

Название испытания: Castle Bravo
Дата: 1 марта 1954 года
Место: атолл Бикини
Тип взрыва: на поверхности
Мощность: 15 мегатонн

Взрыв водородной бомбы Castle Bravo был самым мощным взрывом из всех испытаний, когда либо проводимых США. Мощность взрыва оказалась намного больше первоначальных прогнозов в 4-6 мегатонн.

Название испытания: Castle Romeo
Дата: 26 марта 1954 года
Место: на барже в кратере Bravo, атолл Бикини
Тип взрыва: на поверхности
Мощность: 11 мегатонн

Мощность взрыва оказалась в 3 раза больше первоначальных прогнозов. Romeo был первым испытанием, произведенным на барже.

Проект «Доминик», испытание «Ацтек»

Название испытания: Priscilla (в рамках серии испытаний «Plumbbob»)
Дата: 1957 год

Мощность: 37 килотонн

Именно так выглядит процесс высвобождения огромного количества лучистой и тепловой энергии при атомном взрыве в воздухе над пустыней. Тут еще можно разглядеть военную технику, которая через мгновение будет уничтожена ударной волной, запечатленной в виде кроны, окружившей эпицентр взрыва. Видно как ударная волна отразилась от земной поверхности и вот-вот сольется с огненным шаром.

Название испытания: Grable (в рамках операции «Апшот-Нотхол»)
Дата: 25 мая 1953 года
Место: Ядерный полигон в Неваде
Мощность: 15 килотонн

На испытательном полигоне в пустыне Невада фотографами центра Лукаут Маунтэйн в 1953 году была сделана фотография необычного явления (кольцо огня в ядерном грибе после взрыва снаряда из ядерной пушки), природа которого долгое время занимала умы ученых.

Проект «Апшот-Нотхол», испытание «Грабл». В рамках этого испытания был произведен взрыв атомной бомбы мощностью 15 килотонн, запущенной 280-миллиметровой атомной пушкой. Испытание прошло 25 мая 1953 года на полигоне Невады. (Photo: National Nuclear Security Administration / Nevada Site Office)

Грибовидное облако, образованное в результате атомного взрыва испытания «Траки», проводимого в рамках проекта «Доминик».

Проект «Бастер», испытание «Дог».

Проект «Доминик», испытание «Йесо». Испытание: Йесо; дата:10 июня 1962 г.; проект: Доминик; место: 32 км к югу от острова Рождества; тип испытания: B-52, атмосферный, высота - 2,5 м; мощность: 3.0 мт; тип заряда: атомный. (Wikicommons)

Название испытания: YESO
Дата: 10 июня 1962 года
Место: Остров Рождества
Мощность: 3 мегатонны

Испытание «Ликорн» на территории Французской Полинезии. Изображение №1. (Pierre J./French Army)

Название испытания: «Единорог» (фр. Licorne)
Дата: 3 июля 1970 года
Место: атолл во Французской Полинезии
Мощность: 914 килотонн

Испытание «Ликорн» на территории Французской Полинезии. Изображение №2. (Photo: Pierre J./French Army)

Испытание «Ликорн» на территории Французской Полинезии. Изображение №3. (Photo: Pierre J./French Army)

Для получения хороших снимков на испытательных полигонах часто работают целые команды фотографов. На фото: испытательный ядерный взрыв в пустыне Невада. Справа видны ракетные шлейфы, с помощью которых ученые определяют характеристики ударной волны.

Испытание «Ликорн» на территории Французской Полинезии. Изображение №4. (Photo: Pierre J./French Army)

Проект «Кастл», испытание «Ромео». (Photo: zvis.com)

Проект «Хардтэк», испытание «Амбрелла». Испытание: Амбрелла; дата: 8 июня 1958 г.; проект: Хардтэк I; место: лагуна атолла Эниветок; тип испытания: подводный, глубина 45 м; мощность: 8кт; тип заряда: атомный.

Проект «Редвинг», испытание «Семинол». (Photo: Nuclear Weapons Archive)

Испытание «Рия». Атмосферное испытание атомной бомбы на территории Французской Полинезии в августе 1971 года. В рамках этого испытания, которое прошло 14 августа 1971 года, была взорвана термоядерная боеголовка под кодовым названием «Рия», мощностью 1000 кт. Взрыв произошел на территории атолла Муруроа. Этот снимок был сделан с расстояния 60 км от нулевой отметки. Photo: Pierre J.

Грибовидное облако от ядерного взрыва над Хиросимой (слева) и Нагасаки (справа). На заключительной стадии Второй мировой войны, Соединенные Штаты нанесли 2 атомных удара по Хиросиме и Нагасаки. Первый взрыв прогремел 6 августа 1945 года, а второй - 9 августа 1945 года. Это был единственный случай, когда ядерное оружие применялось в военных целях. Согласно приказу президента Трумэна, 6 августа 1945 года американская армия сбросила ядерную бомбу «Малыш» на Хиросиму, а 9 августа последовал ядерный взрыв бомбы «Толстяк», сброшенной на Нагасаки. В течение 2-4 месяцев после ядерных взрывов в Хиросиме погибло от 90 000 до 166 000 человек, а в Нагасаки - от 60 000 до 80 000. (Photo: Wikicommons)


Проект «Апшот-Нотхол». Полигон в Неваде, 17 марта 1953 года. Взрывная волна полностью разрушила Строение №1, расположенное на расстоянии 1,05 км от нулевой отметки. Разница во времени между первым и вторым снимком составляет 21/3 секунды. Камера была помещена в защитный футляр с толщиной стенки 5 см. Единственным источником света в данном случае была ядерная вспышка. (Photo: National Nuclear Security Administration / Nevada Site Office)

Проект «Рэйнджер», 1951 год. Название испытания неизвестно. (Photo: National Nuclear Security Administration / Nevada Site Office)

Испытание «Тринити».

«Тринити» было кодовым названием первого испытания ядерного оружия. Это испытание было проведено армией Соединенных Штатов 16 июля 1945 года, на территории, расположенной приблизительно в 56 км к юго-востоку от Сокорро, штат Нью-Мексико, на ракетном полигоне «Уайт Сэндс». Для испытания использовалась плутониевая бомба имплозивного типа, получившая прозвище «Штучка». После детонации прогремел взрыв мощностью эквивалентной 20 килотоннам тротила. Дата проведения этого испытания считается началом атомной эры. (Photo: Wikicommons)

Название испытания: Mike
Дата: 31 октября 1952 года
Место: Остров Elugelab («Flora»), атолл Эневейта
Мощность: 10.4 мегатонны

Устройство, взорванное при испытании Майка и названное «колбасой», было первой настоящей «водородной» бомбой мегатонного класса. Грибовидное облако достигло высоты 41 км при диаметре 96 км.


АН602 (она же «Царь-бомба», она же «Кузькина мать») — термоядерная авиационная бомба, разработанная в СССР в 1954—1961 гг. группой физиков-ядерщиков под руководством академика Академии наук СССР И. В. Курчатова. Самое мощное взрывное устройство за всю историю человечества. По разным данным имело от 57 до 58,6 мегатонн тротилового эквивалента. Испытания бомбы состоялись 30 октября 1961 года. (Wikimedia)

Взрыв “MET”, осуществленный в рамках Операции “Типот”. Примечательно, что взрыв “MET” по мощности был сравним с плутониевой бомбой «Толстяк», сброшенной на Нагасаки. 15 апреля 1955 года, 22 кт. (Wikimedia)


Один из самых мощных взрывов термоядерной водородной бомбы на счету США - операция “Кастл Браво”. Мощность заряда составила 10 мегатонн. Взрыв был произведен 1 марта 1954 года на атолле Бикини, Маршалловы Острова. (Wikimedia)

Операция “Кастл Ромео” - один из самых мощных взрывов термоядреной бомбы, произведенных США. Атолл Бикини, 27 марта 1954 года, 11 мегатонн. (Wikimedia)

Взрыв “Бэйкер”, показана белая поверхность воды, потревоженной воздушной ударной волной, и верх полой колонны брызг, образовавшей полусферическое облако Вильсона. На заднем плане - берег атолла Бикини, июль 1946 года. (Wikimedia)

Взрыв американской термоядерной (водородной) бомбы “Майк” мощностью 10,4 мегатонны. 1 ноября, 1952 года. (Wikimedia)

Операция «Парник» (англ. Operation Greenhouse) — пятая серия американских ядерных испытаний и вторая из них за 1951 год. В ходе операции испытывались конструкции ядерных зарядов с использованием термоядерного синтеза для увеличения выхода энергии. Кроме того, исследовалось воздействие взрыва на сооружения, включая жилые здания, корпуса заводов и бункеры. Операция проводилась на Тихоокеанском ядерном полигоне. Все устройства были взорваны на высоких металлических вышках, имитирующих воздушный взрыв. Взрыв “Джордж”, 225 килотонн, 9 мая 1951 года. (Wikimedia)

Грибообразное облако, у которого вместо пылевой ножки водяной столб. Справа на столбе видна прореха: линкор «Арканзас» закрыл собой выброс брызг. Испытание “Бэйкер”, мощностью заряда - 23 килотонны в тротиловом эквиваленте, 25 июля 1946 года. (Wikimedia)

200-метровое облако над территорией Frenchman Flat после взрыва “MET” в рамках операции “Типот”, 15 апреля 1955 года, 22 кт. Этот снаряд имел редкую сердцевину из урана-233. (Wikimedia)


Кратер был сформирован, когда в 100 килотонн взрывной волны были взорваны под 635 футов пустыни 6 июля 1962 года, вытеснив 12 миллионов тонн земли.

Время: 0с. Расстояние: 0м. Инициация взрыва ядерного детонатора.
Время: 0.0000001c. Расстояние: 0м Температура: до 100 млн. °C. Начало и ход ядерных и термоядерных реакций в заряде. Ядерный детонатор своим взрывом создаёт условия для начала термоядерных реакций: зона термоядерного горения проходит ударной волной в веществе заряда со скоростью порядка 5000 км/с (106 — 107 м/с) Около 90% выделяющихся при реакциях нейтронов поглощается веществом бомбы, оставшиеся 10% вылетают наружу.

Время: 10−7c. Расстояние: 0м. До 80% и более энергии реагирующего вещества трансформируется и выделяется в виде мягкого рентгеновского и жёсткого УФ излучения с огромной энергией. Рентгеновское излучение формирует тепловую волну, которая нагревает бомбу, выходит наружу и начинает нагревать окружающий воздух.

Время: < 10−7c. Расстояние: 2м Температура: 30 млн.°C. Окончание реакции, начало разлёта вещества бомбы. Бомба сразу исчезает из виду и на её месте появляется яркая светящаяся сфера (огненный шар), маскирующая разлёт заряда. Скорость роста сферы на первых метрах близка к скорости света. Плотность вещества здесь за 0,01 сек падает до 1% плотности окружающего воздуха; температура за 2,6 сек падает до 7—8 тыс.°C, ~5 секунд удерживается и дальше снижается с подъёмом огненной сферы; давление через 2—3 сек падает до несколько ниже атмосферного.


Время: 1.1х10−7c. Расстояние: 10м Температура: 6 млн.°C. Расширение видимой сферы до ~10 м идёт за счёт свечения ионизованного воздуха под рентгеновским излучением ядерных реакций, а далее посредством радиационной диффузии самого нагретого воздуха. Энергия квантов излучения, покидающих термоядерный заряд такова, что их свободный пробег до захвата частицами воздуха порядка 10 м и вначале сравним с размерами сферы; фотоны быстро обегают всю сферу, усредняя её температуру и со скоростью света вылетают из неё, ионизуя всё новые слои воздуха, отсюда одинаковая температура и околосветовая скорость роста. Далее, от захвата к захвату, фотоны теряют энергию и длина их пробега сокращается, рост сферы замедляется.

Время: 1.4х10−7c. Расстояние: 16м Температура: 4 млн.°C. В целом от 10−7 до 0,08 секунд идёт 1-я фаза свечения сферы с быстрым падением температуры и выходом ~1 % энергии излучения, большей частю в виде УФ-лучей и ярчайшего светового излучения, способных повредить зрение у далёкого наблюдателя без образования ожогов кожи. Освещённость земной поверхности в эти мгновения на расстояниях до десятков километров может быть в сто и более раз больше солнечной.

Время: 1.7х10−7c. Расстояние: 21м Температура: 3 млн.°C. Пары бомбы в виде клубов, плотных сгустков и струй плазмы как поршень сжимают впереди себя воздух и формируют ударную волну внутри сферы — внутренний скачок, отличающийся от обычной ударной волны неадиабатическими, почти изотермическими свойствами и при тех же давлениях в несколько раз большей плотностью: сжимающийся скачком воздух сразу излучает большую часть энергии через пока прозрачный для излучений шар.
На первых десятках метров окружающие предметы перед налётом на них огневой сферы из-за слишком большой её скорости не успевают никак среагировать — даже практически не нагреваются, а оказавшись внутри сферы под потоком излучения испаряются мгновенно.

Температура: 2 млн.°C. Скорость 1000 км/с. С ростом сферы и падением температуры энергия и плотность потока фотонов снижаются и их пробега (порядка метра) уже не хватает для околосветовых скоростей расширения огневого фронта. Нагретый объём воздуха начал расширяться и формируется поток его частиц от центра взрыва. Тепловая волна при неподвижном воздухе на границе сферы замедляется. Расширяющийся нагретый воздух внутри сферы наталкивается на неподвижный у её границы и где-то начиная с 36—37 м появляется волна повышения плотности — будущая внешняя воздушная ударная волна; до этого волна не успевала появиться из-за огромной скорости роста световой сферы.

Время: 0,000001c. Расстояние: 34м Температура: 2 млн.°C. Внутренний скачок и пары бомбы находятся в слое 8—12 м от места взрыва, пик давления до 17 000 МПа на расстоянии 10,5 м, плотность ~ в 4 раза больше плотности воздуха, скорость ~100 км/с. Область горячего воздуха: давление на границе 2.500 МПа, внутри области до 5000 МПа, скорость частиц до 16 км/с. Вещество паров бомбы начинает отставать от внутр. скачка по мере того, как всё больше воздуха в нём вовлекается в движение. Плотные сгустки и струи сохраняют скорость.


Время: 0,000034c. Расстояние: 42м Температура: 1 млн.°C. Условия в эпицентре взрыва первой советской водородной бомбы (400кт на высоте 30 м), при котором образовалась воронка порядка 50 м диаметром и 8 м глубиной. В 15 м от эпицентра или в 5—6 м от основания башни с зарядом располагался железобетонный бункер со стенами толщиной 2 м. для размещения научной аппаратуры сверху укрытый большой насыпью земли толщиной 8 м разрушен.

Температура: 600тыс.°C.С этого момента характер ударной волны перестаёт зависеть от начальных условий ядерного взрыва и приближается к типовому для сильного взрыва в воздухе, т.е. такие параметры волны могли бы наблюдаться при взрыве большой массы обычной взрывчатки.

Время: 0,0036c. Расстояние: 60м Температура: 600тыс.°C. Внутренний скачок, пройдя всю изотермическую сферу, догоняет и сливается с внешним, повышая его плотность и образуя т. н. сильный скачок — единый фронт ударной волны. Плотность вещества в сфере падает до 1/3 атмосферной.

Время: 0,014c. Расстояние: 110м Температура: 400тыс.°C. Аналогичная ударная волна в эпицентре взрыва первой советской атомной бомбы мощностью 22 кт на высоте 30 м сгенерировала сейсмический сдвиг, разрушивший имитацию тоннелей метро с различными типами крепления на глубинах 10 и 20 м 30 м, животные в тоннелях на глубинах 10, 20 и 30 м погибли. На поверхности появилось малозаметное тарелкообразное углубление диаметром около 100 м. Сходные условия были в эпицентре взрыва "Тринити" 21 кт на высоте 30 м, образовалась воронка диаметром 80 м и глубиной 2 м.

Время: 0,004c. Расстояние: 135м
Температура: 300тыс.°C. Максимальная высота воздушного взрыва 1 Мт для образования заметной воронки в земле. Фронт ударной волны искривлён ударами сгустков паров бомбы:

Время: 0,007c. Расстояние: 190м Температура: 200тыс.°C. На гладком и как бы блестящем фронте уд. волны образуются большие волдыри и яркие пятна (сфера как бы кипит). Плотность вещества в изотермической сфере диаметром ~150 м падает ниже 10 % атмосферной.
Немассивные предметы испаряются за несколько метров до прихода огн. сферы («Канатные трюки»); тело человека со стороны взрыва успеет обуглиться, а полностью испаряется уже с приходом ударной волны.

Время: 0,01c. Расстояние: 214м Температура: 200тыс.°C. Аналогичная воздушная ударная волна первой советской атомной бомбы на расстоянии 60 м (52 м от эпицентра) разрушила оголовки стволов, ведущих в имитации тоннелей метро под эпицентром (см. выше). Каждый оголовок представлял собой мощный железобетонный каземат, укрытый небольшой грунтовой насыпью. Обломки оголовков обвалились в стволы, последние затем раздавлены сейсмической волной.

Время: 0,015c. Расстояние: 250м Температура: 170тыс.°C. Ударная волна сильно разрушает скальные породы. Скорость ударной волны выше скорости звука в металле: теоретический предел прочности входной двери в убежище; танк расплющивается и сгорает.

Время: 0,028c. Расстояние: 320м Температура: 110тыс.°C. Человек развеивается потоком плазмы (скорость ударной волны = скорости звука в костях, тело разрушается в пыль и сразу сгорает). Полное разрушение самых прочных наземных построек.


Время: 0,073c. Расстояние: 400м Температура: 80тыс.°C. Неровности на сфере пропадают. Плотность вещества падает в центре почти до 1%, а на краю изотерм. сферы диамером ~320 м до 2% атмосферной.На этом расстоянии в пределах 1,5 с нагрев до 30 000 °C и падение до 7000 °C, ~5 с удержание на уровне ~6.500 °C и снижение температуры за 10—20 с по мере ухода огненного шара вверх.

Время: 0,079c. Расстояние: 435м Температура: 110тыс.°C. Полное разрушение шоссейных дорог с асфальтовым и бетонным покрытием Температурный минимум излучения ударной волны, окончание 1-й фазы свечения. Убежище типа метро, облицованное чугунными тюбингами и монолитным железобетоном и заглублённое на 18 м, по расчёту способно выдержать без разрушения взрыв (40 кт) на высоте 30 м на минимальном расстоянии 150 м (давление ударной волны порядка 5 МПа), испытано 38 кт РДС-2 на расстоянии 235 м (давление ~1,5 МПа), получило незначительные деформации, повреждения. При температурах во фронте сжатия ниже 80тыс.°C новые молекулы NO2 больше не появляются, слой двуокиси азота постепенно исчезает и перестаёт экранировать внутреннее излучение. Ударная сфера постепенно становится прозрачной и через неё, как через затемнённое стекло, некоторое время видны клубы паров бомбы и изотермическая сфера; в целом огненная сфера похожа на фейерверк. Затем, по мере увеличения прозрачности, интенсивность излучения возрастает и детали как бы снова разгорающейся сферы становятся не видны. Процесс напоминает окончание эры рекомбинации и рождение света во Вселенной через несколько сотен тысяч лет после Большого взрыва.


Время: 0,1c. Расстояние: 530м Температура: 70тыс.°C. Отрыв и уход вперёд фронта ударной волны от границы огненной сферы, скорость роста её заметно снижается. Наступает 2-я фаза свечения, менее интенсивная, но на два порядка более длительная с выходом 99 % энергии излучения взрыва в основном в видимом и ИК спектре. На первых сотнях метров человек не успевает увидеть взрыв и погибает без мучений (время зрительной реакции человека 0,1 — 0,3 с, время реакции на ожог 0,15 — 0,2 с).

Время: 0,15c. Расстояние: 580м Температура: 65тыс.°C. Радиация ~100 000 Гр. От человека остаются обугленные осколки костей (скорость ударной волны порядка скорости звука в мягких тканях: по телу проходит разрушающий клетки и ткани гидродинамический удар).

Время: 0,25c. Расстояние: 630м Температура: 50тыс.°C. Проникающая радиация ~40 000 Гр. Человек превращается в обугленные обломки: ударная волна вызывает травматические ампутацииа подошедшая через долю сек. огненная сфера обугливает останки. Полное разрушение танка. Полное разрушение подземных кабельных линий, водопроводов, газопроводов, канализации, смотровых колодцев. Разрушение подземных ж/б труб диаметром 1,5м, с толщиной стенок 0,2м. Разрушение арочной бетонной плотины ГЭС. Сильное разрушение долговременных железобетонных фортсооружений. Незначительные повреждения подземных сооружений метро.

Время: 0,4c. Расстояние: 800м Температура: 40тыс.°C. Нагрев объектов до 3000 °C. Проникающая радиация ~20 000 Гр. Полное разрушение всех защитных сооружений гражданской обороны (убежищ) разрушение защитных устройств входов в метро. Разрушение гравитационной бетонной плотины ГЭС ДОТы становятся небоеспособны дистанции 250 м.

Время: 0,73c. Расстояние: 1200м Температура: 17тыс.°C. Радиация ~5000 Гр. При высоте взрыва 1200 м нагрев приземного воздуха в эпицентре перед приходом уд. волны до 900°C. Человек — 100 %-я гибель от действия ударной волны. Разрушение убежищ, рассчитанных на 200 кПа (тип А-III или класс 3). Полное разрушение железобетонных ДОТов сборного типа на дистанции 500 м по условиям наземного взрыва. Полное разрушение железнодорожных путей. Максимум яркости второй фазы свечения сферы к этому времени она выделила ~20 % световой энергии

Время: 1,4c. Расстояние: 1600м Температура: 12тыс.°C. Нагрев объектов до 200°C. Радиация 500 Гр. Многочисленные ожоги 3—4 степени до 60-90 % поверхности тела, тяжёлое лучевое поражение, сочетающиеся с другими травмами, летальность сразу или до 100 % в первые сутки. Танк отбрасывается ~ на 10 м и повреждается. Полное резрушение металлических и железобетонных мостов пролётом 30 — 50 м.

Время: 1,6c. Расстояние: 1750м Температура: 10тыс.°C. Радиация ок. 70 Гр. Экипаж танка погибает в течение 2-3 недель от крайне тяжёлой лучевой болезни. Полное разрушение бетонных, железобетонных монолитных (малоэтажных) и сейсмостойких зданий 0,2 МПа, убежищ встроенных и отдельностоящих, рассчитанных на 100 кПа (тип А-IV или класс 4), убежищ в подвальных помещениях многоэтажных зданий.

Время: 1,9c. Расстояние: 1900м Температура: 9тыс.°C Опасные поражения человека ударной волной и отброс до 300 м с начальной скоростью до 400 км/ч, из них 100—150 м (0,3—0,5 пути) свободный полёт, а остальное расстояние — многочисленные рикошеты о грунт. Радиация около 50 Гр — молниеносная форма лучевой болезни[, 100 % летальность в течение 6-9 суток. Разрушение встроенных убежищ, рассчитанных на 50 кПа. Сильное разрушение сейсмостойких зданий. Давление 0,12 МПа и выше — вся городская застройка плотная и разряжённая превращается в сплошные завалы (отдельные завалы сливаются в один сплошной), высота завалов может составлять 3—4 м. Огненная сфера в это время достигает максимальных размеров (D~2км), подминается снизу отражённой от земли ударной волной и начинает подъём; изотермическая сфера в ней схлопывается, образуя быстрый восходящий поток в эпицентре — будущую ножку гриба.

Время: 2,6c. Расстояние: 2200м Температура: 7,5тыс.°C. Тяжёлые поражения человека ударной волной. Радиация ~10 Гр — крайне тяжёлая острая лучевая болезнь, по сочетании травм 100 % летальность в пределах 1-2 недель. Безопасное нахождение в танке, в укреплённом подвале с усиленным ж/б перекрытием и в большинстве убежищ Г. О. Разрушение грузовых автомобилей. 0,1 МПа — расчётное давление ударной волны для проектирования конструкций и защитных устройств подземных сооружений линий мелкого заложения метрополитена.

Время: 3,8c. Расстояние: 2800м Температура: 7,5тыс.°C. Радиация 1 Гр — в мирных условиях и своевременном лечении неопасное лучевое поражение, но при сопутствующих катастрофе антисанитарии и тяжёлых физических и психологических нагрузках, отсутствии медицинской помощи, питания и нормального отдыха до половины пострадавщих погибают только от радиации и сопутствующих заболеваний, а по сумме повреждений (плюс травмы и ожоги) гораздо больше. Давление менее 0,1 МПа — городские районы с плотной застройкой превращаются в сплошные завалы. Полное разрушение подвалов без усиления конструкций 0,075 МПа. Среднее разрушение сейсмостойких зданий 0,08-0,12 МПа. Сильные повреждения железобетонных ДОТов сборного типа. Детонация пиротехнических средств.

Время: 6c. Расстояние: 3600м Температура: 4,5тыс.°C. Средние поражения человека ударной волной. Радиация ~0,05 Гр — доза неопасна. Люди и предметы оставляют «тени» на асфальте. Полное разрушение административных многоэтажных каркасных (офисных) зданий (0,05—0,06 МПа), укрытий простейшего типа; сильное и полное разрушение массивных промышленных сооружений. Практически вся городская застройка разрушена с образованием местных завалов (один дом — один завал). Полное разрушение легковых автомобилей, полное уничтожение леса. Электромагнитный импульс ~3 кВ/м поражает нечувствительные электроприборы. Разрушения аналогичны землетрясению10 бал. Сфера перешла в огненный купол, как пузырь всплывающий вверх, увлекая за собой столб из дыма и пыли с поверхности земли: растёт характерный взрывной гриб с начальной вертикальной скоростью до 500 км/час. Скорость ветра у поверхности к эпицентру ~100 км/ч.


Время: 10c. Расстояние: 6400м Температура: 2тыс.°C. Окончание эффективного времени второй фазы свечения, выделилось ~80 % суммарной энергии светового излучения. Оставшиеся 20 % неопасно высвечиваются в течение порядка минуты с непрерывным понижением интенсивности, постепенно теряясь в клубах облака. Разрушение укрытий простейшего типа (0,035—0,05 МПа). На первых километрах человек не услышит грохот взрыва из-за поражения слуха ударной волной. Отброс человека ударной волной ~20 м с начальной скоростью ~30 км/ч. Полное разрушение многоэтажных кирпичных домов, панельных домов, сильное разрушение складов, среднее разрушение каркасных административных зданий. Разрушения аналогичны землетрясению 8 баллов. Безопасно почти в любом подвале.
Свечение огненного купола перестаёт быть опасным, он превращается в огненное облако, с подъёмом растущее в объёме; раскалённые газы в облаке начинают вращаться в торообразном вихре; горячие продукты взрыва локализуются в верхней части облака. Поток запылённого воздуха в столбе движется в два раза быстрее подъёма «гриба», настигает облако, проходит сквозь, расходится и как бы наматывается на него, как на кольцеобразную катушку.

Время: 15c. Расстояние: 7500м . Лёгкие поражения человека ударной волной. Ожоги третьей степени открытых частей тела. Полное разрушение деревянных домов, сильное разрушение кирпичных многоэтажных домов 0,02—0,03МПа, среднее разрушение кирпичных складов, многоэтажных железобетонных, панельных домов; слабое разрушение административных зданий 0,02—0,03 МПа, массивных промышленных сооружений. Воспламенение автомобилей. Разрушения аналогичны землетрясению 6 бал., урагану 12 бал. до 39 м/с. «Гриб» вырос до 3 км над центром взрыва (истинная высота гриба больше на высоту взрыва боеголовки, примерно на 1,5 км), у него появляется «юбочка» из конденсата паров воды в потоке тёплого воздуха, веером затягиваемого облаком в холодные верхние слои атмосферы.

Время: 35c. Расстояние: 14км. Ожоги второй степени. Воспламеняется бумага, тёмный брезент. Зона сплошных пожаров, в районах плотной сгораемой застройки возможны огненный шторм, смерч (Хиросима, «Операция Гоморра»). Слабое разрушение панельных зданий. Вывод из строя авиатехники и ракет. Разрушения аналогичны землетрясению 4-5 баллов, шторму 9—11 балов V = 21 — 28,5м/с. «Гриб» вырос до ~5 км огненное облако светит всё слабее.

Время: 1мин. Расстояние: 22км. Ожоги первой степени — в пляжной одежде возможна гибель. Разрушение армированного остекления. Корчевание больших деревьев. Зона отдельных пожаров.«Гриб» поднялся до 7,5 км облако перестаёт излучать свет и теперь имеет красноватый оттенок из-за содержащихся в нём окислов азота, чем будет резко выделяться среди других облаков.

Время: 1,5мин. Расстояние: 35км . Максимальный радиус поражения незащищённой чувствительной электроаппаратуры электромагнитным импульсом. Разбиты почти все обычные и часть армированных стёкол в окнах— актуально морозной зимой плюс возможность порезов летящими осколками. «Гриб» поднялся до 10 км, скорость подъёма ~220 км/час. Выше тропопаузы облако развивается преимущественно в ширину.
Время: 4мин. Расстояние: 85км. Вспышка похожа на большое неестественно яркое Солнце у горизонта, может вызвать ожог сетчатки глаз, прилив тепла к лицу. Подошедшая через 4 минуты ударная волна ещё может сбить с ног человека и разбить отдельные стёкла в окнах. «Гриб» поднялся свыше 16 км, скорость подъёма ~140 км/час

Время: 8мин. Расстояние: 145км. Вспышка не видна за горизонтом, зато видно сильное зарево и огненное облако. Общая высота «гриба» до 24 км, облако 9 км в высоту и 20—30 км в диаметре, своей широкой частью оно "опирается " на тропопаузу. Грибовидное облако выросло до максимальных размеров и наблюдается ешё порядка часа или более, пока не развеется ветрами и не перемешается с обычной облачностью. Из облака в течение 10—20 часов выпадают осадки с относительно крупными частицами, формируя ближний радиоактивный след.

Время: 5,5-13 часов Расстояние: 300-500км. Дальняя граница зоны умеренного заражения (зона А). Уровень радиации на внешней границе зоны 0,08 Гр/ч; суммарная доза излучения 0,4—4 Гр.

Время: ~10 месяцев. Эффективное время половинного оседания радиоактивных веществ для нижних слоёв тропической стратосферы (до 21 км), выпадение также идёт в основном в средних широтах в том же полушарии, где произведён взрыв.


Памятник первому испытанию атомной бомбы «Тринити». Этот памятник был воздвигнут на полигоне «Уайт Сэндс» в 1965 году, через 20 лет после проведения испытания «Тринити». Мемориальная доска памятника гласит: «На этом месте 16 июля 1945 года прошло первое в мире испытание атомной бомбы». Еще одна мемориальная доска, установленная ниже, свидетельствует о том, что это место получило статус национального исторического памятника. (Photo: Wikicommons)

Мощность ядерного взрыва

1) его энергетическая характеристика, обычно выражаемая тротиловым эквивалентом. Обусловливается механическим и тепловым воздействием взрыва, а также энергией мгновенного нейтронного и гамма-излучения. Ядерные боеприпасы по мощности взрыва условно делятся на сверхмалые (до 1 тыс. т), малые (от 1 до 10 тыс.т), средние (от 10 до 100 тыс.т), крупные (от 100 тыс. до 1 млн. т) и сверхкрупные (от 1 млн. т и более);

2) количественная характеристика энергии взрыва ядерного боеприпаса, обычно выражаемая тротиловым эквивалентом. В мощность ядерного взрыва входит энергия, определяющая развитие механических и тепловых эффектов взрыва, и энергия мгновенного нейтронного и гамма-излучения. Энергия радиоактивного распада продуктов деления при этом не учитывается. Ядерный взрыв 1 кг урана-235 или плутония-239 при полном делении всех ядер эквивалентен по выделившейся энергии химическому взрыву 20000 т тротила.


EdwART. Словарь терминов МЧС , 2010

Смотреть что такое "Мощность ядерного взрыва" в других словарях:

    Мощность ядерного взрыва - количественная характеристика энергии взрыва ядерного боеприпаса, обычно выражаемая тротиловым эквивалентом. В мощность ядерного взрыва входит энергия, определяющая развитие механических и тепловых эффектов взрыва, и энергия мгновенного… … Гражданская защита. Понятийно-терминологический словарь

    Мощность ядерного боеприпаса - количественная характеристика энергии взрыва ядерного боеприпаса. Обычно выражается тротиловым эквивалентом (массой тротила, энергия взрыва которой равна энергии взрыва данного ядерного боеприпаса) в тоннах, кплотоннах и мегатоннах … Словарь военных терминов

    У этого термина существуют и другие значения, см. Эпицентр (значения). Ядерное оружие … Википедия

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Сейсмический метод измерения мощности ядерного взрыва - Термин сейсмический метод измерения мощности означает метод, с помощью которого мощность испытания рассчитывается на основании измерений параметров упругих колебаний грунта, вызванных испытанием... Источник: ДОГОВОР МЕЖДУ СССР И СОЕДИНЕННЫМИ… … Официальная терминология

    Характеристика разрушительного действия боеприпасов, в которых эффект поражения обеспечивается подрывом заряда взрывчатого вещества. Для морских боеприпасов определяется размерами пробоин, создаваемых в днище или борту корабля, в результате… … Морской словарь

    Ядерное оружие … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Ядерный ракетный двигатель на гомогенном растворе солей ядерного топлива (англ. … Википедия

    Проверка характеристик ядерного боеприпаса (мощность, эффективность поражающих факторов) посредством ядерного взрыва. Попутно отрабатываются средства и способы защиты от ядерного оружия. Места нахождения основных полигонов для И.я.о.:… … Словарь черезвычайных ситуаций

    Первое испытание ядерного оружия в Китае - 16 октября 1964 года Китай провел первое испытание ядерного оружия. Взрыв атомной бомбы был осуществлен на полигоне возле озера Лобнор, на северо западе страны, в Синцзянь Уйгурском автономном районе. В тот же день правительство Китая заявило,… … Энциклопедия ньюсмейкеров

Из курса физики известно, что нуклоны в ядре - протоны и нейтроны - удерживаются вместе сильным взаимодействием. Оно значительно превосходит силы кулоновского отталкивания, поэтому ядро в целом стабильно. В 20 веке великий ученый Альберт Эйнштейн обнаружил, что масса отдельно взятых нуклонов несколько больше, чем их же масса в связанном состоянии (когда они образуют ядро). Куда девается часть массы? Оказывается, она переходит в энергию связи нуклонов и благодаря ей могут существовать ядра, атомы и молекулы.

Большинство известных ядер стабильные, но встречаются и радиоактивные. Они непрерывно излучают энергию, так как подвержены радиоактивному распаду. Ядра таких химических элементов небезопасны для человека, но энергию, способную разрушить целые города, они не выделяют.

Колоссальная энергия появляется в результате цепной ядерной реакции. В качестве ядерного горючего в атомной бомбе используют изотоп урана-235, а также плутоний. При попадании в ядро одного нейтрона оно начинает делиться. Нейтрон, будучи частицей без электрического заряда, может легко проникнуть в структуру ядра, минуя действие сил электростатического взаимодействия. В результате оно начнет растягиваться. Сильное взаимодействие между нуклонами начнет ослабевать, кулоновские силы же останутся прежними. Ядро урана-235 разделится на два (реже три) осколка. Появятся два дополнительных нейтрона, которые затем могут вступить в подобную реакцию. Поэтому она называется цепной: то, что вызывает реакцию деления (нейтрон), является ее продуктом.

В результате ядерной реакции выделяется энергия, которая связывала нуклоны в материнском ядре урана-235 (энергия связи). Эта реакция лежит в основе работы ядерных реакторов и взрыве . Для ее осуществления необходимо выполнение одного условия: масса горючего должна быть подкритической. В момент соединения плутония с ураном-235 происходит взрыв.

Ядерный взрыв

После столкновения ядер плутония и урана образуется мощная ударная волна, поражающая все живое в радиусе около 1 км. Огненный шар, появившийся в месте взрыва, постепенно расширяется до 150 метров. Его температура опускается до 8 тысяч Кельвин, когда ударная волна отойдет достаточно далеко. Нагретый воздух переносит радиоактивную пыль на огромные расстояния. Ядерный взрыв сопровождается мощным электромагнитным излучением.