Внутреннее строение и функции митохондрий. Митохондрии

Митохондрии - органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках и симпластах большие количества митохондрий сосредоточены вдоль рабочих элементов - сократительных фибрилл. В клетках, функции которых сопряжены с особо высокими энергозатратами, митохондрии образуют множественные контакты, объединяясь в сеть, или кластеры (кардиомиоциты и симпласты скелетной мышечной ткани).

В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание - это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета.

На ультрамикроскопическом уровне стенка митохондрии состоит из двух мембран - наружной и внутренней. Наружная мембрана имеет относительно ровную поверхность, внутренняя - образует направленные в центр складки, или кристы. Между наружной и внутренней мембранами возникает неширокое (около 15 нм) пространство, которое называется наружной камерой митохондрии; внутренняя мембрана ограничивает внутреннюю камеру. Содержимое наружной и внутренней камер митохондрии различно, и так же, как и сами мембраны, существенно отличается не только по рельефу поверхности, но и по ряду биохимических и функциональных признаков. Наружная мембрана по химическому составу и свойствам близка к другим внутриклеточным мембранам и плазмолемме.

Строение митохондрий

Ее характеризует высокая проницаемость , благодаря наличию гидрофильных белковых каналов. Эта мембрана имеет в своем составе рецепторные комплексы, распознающие и связывающие вещества, поступающие в митохондрию. Ферментный спектр наружной мембраны небогат: это ферменты метаболизма жирных кислот, фосфолипидов, липидов и др. Главной функцией наружной мембраны митохондрии является отграничение органеллы от гиалоплазмы и транспорт необходимых для осуществления клеточного дыхания субстратов.

Внутренняя мембрана митохондрий в большинстве клеток тканей различных органов формирует кристы в виде пластин (ламеллярные кристы), что значительно увеличивает площадь поверхности внутренней мембраны. В последней 20-25 % всех белковых молекул составляют ферменты дыхательной цепи и окислительного фосфорилирования. В эндокринных клетках надпочечников и половых желез митохондрии участвуют в синтезе стероидных гормонов. В этих клетках митохондрии имеют кристы в виде трубочек (тубул), упорядоченно расположенных в определенном направлении. Поэтому кристы митохондрий в стероидпродуцирующих клетках названных органов именуются тубулярными.

Матрикс митохондрии , или содержимое внутренней камеры, представляет собой гелеобразную структуру, содержащую около 50 % белков. Осмиофильные тельца, описанные при электронной микроскопии, - это резервы кальция. Матрикс содержит ферменты цикла лимонной кислоты, катализирующие окисление жирных кислот, синтез рибосом, ферменты, участвующие в синтезе РНК и ДНК. Общее число ферментов превышает 40.

Помимо ферментов, матрикс митохондрии содержит митохондриальную ДНК (митДНК) и митохондриальные рибосомы. Молекула митДНК имеет кольцевидную форму. Возможности внутримитохондриального белкового синтеза ограничены - здесь синтезируются транспортные белки митохондриальных мембран и некоторые ферментные белки, участвующие в фосфорилировании АДФ. Все остальные белки митохондрии кодируются ядерной ДНК, и их синтез осуществляется в гиалоплазме, и в дальнейшем они транспортируются в митохондрию. Жизненный цикл митохондрий в клетке короткий, поэтому природа наделила их двойственной системой воспроизводства - помимо деления материнской митохондрии, возможно образование нескольких дочерних органелл путем почкования.

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

(от греч. mitos - нить, chondrion - зернышко, soma - тельце) представляют собой гранулярные или нитевидные органоиды ( рис. 1, а). Митохондрии можно наблюдать в живых клетках, так как они обладают достаточно высокой плотностью. В таких клетках митохондрии могут двигаться, перемещаться, сливаться друг с другом. Особенно хорошо митохондрии выявляются на препаратах, окрашенных различными способами. Размеры митохондрий непостоянны у разных видов, так же изменчива их форма. Все же у большинства клеток толщина этих структур относительно постоянна (около 0,5 мкм), но длина колеблется, достигая у нитчатых форм 7-60 мкм.

Митохондрии независимо от их величины и формы имеют универсальное строение, их ультраструктура однообразна. Митохондрии ограничены двумя мембранами ( рис. 1, б), у них четыре субкомпартмента: митохондриальный матрикс , внутренняя мембрана , мембранное пространство и внешняя мембрана , обращенная к цитозолю. Внешняя мембрана отделяет ее от остальной цитоплазмы. Толщина внешней мембраны около 7 нм, она не связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружную мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии, ее матрикс , или митоплазму . Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные выпячивания (складки) внутрь митохондрий. Такие выпячивания ( кристы , рис. 27) чаще всего имеют вид плоских гребней. Митохондрии осуществляют синтез АТФ, происходящий в результате процессов окисления органических субстратов и фосфорилирования АДФ.

Митохондрии специализируются на синтезе АТФ путем транспорта электронов и окислительного фосфорилирования. (рис 21-1). Хотя они имеют свою собственную ДНК и аппарат белкового синтеза, большинство их белков кодируется клеточной ДНК и поступает из цитозоля. Более того, каждый поступивший в органеллу белок должен достичь определенного субкомпартмента, в котором он функционирует.

Митохондрии - это "энергетические станции" эукариотических клеток. В кристы встроены ферменты, участвующие в преобразовании энергии питательных веществ, поступающих в клетку извне, в энергию молекул АТФ. АТФ - "универсальная валюта", которой клетки расплачиваются за все свои энергетические расходы. Складчатость внутренней мембраны увеличивает поверхность, на которой размещаются ферменты, синтезирующие АТФ. Количество крист в митохондрии и количество самих митохондрий в клетке тем больше, чем больше энергетических трат осуществляет данная клетка. В летательных мышцах насекомых каждая клетка содержит несколько тысяч митохондрий. Меняется их количество и в процессе индивидуального развития (онтогенеза): в молодых эмбриональных клетках они более многочисленны, чем в клетках стареющих. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях.

Расстояние между мембранами в кристе составляет около 10-20 нм. У простейших, одноклеточных водорослей в некоторых клетках растений и животных выросты внутренней мембраны имеют вид трубочек диаметром около 50 нм. Это так называемые трубчатые кристы.

Митохондриальный матрикс гомогенен и имеет более плотную консистенцию, чем окружающая митохондрию гиалоплазма. В матриксе выявляются тонкие нити ДНК и РНК, а также митохондриальные рибосомы, на которых синтезируются некоторые митохондриальные белки. С помощью электронного микроскопа на внутренней мембране и кристах со стороны матрикса можно увидеть грибовидные образования - АТФ-сомы. Это ферменты, образующие молекулы АТФ. Их может быть до 400 на 1 мкм.

Немногие белки, которые кодируются собственным геномом митохондрий, расположены в основном во внутренней мембране. Они обычно образуют субъединицы белковых комплексов, другие компоненты которых кодируются ядерными генами и поступают из цитозоля. Образование таких гибридных агрегатов требует сбалансирования синтеза этих двух типов субъединиц; каким образом координируется синтез белка на рибосомах разных типов, разделенных двумя мембранами, остается загадкой.

Обычно митохондрии располагаются в местах, где необходима энергия для любых жизненных процессов. Возник вопрос, каким образом транспортируется в клетке энергия - путем ли диффузии АТФ и нет ли в клетках структур, исполняющих роль электрических проводников, которые могли бы энергетически объединять отдаленные друг от друга участки клетки. Гипотеза заключается в том, что разность потенциалов в определенной области мембраны митохондрий передается вдоль нее и превращается в работу в другой области той же мембраны [ Скулачев В.П., 1989 ].

Как представлялось, подходящими кандидатами на эту же роль могли быть мембраны самих митохондрий. Кроме того, исследователей интересовали взаимодействие в клетке множественных митохондрий друг с другом, работа всего ансамбля митохондрий, всего хондриома - совокупности всех митохондрий.

Митохондрии характерны за малым исключением для всех эукариотических клеток как аутотрофных (фотосинтезирующие растения), так и гетеротрофных (животные, грибы) организмов. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии в синтезе молекул АТФ. Поэтому митохондрии часто называют энергетическими станциями клетки.

Внешняя мембрана
Внутренняя мембрана
Матрикс м-на, матрикс, кристы . она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран. Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм. Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии,
ее матрикс или митоплазму. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще всего имеют вид плоских гребней, или крист. Расстояние между мембранами в кристе составляет около 10-20 нм. Часто кристы могут ветвиться или образовывать пальцевидные отростки, изгибаться и не иметь выраженной ориентации. У простейших, одноклеточных водорослей, в некоторых клетках высших растений и животных выросты внутренней мембраны имеют вид трубок (трубчатые кристы).
Матрикс митохондрий имеет тонкозернистое гомогенное строение, в нем иногда выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Теперь стало известно, что нити матрикса митохондрий представляют собой молекулы ДНК в составе митохондриального нуклеоида, а мелкие гранулы – митохондриальные рибосомы.

Функции митохондрий

1. В митохондриях происходит синтез ATP (см. Окислительное фосфорилирование)

PH межмембранного пространства ~4, pH матрикса ~8 | содержание белков в м: 67% - матрикс, 21% -наруж м-на, 6% - внутр м-на и 6% - в межм-ном пр-ве
Хандриома – единая система митохондрий
наружная м-на: порины-поры позволяют проходить до 5 kD | внутренняя м-на: кардиолипин-делает непроницаемой м-ну для ионов |
межм-ное пр-во: группы ферментов фосфорилируют нуклеотиды и сахара нуклеотидов
внутренняя м-на:
матрикс: метаболические ферменты – окисление липидов, окисление углеводов, цикла трикарбоновых к-т, цикла Кребса
Происхождение от бактерий: амеба Pelomyxa palustris единств из эукариот не содержит м., живет в симбиозе с аэробными бактериями | собственная ДНК | схожие с бактериями оx процессы

Митохондриальная ДНК

Деление миохондрий

реплицируется
в интерфазе | репликация не связана с S-фазой | во время кл цикла митох один раз делятся надвое, образуя перетяжку, перетяжка сначала на внутр м-не | ~16,5 kb | кольцевая, кодирует 2 рРНК 22 тРНК и 13 белков |
транспорт белков: сигнальный пептид | амфифильный завиток | митохондриальный распознающий рецептор |
Окислительное фосфорилирование
Цепь переноса электронов
АТР-синтаза
в кл печени, м живут ~20 дней деление митохондрий путем образования перетяжки

16569пн=13белков,22тРНК,2pРНК | гладкая внешняя м-на (порины – проницаемость белков до 10 кДа) складчатая внутренняя (кристы) м-на (75% -белков: транспортные белки-переносчики, ф-ты, компаненты дыхат. цепи и АТФ-синтаза, кардиолипин) матрикс (обогащен ф-тами цитратного цикла) межм-ное пр-во

Митохондрии, что же это такое и какую они выполняют функцию. Кончено не каждый человек понимает, зачем ему нужна эта информация. Но, если вы внимательно прочтете эту статью, то ваше мнение поменяется.

Внутреннюю организацию клеток, как животных, так и растений, можно сравнить с коммуной. Как это понимать?

Это означает, что все клетки равны, и они в свою очередь выполняют одну специфическую роль. Основная роль клеток заключается в создании сбалансированного ансамбля.

Что касается митохондрий, то это отдельная структура. Включает в себя множество внутриклеточных функций.

Содержание статьи:
1. Общая информация

Общая информация

Структуру открыли еще в середине XIX века. Стоит отметить, что в течение целых 150 лет, все ученые считали, что митохондрии способны выполнять только единственную функцию, а именно быть энергетической машиной клетки.

Для того чтобы было немного понятно: организм получает питательные компоненты, после чего происходит процесс деградации, который доходит до митохондрии. Затем наблюдается окислительная деградация всех питательных компонентов, которые поступили в организм.

Где же живут митохондрии?

Митохондрии находятся в цитоплазме, а именно в тех районах, где появляется необходимость в АТФ.

Если более внимательно посмотреть с точки зрения биологии, то митохондрий много в мышечной ткани сердца. В сперматозоидах также расположены митохондрии, а их основная цель это создать защитную маскировку. В сперматозоидах митохондрии вырабатывают значительно меньше энергии, чем в мышечной ткани сердца.

Основное строение митохондрий

Митохондрий имеет достаточно сложную структуру. Состоит из двух мембран, а именно из внешней и внутренней. Помимо этого имеется межмембранное пространство.

Внутри самого митохондрия располагается матрикса, иными словами это внутреннее содержимое. Под микроскопом на матриксе можно заметить небольшие выросты, это крист.

Синтез собственного белка происходит за счет ДНК, РНК и конечно же рибосом.

Что касается внешней и внутренней мембраны, то они выполняют разнообразные функции. Именно по этой причины ученые разделили функциональные способности на химический состав.

Мембрана не превышает более чем 10 нм. Внешняя мембрана немного похожа на плазмалемму, поэтому она выполняет барьерную функцию.

Внутренняя мембрана митохондрий состоит из крист, за счет этого она образует мультиферментативную систему.

Функции митохондрий

Самая основная функция митохондрий – синтез АТФ (форма химической энергии). Если внимательно изучить биологию, то можно заметить, что молекула способна образовываться двумя путями.

Первый путь образования осуществляется исключительно в результате субстратного фосфорилирования. Второй путь образования происходит в процессе переноса остатка именно фосфорной кислоты.

Важно! Митохондрии для синтезирования АТФ используют два пути. Почему? Дело в том, что первый путь образования характерен для начального процесса окисления, который в свою очередь осуществляется в матриксе. Второй путь — уже завершающий процесс энергообразования. В этом случае осуществляется связывания митохондрий с кристами.

Процесс энергообразования можно условно разделить на определенные, поэтапные стадии. Первые две стадии протекают исключительно в матриксе, что касается оставшихся стадий, то они протекают в кристах митохондрий.

  1. Из цитоплазмы в митохондрии начинают поступать не только жирные кислоты, но и соли пировиноградной кислоты. Именно в митохондрии происходит превращение кислот в ацетил-коэнзим.
  2. На второй стадии происходит окисление –конэнзим, в медицинской практике также называют ацетил-СоА. Процесс окисления осуществляется в цикле Кребса. На завершающем этапе второго процесс образуется НАДН+ и две молекулы кислорода.
  3. На третьем этапе по дыхательной цепи производится перенос электролитов, непосредственно с НАДН на кислород. После чего образуется вода.
  4. Образование АТФ.

Как вы видите, что процесс образования энергии в организме человека достаточно серьезный.

Зачем же нужны митохондрии?

Теперь вы знаете, что митохондрии это клеточные органеллы, которые являются основным источником энергии. Для производства энергии, органеллам нужен не только кислород, но и глюкоза.

С глюкозой все более просто, пополнить ее запасы можно с пищей, но, а как же быть с кислородом?

Каждый человек воспринимает за дыхание вдох и выдох, это естественное внешнее дыхание. Процесс самого дыхания необходимо рассмотреть с иной точки зрения.

Итак, когда человек вдыхание, кислород начинает поступать в альвеолы, после чего проникает в кровь, затем разноситься дальше по клеткам и тканям организма.

Кислород состоит из клеток, которые в свою очередь могут окислять питательные компоненты и тем самым выделятся энергия. Зафиксируем ваше внимание: конечный результат процесса – и есть выработка в митохондриях энергии. В медицинской практике данный процесс называют клеточным дыханием.

Теперь можно сделать небольшой вывод: чем больше будет митохондрий, тем больше наш организм получит питательных веществ.

Можно ли повысить количество митохондрий самостоятельно?

Да, повысить количество органелл в организме можно, главное знать как. Самый простой способ это заняться аэробным бегом. В момент аэробного бега, человек дышит свободно, тем самым поступает достаточно большое количество кислорода.

Теперь рассмотрим, как же повысить проникновение кислорода в клетку. Итак, для того чтобы увеличить парциальное давление, непосредственно углекислого газа, необходимо ежедневно делать упражнения на носовое дыхание. Например: вдох и выдох через нос. Выдыхать носом очень тяжело для человека, но при этом есть возможность накопить много углекислого газа. Второй способ – проводить дыхательную гимнастику по методу Бутейко.

Самый простой вариант, это конечно же, использовать специальные маски или аппараты.

Помимо упражнений и аппаратов, необходимо придерживаться правильного питания. В рацион включить как можно больше продуктов, которые богаты на полезные витамины и макро и микроэлементы.

Например:

  1. Мясо.
  2. Рыбу.
  3. Фрукты и овощи.

Для того чтобы повысить уровень глюкозы в организме, которая также активно участвует синтезе АТФ, включить в рацион питания сухофрукты, мед (при условии, что нет аллергической реакции на продукт).

Некоторые врачи советуют использовать витамины и добавки в драже или капсулах. Купить витаминный комплекс в состав которого входит магний, витамины из группы В и С, D-рибоза.

Строение и функции митохондрии видео