Термоядерное оружие. Атомное оружие Термоядерное оружие принцип действия

Характерной особенностью американской внешней политики с приходом в Белый дом Джорджа Буша-младшего (уже во время первого срока его президентства) стал резкий крен в сторону использования силовых методов для обеспечения национальной безопасности и национальных интересов США, практически при полном игнорировании роли ООН и мирового общественного мнения. Достаточно ярким подтверждением этого явилось принятие администрацией Соединенных Штатов так называемой "превентивной военной доктрины", предусматривающей возможность проведения упреждающих военных акций по сугубо субъективному обоснованию их необходимости. В эту доктрину вписывается и силовая модель "контрраспространения", допускающая физическое разрушение ядерной инфраструктуры подозрительного, с точки зрения Вашингтона, государства, которая может быть использована для создания ЯО.

ПРОНИКАЮЩИЕ БОЕГОЛОВКИ

По свидетельству сенаторов-демократов Карла Левина и Джека Рида, "вступив в должность президента США, Буш отказался от Договора по противоракетной обороне. Он оказал давление на Конгресс, чтобы утвердить меры и программы, снижающие порог применения ядерного оружия. Московский Договор об ограничении ядерных потенциалов станет началом и концом инициатив администрации Буша по контролю над вооружениями. Для этой администрации деятельность после окончания холодной войны заключается в том, чтобы опираться на ядерное оружие и уходить от контроля над вооружениями".

В представленном Конгрессу в январе 2002 года "Обзоре ядерной политики" (Nuclear Posture Review; далее для краткости "Ядерный обзор") отражено стремление администрации нивелировать различие между применением ЯО малой мощности и оружия обычного назначения при проведении боевых операций на ТВД. В разделе "Поражение прочных глубоко заглубленных целей" высказано требование о необходимости принятия на вооружение ударостойкой проникающей в грунт на большую глубину ядерной боеголовки малой мощности (до 5 кт). При этом подразумевается, что при использовании такой боеголовки не произойдет выброса радиоактивного заражения на поверхность, а прочные командные бункеры, в том числе и хранилища ОМУ, находящиеся на глубине до 300 м, будут уничтожены. Для реализации этого требования была принята программа разработки "ударостойкого ядерного земного проникателя" (Robust Nuclear Earth Penetrator - RNEP, далее в русской транскрипции - РНЕП).

Однако широкая дискуссия как в американских СМИ, так и на страницах научной периодики показала полную несостоятельность данной программы.

Во-первых, по самым оптимистическим прогнозам, вряд ли удастся добиться проникания боеголовки в грунт на глубину свыше 30 м. Взрыв 5-килотонной боеголовки на такой глубине будет мало чем отличаться от поверхностного взрыва и, следовательно, приведет к губительному радиоактивному заражению поверхности.

Во-вторых, для поражения сильно защищенных бункеров на глубинах порядка 300 м необходима мощность боеголовки не менее 100 кт. И даже при этом совершенно не гарантируется уничтожение химических и биологических агентов ОМУ, которые могут прорваться на поверхность, усугубив эффект заражения. Тем не менее администрация Буша продолжает настаивать на продолжении программы РНЕП, определив в качестве носителя "ядерного проникателя" стратегический бомбардировщик В-2А.

По решению Конгресса в 2000 году в структуре Министерства энергетики было создано ведомство, названное "Администрация национальной ядерной безопасности" (Nation Nuclear Security Administration - NNSA, далее в русской транскрипции ННСА), которая, в тесном взаимодействии с Пентагоном и по его заданиям, осуществляет руководство всеми военными ядерными программами, В ее ведении находятся и все три национальные ядерные оружейные лаборатории - Лос-Аламосская, Ливерморская и Сандийская. На 2006 финансовый год, учитывая неясность концепции РНЕП даже для Минобороны, Конгресс урезал ассигнования на программу до 4 млн. долларов. Однако администрация Буша планирует запросить на нее в 2007 финансовом году 14 млн. долларов. В целом же для обеспечения деятельности ННСА непосредственно в области ЯО в 2006 финансовом году Белый дом требует 6,63 млрд. долларов.

Следует обратить внимание на такой факт. Поначалу в ННСА имелся Консультативный комитет независимых ученых и экспертов в области ЯО. Однако он был распущен перед проведением секретного совещания якобы по ЯО малой мощности - "мини-ньюкам" - разрушителям бункеров на базе Стратегического командования Оффут (штат Небраска) в августе 2003 года. Тем самым ННСА де-факто потеряла свой полунезависимый статус и стала строго засекреченной руководящей структурой ядерного оборонного комплекса США. Нужно также отметить, что на указанное секретное совещание не были допущены даже представители Конгресса.

Между тем, по мнению ряда специалистов, работы по программе РНЕП вовсе не заслуживают столь высокого уровня секретности. Как отмечал физик-ядерщик Сидней Дрелл из Ливерморской национальной лаборатории: "Это вопрос не испытания или развития новых образцов оружия, а принятия решения о возможности скомпоновать конструкцию таким образом, чтобы она могла глубоко проникнуть без разрушения самой себя преждевременным взрывом".

Таким образом, "под сурдинку" мини-ньюков может проводиться разработка принципиально нового поколения ядерного оружия. Программа РНЕП также позволила администрации США оказать давление на Конгресс и добиться отмены в мае 2004 года поправки Спратта-Фурсе (принята в 1994 году), запрещавшей финансирование исследований и разработок по ЯО мощностью до 5 кт.

Об акценте на снижение порога использования ядерного оружия, прежде всего на ТВД, свидетельствуют и разрабатываемые концептуальные документы по условиям применения ЯО в возможных боевых операциях Объединенных вооруженных сил США.

ЧИСТО ТЕРМОЯДЕРНОЕ

Стремление администрации Буша снизить порог применения ядерного оружия и тем самым нивелировать различие между ЯО малой мощности и оружием общего назначения, по мнению многих американских ученых и экспертов, может воплотиться (если уже не воплотилось) в решение о разработке принципиально новых ядерных боеприпасов четвертого поколения - чисто термоядерных.

Напомню, что первое поколение ЯО - атомное, использующее только деление тяжелых ядер урана-235 и плутония-239.

Второе поколение - термоядерное ЯО, в котором предусмотрена как реакция деления тяжелых ядер в качестве детонатора, так и реакция термоядерного синтеза изотопов водорода - дейтерия и трития. При этом повышению удельной мощности способствует реакция деления урана-238 под действием высокоэнергетических нейтронов, возникающих при реакции термоядерного синтеза.

Третье поколение - это рентгеновский лазер. Его действие основано на накачке энергией ядерного взрыва рабочего тела с последующим излучением им рентгеновских лучей. Данное оружие не нашло военного применения и использовалось в качестве блефа администрацией президента Рейгана в рамках "Стратегической оборонной инициативы" (СОИ) как оружие противоракетной обороны.

Таким образом, во всех трех поколениях ЯО непременно присутствует реакция деления тяжелых ядер, сопровождающаяся долговременным радиоактивным заражением окружающей среды. Это обстоятельство и является до сих пор гарантом высокого порога для применения ядерного оружия даже малой и сверхмалой мощности.

Когда же идет речь о ЯО четвертого поколения, то имеется в виду чисто термоядерное оружие, реакция синтеза в котором инициируется альтернативным реакции деления источником энергии. Он должен быть вполне пригоден для осуществления реакции термоядерного синтеза и достаточно компактен для размещения в соответствующей боеголовке.

В американских специализированных научных изданиях и некоторых печатных источниках неправительственных организаций, занимающихся вопросами контроля над вооружениями, проблеме ЯО четвертого поколения придается значительное внимание. В то же время официальные представители администрации категорически отрицают как наличие решения о создании ЯО четвертого поколения, так и то, что национальные ядерные лаборатории занимаются его разработкой.

Однако некоторые независимые эксперты (правда, без каких-либо конкретных ссылок), определенно утверждают, что такие работы ядерными лабораториями ведутся. Так, например, директор "Ядерных наблюдений из Нью-Мексико" (Nucewatch of New Mexico) Джей Коуглин утверждает: "Существует три ядерные лаборатории, и все три имеют программы по термоядерному синтезу - одинаковые или разные. Такой интерес само собой разумеющийся┘".

Кратко, но по основным моментам полно, вопрос о чисто термоядерном оружии освещается в статье Джеймса Петокоукиса (James M. Pethokoukis. H-bomb Baby boom? The US News and World Report, October 13, 2003.): "┘активисты и исследователи говорят, что на длительный период зеленый свет для исследования могла также дать поддержка полностью нового мини-ньюка, так называемая чисто термоядерная бомба". Ему вторит Джей Коуглан, эксперт из Нью-Мексико: "Потворствуя мини-ньюкам, вы... открываете дверь к созданию даже более продвинутых мини-ньюков, таких, как чисто термоядерное оружие".

Чисто термоядерные бомбы могли бы быть более компактными и мощными, чем сегодняшние мини-ньюки, без выпадения радиоактивных осадков. Существующие конструкции получают основную мощность от синтеза водородных атомов, но для этого требуется могучая спичка - атомный взрыв, - чтобы зажечь процесс. А реакция деления означает осадки. Чистое термоядерное оружие испустило бы изрядное количество мгновенной убийственной радиации, но в виде короткоживущих нейтронов. "Вы могли бы вводить ваши воинские части через 48 часов, потому что не будет никаких радиоактивных осадков", - говорит Арджун Махиджани из Института исследований энергии и окружающей среды в Парке Такома, Mериленд. Это - военное преимущество, но это могло бы снизить порог использования этого оружия.

По словам Андрэ Гаспонера из Независимого научно-исследовательского института в Женеве, реакция деления требует критической массы плутония или урана; для чисто термоядерного оружия не существует критической массы, и потому "оно может быть, сколь угодно малым по вашему желанию, виртуально - атомными пулями". Однако будет дебютировать это ЯО, полагает эксперт, как ультрамощные боеголовки крылатых ракет.

ТЕХНИЧЕСКИЕ ПРЕГРАДЫ

Наибольшая техническая преграда - "поджог" реакции синтеза без реакции деления. Размером со стадион и стоимостью в 3,3 млрд. долларов Национальная лазерная установка (NIF - National Ignition Facility) в Ливерморской национальной лаборатории им. Лоуренса в Калифорнии исследует один из подходов. Начиная с 2008 года NIF будет обстреливать 192 лазерными лучами капсулы изотопов водорода размером с горошину, сжимая и нагревая их до 100 млн. градусов, чтобы зажечь реакцию синтеза. Официальные лица NIF указывают, что они не разрабатывают инициируемые лазером бомбы. "Нет ни одного такого аспекта, на который вы могли бы указать, - говорит руководитель NIF Джордж Миллер. - Это невыполнимо, и мы не планируем делать это".

Роль NIF состоит в том, чтобы изучить возможность создания гражданских электростанций на основе синтеза и проводить базовые исследование, способствующие оценке готовности существующего ядерного арсенала. Но то, что NIF открывает возможность осуществления реакции синтеза без реакции деления, может оказаться полезным для разработчиков оружия, заявляют некоторые эксперты. Например, Глен Вурден, физик - специалист по синтезу Лос-Аламосской национальной лаборатории: "Лазерный синтез работает очень похоже, как и в оружии".

Ключи к разгадке проблемы способна также добыть Национальная лаборатория Сандия в Нью-Мехико, где "Z-машина" управляет огромным импульсом электрического тока через связку очень тонких проводов. Результат - плазменный взрыв, испускающий пучок рентгеновских лучей, которые могут катализировать реакцию термоядерного синтеза. Некоторые теоретики даже предполагают, что частицы антиматерии послужат в качестве спускового механизма, хотя пока физики создали лишь несколько антиатомов.

Препятствия могли бы растягивать календарный график на десятилетия. Но даже в 1997 году чисто термоядерное оружие казалось достаточно вероятным для Ганса Бете, нобелевского лауреата по физике и ветерана усилий по созданию атомной бомбы. Он настоятельно советовал президенту Клинтону не финансировать подобные исследования. "В наши дни маленькие бомбы начинают вырисовываться в огромные", - говорил Бете.

Принципиально новой установкой для исследований термоядерного синтеза является Magnetized Target Fusion (MTF). Она совместно используется Лос-Аламосской национальной лабораторией и Научно-исследовательской лабораторией ВВС (база ВВС Киртланд, Нью-Мексико). В отличие от обычного токомака и лазерного возбуждения синтеза MTF имеет преимущество в менее дорогостоящей возможности получения термоядерной энергии в промышленных масштабах. В последние годы фокус усилий в исследованиях синтеза, особенно в США, перемещается от научной возможности к экономической практичности. Установка предназначена также для проведения исследований по военным программам.

Таким образом, в США создана мощная материальная основа для успешных исследований проблем термоядерного синтеза по трем разным направлениям, разумеется, не только для промышленного освоения термоядерной энергии, но и для военного применения.

Эта основа закладывалась в период второго срока президентства Клинтона в рамках подготовки к заключению Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) для обеспечения надежного функционирования ядерного арсенала США в условиях запрещения ядерных испытаний - Программы сопровождения ядерного арсенала.

Уже тогда эксперты Института исследований энергии и окружающей среды отмечали, что официальные планирующие документы по этой программе свидетельствовали: Министерство обороны США намерено поддерживать разработку нового ЯО. С точки зрения рационализма, Пентагону необходимо не только иметь передовые установки, чтобы заинтересовать и удержать ученых, но также предоставить им благоприятные возможности для практической реализации их знаний как творцов средств поражения будущего. Министерство обороны отрицает стремление разрабатывать чисто термоядерное оружие. Но проводимая Пентагоном научно-техническая деятельность может привести к его созданию, несмотря на все опровержения, потому что она на практике именно этому и способствует.

На проведение в США работ по чисто термоядерному оружию указывал в 1999 году академик Михайлов ("Перспективы новых технологий разработки ядерного оружия". "НВО", # 15, 1999). В частности, Михайлов отмечал, что в рамках Программы сопровождения ядерного арсенала "также будут проводиться работы по созданию принципиально новых видов оружия и оценке физических принципов, существенных для проектирования ядерного оружия. Надо полагать, речь идет, по сути, о практически "чистом" термоядерном заряде, резко понижающем психологический барьер применения ядерного оружия, и без долговременного заражения продуктами взрыва".

Характерно, что Министерство обороны США оперативно реагирует на даже, казалось бы, экзотические источники ядерной энергии для их использования в военных целях. Так, например, научные эксперименты по накачке гафния низкоэнергетическим рентгеновским излучением, приведшие к образованию метастабильного атомного изомера - hafnium-178m2, показавшие 60-кратное увеличение энергии последующего гамма-излучения, сразу же были включены в пентагоновский "Перечень военно-критических технологий": "Такая экстраординарная плотность энергии имеет потенциал революционизировать все аспекты ведения военных действий".

ПОНИЖЕНИЕ ПОРОГА

Следует также отметить, что помимо трех ядерных оружейных лабораторий Министерства энергетики, работы в области атомной изомерии в военно-прикладном плане, наряду с термоядерным синтезом, проводит упомянутая Исследовательская лаборатория ВВС в Киртланде.

Как уже подчеркивалось выше, с приходом в Белый дом Джорджа Буша-младшего наметился четкий акцент на снижение порога использования ЯО малой мощности, прежде всего на ТВД. Чисто термоядерное оружие в наибольшей степени соответствует такому стремлению.

Принципиальное преимущество чисто термоядерного боеприпаса перед нынешним поколением термоядерных БП с атомным детонатором - отсутствие долговременного заражения радиоактивными продуктами взрыва последнего. При чисто термоядерном взрыве образуются только инертный газ гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию. К тому же путем использования соответствующих материалов для конструкции корпуса боеприпаса можно снизить выход потока нейтронов в окружающую среду. Основными поражающими факторами такого боеприпаса будут только ударная волна и световое излучение. Что же касается механического поражающего фактора - ударной волны, то он может варьироваться в широчайших пределах от единиц до тысяч и более килограммов тротилового эквивалента, что не грозит человечеству "ядерной зимой" при применении такого термоядерного боеприпаса на высокоточных носителях для нанесения "хирургических ударов" по стратегически значимым целям.

Какие имеются стимулы создания такого термоядерного заряда для США? Это прежде всего интересы повышения эффективности противоракетной обороны - как на ТВД, так и национальной. Особенно теперь, когда выход США из Договора по ПРО более не ограничивает совершенствование систем противоракетной обороны и выбор средств для повышения ее эффективности. Использование чисто термоядерного боеприпаса для поражения вражеских боеголовок даже на малой высоте над своей территорией не приведет к выпадению радиоактивных осадков. Вдобавок такой боеприпас, в зависимости от его тротилового эквивалента, может обладать достаточно широким дистанционным поражающим эффектом.

В случае применения боеголовок с чисто термоядерным зарядом для поражения находящихся примерно в 300 м от поверхности земли и сильно укрепленных бункеров при внедрении боеголовки даже на небольшую глубину нейтронное излучение практически полностью будет поглощено прилегающими к месту взрыва слоями грунта. Но надо иметь в виду, что для уничтожения особо важных и защищенных объектов при реально достижимой глубине проникания боеприпаса требуется мощность взрыва порядка 100 кт и более.

При подводном взрыве чисто термоядерного боеприпаса нейтронное излучение также будет поглощено водными массами - следовательно, такое оружие будет эффективным противолодочным и противокорабельным оружием.

Исключительно адекватно чисто термоядерное оружие вписывается в американскую концепцию "контрраспространения" ОМУ, допускающую физическое разрушение инфраструктуры его производства (имеется в виду прежде всего ЯО враждебных, по мнению США, государств).

Поэтому есть высокая степень вероятности, что в условиях строжайшей секретности работы по созданию чисто термоядерного оружия ведутся в Соединенных Штатах полным ходом. На проведение таких работ указывают и некоторые американские эксперты. Единственной, но критической проблемой здесь является разработка такого компактного импульсного источника энергии, который был бы способен инициировать взрывную термоядерную реакцию синтеза и мог бы быть размещен в соответствующей боеголовке. Однако некоторые предпосылки решения этой проблемы в настоящее время имеются. Особо можно выделить три направления:

Первое - исследования процессов катализа термоядерного синтеза на субатомном уровне с целью возможности снижения его энергетики.

Второе - разработка компактных сверхмощных импульсных источников электромагнитной энергии.

Третье - разработка на базе последних достижений нанотехнологий накопителей электрической энергии, достаточной для "поджога" взрывного термоядерного синтеза.

В частности, относительно первого направления есть информация, что международный коллектив физиков в канадской "Национальной лаборатории физики ядра и элементарных частиц" выполнил эксперимент, который привел к интенсивному синтезу необычных молекул. Они состоят из ядер тяжелых изотопов водорода дейтерия и трития и связанного с ними мю-мезона. Теоретические расчеты показывают, что такие мезомолекулы могут катализировать управляемые термоядерные реакции, протекающие при относительно низких температурах.

Но, возможно, более перспективным окажется второе направление в связи с тем, что уже сконструированы компактные мощные генераторы импульсного электромагнитного излучения (FC-генераторы), способные путем сжатия магнитного потока взрывом обычной взрывчатки производить электрический ток, в 10-1000 раз превышающий ток в разряде типичной молнии. Не исключено, что подобный генератор был использован в американской электромагнитной бомбе (Е-бомбе), взрыв которой 26 марта 2003 года вывел из строя все электронное оборудовании телевизионного центра в Багдаде.

Также возможно, что в связи с бурным развитием нанотехнологий перспективным может оказаться и третье направление разработки компактных источников энергии, достаточной для инициирования взрывной термоядерной реакции. В настоящее время есть данные, что уже имеются конденсаторы с удельной емкостью в 30 киловатт электрической энергии на один килограмм веса. Такие конденсаторы могут быть использованы для накачки лазеров, расположенных в боеголовке, и тем самым инициировать взрывную реакцию синтеза. По имеющейся информации, известная американская фирма "Интел" разрабатывает кремниевые микролазеры для использования при создании принципиально нового поколения микропроцессоров для ЭВМ. Эти кремниевые микролазеры способны усиливать на три порядка выход энергии излучения по сравнению с энергией, затрачиваемой на их накачку. Вполне вероятно, подобные эффекты могут быть получены и на соответствующих макролазерах.

В общем, миллиарды долларов, затрачиваемые самой передовой в технологическом отношении страной на деятельность ядерных оружейных лабораторий, не исключено, рано или поздно приведут к появлению четвертого поколения ЯО - чисто термоядерного. Многие эксперты полагают, что есть определенная степень вероятности появления чисто термоядерного оружия раньше, чем будет освоено промышленное использование термоядерной энергии на экономически приемлемом уровне. История может повториться, как это было с атомным оружием - сначала бомба, а потом энергетика.

Использование ядерных материалов человеком

В 1939 г. немецкий ученый О. Ган обнаружил явление особого радио­активного распада ядер урана под действием нейтронов. Бомбардиров­ка ядер урана-235 нейтронами вызывает деление их на два осколка, мас­сы которых относятся примерно как 2:3. Среди осколков деления встре­чаются элементы от цинка до тербия с порядковыми номерами от 30 до 65 и массовыми числами от 70 до 160. Осколки деления ядер урана неста­бильны и претерпевают серию бета-распадов, превращаясь в конце кон­цов в стабильные ядра.

Характерной чертой таких цепочек является постепенное увеличе­ние периодов полураспада в направлении от начала цепочки к её концу. Избыток энергии осколков деления уносится нейтронами и гамма-квантами (гамма-лучами). При делении ядер урана обычно испускается 2-3 нейтрона, с меньшей вероятностью могут быть ва­рианты с вылетом одного, четырех и даже пяти нейтронов. Средняя энергия нейтронов деления около 2 МэВ. Среднее количес­тво гамма-квантов, испускаемых возбужденными ядрами осколков, около 8. Каждый из них несет энергию в количестве 0,9 МэВ.

Вылетевшие нейтроны в свою очередь могут бомбардировать другие ядра урана и таким образом продолжить процесс их деления. Отношение числа нейтронов в каком-либо поколении к числу нейтронов в предыдущем поколении, называется коэффици­ентом размножения нейтронов. В реальных условиях часть этих ней­тронов будет поглощаться примесями к урану-235, часть уйдет за пределы урановой массы. Но достаточно числу нейтронов в каждом цикле увеличиться более чем в 1 раз (коэффициент размножения больше 1), как развивается цепной процесс деления. При делении атомов, содержащихся в 1 грамме урана-235, выделяется энергия эквивалентная сгоранию 3000 тонн каменного угля или 2000 тонн нефти. Для получения цепной реакции необходи­ма определенная масса урана, которая называется критической.

В то время немецкие ученые не смогли получить цепную реак­цию деления ядер урана, но открытие О.Гана предопределило нача­ло эры использования атомной энергии человеком.

2 декабря 1942 года, на спортивной площадке Чикагского универ­ситета группой физиков-атомщиков под руководством великого италь­янского ученого Э.Ферми был запущен первый атомный котел, в котором происходила самоподдерживающаяся управляемая атомная реакция.

Этому успеху предшествовали почти полувековые иссле­дования в области теоретической и экспериментальной физики, проводимые под руководством П.Кюри, М.Склодовской - Кюри, Э.Резерфорда, Н.Бора, А.Эйнштейна, М.Планка, Ф.Жолио - Кюри, И.Жолио - Кюри, Л.Мейтнер, О.Гана, Д.Чедвика, В.Гейзенберга, И.В.Курчатова и других выдающихся ученых-атомщиков.



Результаты осуществленной группой Ферми цепной реакции были с самого начала поставлены на военные рельсы, а именно - на срочное создание в США атомного оружия с целью опередить Гитле­ра, физики которого работали в этом же направлении.

В 1944 г. в США под руководством Э.Ферми была создана и ис­пытана атомная бомба, а в августе 1945 г. атомной бомбардировке подверглись японские города Хиросима и Нагасаки. Тогда погибла третья часть населения этих городов. В последующие годы многие умирали от лучевой болезни, лейкозов и других недугов, связанных с радиоактивным облучением.

25 декабря 1946 г. под руководством И.В.Курчатова был осу­ществлен запуск первого советского управляемого уран-графито­вого реактора, в котором в дальнейшем производился оружейный плутоний, использующийся в качестве ядерного заряда вместо урана-235 при производстве атомного оружия. Первая советс­кая атомная бомба испытана 29 августа 1949 года.

При атомном взрыве образуются продукты деления и остается часть неразделившихся атомов урана-235 или плутония-239, которые при наземном взрыве выбрасыва­ются в атмосферу.

Впоследствии в СССР была созда­на и испытана в 1953 г водородная бом­ба, действие которой основано на тер­моядерной реакции взаимодействия дейтерия и трития:

Эта реакция протекает мгновенно (3 х 10 -6 секунды), но для ее начала не­обходима очень высокая температура, которую возможно получить лишь при атомном взрыве. Вследствие этого в водородной бомбе, содержащей смесь дейтерия и трития, в качестве детонато­ра служит атомный плутониевый заряд.

Деление урана-235, плутония-239 и особенно термоядерная реакция, вы­деляют большое количество нейтронов. Последние бомбардируют окружающие вещества, превращая их в радиоактивные (наведенная радиоактив­ность). Кроме того в атмосферу выбрасывается большое количест­во продуктов деления. Наиболее важные из них - цезий-137и стронций-90.

Рис. 9. Схема атомной бомбы.

1 - заряд урана-235 или плутония-239; 2 - обычное взрывчатое вещество (запал для соединения кусков урана с целью достижения крити­ческой массы); 3 - оболочка из металла большой плотности (И.В. Савельев, 1987).

Термоя́дерное ору́жие (оно же Водородная бомба) - тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом, используемый в водородной бомбе уран-238, распадается под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков.

Схема Теллера-Улама.

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим - основной элемент бомбы. Он изготовлен из урана-238 - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.


A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Понятие ядерное оружие объединяет взрывные устройства, в которых энергия взрыва образуется при делении или слиянии ядер. В узком смысле под ядерным оружием понимают взрывные устройства, использующие энергию, выделяемую при делении тяжелых ядер. Устройства, использующее энергию, выделяющуюся при синтезе легких ядер, называются термоядерными .

Ядерное оружие

Ядерная реакция, энергия которой используется в ядерных взрывных устройствах, заключается в делении ядра в результате захвата этим ядром нейтрона. Поглощение нейтрона способно привести к делению практически любого ядра, однако для подавляющего большинства элементов реакция деления возможна только в случае если нейтрон до поглощения его ядром обладал энергией, превышающей некоторое пороговое значение. Возможность практического использования ядерной энергии в ядерных взрывных устройствах или в ядерных реакторах обусловлена существованием элементов, ядра которых делятся под воздействием нейтронов любой энергии, в том числе сколь угодно малой. Вещества, обладающие подобным свойством называются делящимися веществами .

Единственным встречающимся в природе в заметных количествах делящимся веществом является изотоп урана с массой ядра 235 атомных единиц массы (уран-235). Содержание этого изотопа в природном уране составляет всего 0.7%. Оставшаяся часть приходится на уран-238. Поскольку химические свойства изотопов абсолютно одинаковы, для выделения урана-235 из природного урана необходимо осуществление достаточно сложного процесса разделения изотопов. В результате может быть получен высокообогащенный уран , содержащий около 94% урана-235, который пригоден для использования в ядерном оружии.

Делящиеся вещества могут быть получены искусственно, причем наименее сложным с практической точки зрения является получение плутония-239 , образующегося в результате захвата нейтрона ядром урана-238 (и последующей цепочки радиоактивных распадов промежуточных ядер). Подобный процесс можно осуществить в , работающем на природном или слабообогащенном уране. В дальнейшем, плутоний может быть выделен из отработавшего топлива реактора в процессе химической переработки топлива, что заметно проще осуществляемого при получении оружейного урана процесса разделения изотопов.

Для создания ядерных взрывных устройств могут быть использованы и другие делящиеся вещества, например уран-233 , получаемый при облучении в ядерном реакторе тория-232. Однако, практическое применение нашли только уран-235 и плутоний-239, прежде всего из-за относительной простоты получения этих материалов.

Возможность практического использования выделяющейся при делении ядер энергии обусловлена тем, что реакция деления может иметь цепной, самоподдерживающийся характер. В каждом акте деления образуется примерно два вторичных нейтрона, которые, будучи захвачены ядрами делящегося вещества, могут вызвать их деление, в свою очередь приводящее к образованию еще большего количества нейтронов. При создании специальных условий, количество нейтронов, а следовательно и актов деления, растет от поколения к поколению.

Зависимость количества актов деления от времени может быть описана с помощью так называемого коэффициента размножения нейтронов k, равного разности количества нейтронов образующихся в одном акте деления и количества нейтронов, потерянных за счет поглощения, не приводящего к делению, или за счет ухода за пределы массы делящегося вещества. Параметр k, таким образом, соответствует количеству актов деления которое вызывает распад одного ядра. Если параметр k меньше единицы, то реакция деления не имеет цепного характера, так как количество нейтронов, способных вызвать деление оказывается меньшим, чем их начальное количество. При достижении значения k=1 количество нейтронов, вызывающих деление, а значит и актов распада, не меняется от поколения к поколению. Реакция деления приобретает цепной самоподдерживающийся характер. Состояние вещества, в котором реализуется цепная реакция деления с k=1, называется критическим . При k>1 говорят о сверхкритическом состоянии.

Зависимость количества актов деления от времени может быть представлена следующим образом:

N=N o *exp((k-1)*t/T)

  • N — полное число актов деления, произошедших за время t с начала реакции,
  • N 0 — число ядер, претерпевших деление в первом поколении, k-коэффициент размножения нейтронов,
  • T — время «смены поколений,» т.е. среднее время между последовательными актами деления, характерное значение которого составляет 10 -8 сек.

Если предположить, что цепная реакция начинается с одного акта деления и значение коэффициента размножения составляет 2, то несложно оценить количество поколений, необходимое для выделения энергии, эквивалентной взрыву 1 килотонны тринитротолуола (10 12 калорий или 4.1910 12 Дж). Поскольку в каждом акте деления выделяется энергия равная примерно 180 МэВ (2.910 -11 Дж), должно произойти 1.4510 23 актов распада (что соответствует делению примерно 57 г делящегося вещества). Подобное количество распадов произойдет в течение примерно 53 поколений делящихся ядер. Весь процесс займет около 0.5 микросекунд, причем основная доля энергии выделится в течение последних нескольких поколений. Продление процесса всего на несколько поколений приведет к значительному росту выделенной энергии. Так, для увеличения энергии взрыва в 10 раз (до 100 кт) необходимо всего пять дополнительных поколений.

Основным параметром, определяющим возможность осуществления цепной реакции деления и скорость выделения энергии в ходе этой реакции является коэффициент размножения нейтронов. Этот коэффициент зависит как от свойств делящихся ядер, таких как количество вторичных нейтронов, сечения реакций деления и захвата, так и от внешних факторов, определяющих потери нейтронов вызванные их уходом за пределы массы делящегося вещества. Вероятность ухода нейтронов зависит от геометрической формы образца и увеличивается с увеличением площади его поверхности. Вероятность же захвата нейтрона пропорциональна концентрации ядер делящегося вещества и длине пути, который нейтрон проходит в образце. Если взять образец, имеющий форму шара, то при увеличении массы образца вероятность приводящего к делению захвата нейтрона растет быстрее, чем вероятность его ухода, что приводит к увеличению коэффициента размножения. Массу, при которой подобный образец достигает критического состояния (k=1), называют критической массой делящегося вещества. Для высокообогащенного урана значение критической массы составляет около 52 кг, для оружейного плутония-11 кг. Критическую массу можно уменьшить примерно вдвое окружив образец делящегося вещества слоем материала, отражающего нейтроны, например, бериллия или природного урана.

Цепная реакция возможна и при наличии меньшего количества делящегося вещества. Поскольку вероятность захвата пропорциональна концентрации ядер, увеличение плотности образца, например в результате его сжатия, способно привести к возникновению в образце критического состояния. Именно этот способ и применяется в ядерных взрывных устройствах, в которых масса делящегося вещества, находящаяся в подкритическом состоянии переводится в сверхкритическое с помощью направленного взрыва, подвергающего заряд сильной степени сжатия. Минимальное количество делящегося вещества, необходимого для осуществления цепной реакции, зависит в основном от достижимой на практике степени сжатия.

Степень и скорость сжатия массы делящегося вещества определяют не только количество расщепляющегося материала, необходимого для создания взрывного устройства, но и мощность взрыва . Причиной этого служит тот факт, что энергия, выделяющаяся в ходе цепной реакции приводит к быстрому разогреву массы делящегося вещества и, как результат, к разлету этой массы. Через некоторое время заряд теряет критичность и цепная реакция останавливается. Поскольку полная энергия взрыва зависит от количества ядер, успевших претерпеть деление за время в течение которого заряд находился в критическом состоянии, для получения достаточно большой мощности взрыва необходимо удерживать массу делящегося вещества в критическом состоянии как можно дольше. На практике это достигается путем быстрого сжатия заряда с помощью направленного взрыва, так что в момент начала цепной реакции, масса делящегося вещества обладает очень большим запасом критичности.

Поскольку в процессе сжатия заряд находится в критическом состоянии, необходимо устранить посторонние источники нейтронов, которые могут дать начало цепной реакции еще до достижения зарядом необходимой степени критичности. Преждевременное начало цепной реакции приведет, во-первых, к уменьшению скорости выделения энергии, а во-вторых, к более раннему разлету заряда и потере им критичности. После того как масса делящегося вещества оказалась в критическом состоянии, начало цепной реакции могут дать акты спонтанного деления ядер урана или плутония. Однако, интенсивность спонтанного деления оказывается недостаточной для того, чтобы обеспечить необходимую степень синхронизации момента начала цепной реакции с процессом сжатия вещества и для обеспечения достаточно большого количества нейтронов в первом поколении. Для решения этой проблемы в ядерных взрывных устройствах применяют специальный источник нейтронов, который обеспечивает «впрыск» нейтронов в массу делящегося вещества. Момент «впрыска» нейтронов должен быть тщательно синхронизован с процессом сжатия, так как слишком раннее начало цепной реакции приведет к быстрому началу разлета делящегося вещества и, следовательно, к значительному уменьшению энергии взрыва.

Взрыв первого ядерного взрывного устройства был произведен США 16 июля 1945 г. в Аламогордо, штат Нью Мексико. Устройство представляло собой плутониевую бомбу, в которой для создания критичности был использован направленный взрыв. Мощность взрыва составила около 20 кт. В СССР взрыв первого ядерного взрывного устройства, аналогичного американскому, был произведен 29 августа 1949 г.

Термоядерное оружие

В термоядерном оружии энергия взрыва образуется в ходе реакций синтеза легких ядер, таких как дейтерий, тритий, являющихся изотопами водорода или литий. Подобные реакции могут происходить только при очень высоких температурах, при которых кинетическая энергия ядер достаточна для сближения ядер на достаточно малое расстояние. Температуры, о которых идет речь, составляют около 10 7 -10 8 К.

Использование реакций синтеза для увеличения мощности взрыва может быть произведено по-разному. Первый способ заключается в помещении внутрь обычного ядерного устройства контейнера с дейтерием или тритием (или дейтеридом лития). Возникающие в момент взрыва высокие температуры приводят к тому, что ядра легких элементов вступают в реакцию, за счет которой происходит дополнительное выделение энергии. С помощью подобного метода можно заметно увеличить мощность взрыва. В то же время, мощность подобного взрывного устройства по-прежнему ограничивается конечным временем разлета делящегося вещества.

Другой способ-создание многоступенчатых взрывных устройств, в которых за счет специальной конфигурации взрывного устройства энергия обычного ядерного заряда (т.н. первичный заряд) используется для создания необходимых температур в отдельно расположенном «вторичном» термоядерном заряде, энергия которого, в свою очередь, может быть использована для подрыва третьего заряда и т.д. Первое испытание подобного устройства-взрыв «Майк»- было произведено в США 1 ноября 1952 г. В СССР подобное устройство было впервые испытано 22 ноября 1955 г. Мощность взрывного устройства, сконструированного подобным образом, может быть сколь угодно большой. Самый мощный ядерный взрыв был произведен именно с помощью многоступенчатого взрывного устройства. Мощность взрыва составила 60 Мт, причем мощность устройства была использована лишь на одну треть.

Последовательность событий при ядерном взрыве

Выделение огромного количества энергии, происходящее в ходе цепной реакции деления, приводит к быстрому разогреву вещества взрывного устройства до температур порядка 10 7 К. При таких температурах вещество представляет собой интенсивно излучающую ионизированную плазму. На этом этапе в виде энергии электромагнитного излучения выделяется около 80% энергии взрыва. Максимум энергии этого излучения, называемого первичным, приходится на рентгеновский диапазон спектра. Дальнейший ход событий при ядерном взрыве определяется в основном характером взаимодействия первичного теплового излучения с окружающей эпицентр взрыва средой, а также свойствами этой среды.

В случае если взрыв произведен на небольшой высоте в атмосфере, первичное излучение взрыва поглощается воздухом на расстояниях порядка нескольких метров. Поглощение рентгеновского излучения приводит к образованию облака взрыва, характеризующегося очень высокой температурой. На первой стадии это облако растет в размерах за счет радиационной передачи энергии из горячей внутренней части облака к его холодному окружению. Температура газа в облаке примерно постоянна по его объему и снижается по мере его увеличения. В момент когда температура облака снижается до примерно 300 тысяч градусов, скорость фронта облака уменьшается до величин, сравнимых со скоростью звука. В этот момент формируется ударная волна , фронт которой «отрывается» от границы облака взрыва. Для взрыва мощностью 20 кт это событие наступает примерно через 0.1 мсек после взрыва. Радиус облака взрыва в этот момент составляет около 12 метров.

Интенсивность теплового излучения облака взрыва целиком определяется видимой температурой его поверхности. На некоторое время воздух, нагретый в результате прохождения взрывной волны, маскирует облако взрыва, поглощая излучаемую им радиацию, так что температура видимой поверхности облака взрыва соответствует температуре воздуха за фронтом ударной волны, которая падает по мере увеличения размеров фронта. Через примерно 10 миллисекунд после начала взрыва температура во фронте падает до 3000°С и он вновь становится прозрачным для излучения облака взрыва. Температура видимой поверхности облака взрыва вновь начинает расти и через примерно 0.1 сек после начала взрыва достигает примерно 8000°С (для взрыва мощностью 20 кт). В этот момент мощность излучения облака взрыва максимальна. После этого температура видимой поверхности облака и, соответственно, излучаемая им энергия быстро падает. В результате, основная доля энергии излучения высвечивается за время меньшее одной секунды.

Формирование импульса теплового излучения и образование ударной волны происходит на самых ранних стадиях существования облака взрыва. Поскольку внутри облака содержится основная доля радиоактивных веществ, образующихся в ходе взрыва, дальнейшая его эволюция определяет формирование следа радиоактивных осадков. После того как облако взрыва остывает настолько, что уже не излучает в видимой области спектра, процесс увеличения его размеров продолжается за счет теплового расширения и оно начинает подниматься вверх. В процессе подъема облако увлекает за собой значительную массу воздуха и грунта. В течение нескольких минут облако достигает высоты в несколько километров и может достичь стратосферы. Скорость выпадения радиоактивных осадков зависит от размера твердых частиц, на которых они конденсируются. Если в процессе своего формирования облако взрыва достигло поверхности, количество грунта, увлеченного при подъеме облака будет достаточно велико и радиоактивные вещества оседают в основном на поверхности частиц грунта, размер которых может достигать нескольких миллиметров. Такие частицы выпадают на поверхность в относительной близости от эпицентра взрыва, причем за время выпадения их радиоактивность практически не уменьшается.

В случае если облако взрыва не касается поверхности, содержащиеся в нем радиоактивные вещества конденсируются в гораздо меньшие частицы с характерными размерами 0.01-20 микрон. Поскольку такие частицы могут достаточно долго существовать в верхних слоях атмосферы, они рассеиваются над очень большой площадью и за время, прошедшее до их выпадения на поверхность, успевают потерять значительную долю своей радиоактивности. В этом случае радиоактивный след практически не наблюдается. Минимальная высота, взрыв на которой не приводит к образованию радиоактивного следа, зависит от мощности взрыва и составляет примерно 200 метров для взрыва мощностью 20 кт и около 1 км для взрыва мощностью 1 Мт.

Ударная волна, формирующаяся на ранних стадиях существования облака взрыва, представляет собой один из основных поражающих факторов атмосферного ядерного взрыва. Основными характеристиками ударной волны являются пиковое избыточное давление и динамическое давление во фронте волны. Способность объектов выдерживать воздействие ударной волны зависит от множества факторов, таких как наличие несущих элементов, материал постройки, ориентация по отношению ко фронту. Избыточное давление в 1 атм (15 фунтов/кв. дюйм), возникающее на расстоянии 2.5 км от наземного взрыва мощностью 1 Мт, способно разрушить многоэтажное здание из железобетона. Для противостояния воздействию ударной волны военные объекты, особенно шахты баллистических ракет проектируют таким образом, чтобы они могли выдержать избыточные давления в сотни атмосфер. Радиус области, в которой при взрыве в 1 Мт создается подобное давление составляет около 200 метров. Соответственно, для поражения укрепленных целей особую роль играет точность атакующих баллистических ракет.

На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления. Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

Еще одним поражающим фактором ядерного оружия является проникающая , представляющая собой поток высокоэнергетичных нейтронов и гамма-квантов, образующихся как непосредственно в ходе взрыва так и в результате распада продуктов деления. Наряду с нейтронами и гамма-квантами, в ходе ядерных реакций образуются также альфа- и бета-частицы, влияние которых можно не учитывать из-за того что они очень эффективно задерживаются на расстояниях порядка нескольких метров. Нейтроны и гамма-кванты продолжают выделяться в течение достаточно длительного времени после взрыва, оказывая воздействие на радиационную обстановку. К собственно проникающей радиации обычно относят нейтроны и гамма-кванты появляющиеся в течение первой минуты после взрыва. Подобное определение связано с тем, что за время порядка одной минуты облако взрыва успевает подняться на высоту, достаточную для того, чтобы радиационный поток на поверхности стал практически незаметен.

Интенсивность потока проникающей и расстояние на котором ее действие может нанести существенный ущерб, зависят от мощности взрывного устройства и его конструкции. , полученная на расстоянии около 3 км от эпицентра термоядерного взрыва мощностью 1 Мт достаточна для того чтобы вызвать серьезные биологические изменения в организме человека. Ядерное взрывное устройство может быть специально сконструировано таким образом чтобы увеличить ущерб, наносимый проникающей радиацией по сравнению с ущербом, наносимым другими поражающими факторами (так называемое нейтронное оружие ).

Процессы, происходящие в ходе взрыва на значительной высоте, где плотность воздуха невелика, несколько отличаются от происходящих при проведении взрыва на небольших высотах. Прежде всего, из-за малой плотности воздуха поглощение первичного теплового излучения происходит на гораздо больших расстояниях и размер облака взрыва может достигать десятков километров. Существенное влияние на процесс формирования облака взрыва начинают оказывать процессы взаимодействия ионизированных частиц облака с магнитным полем Земли. Ионизированные частицы, образовавшиеся в ходе взрыва, оказывают также заметное влияние на состояние ионосферы, затрудняя, а иногда и делая невозможным распространение радиоволн (этот эффект может быть использован для ослепления радиолокационных станций).

Одним из результатов проведения высотного взрыва оказывается возникновение мощного электромагнитного импульса , распространяющегося над очень большой территорией. Электромагнитный импульс возникает и в результате взрыва на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли.

В случае если взрыв произведен под землей, на начальной стадии взрыва поглощение окружающей средой первичного теплового излучения приводит к образованию полости, давление в которой в течение менее чем микросекунды возрастает до нескольких миллионов атмосфер. Далее, в течение долей секунды в окружающей породе формируется ударная волна, фронт которой обгоняет распространение полости взрыва. Ударная волна вызывает разрушение породы в непосредственной близости от эпицентра и, ослабляясь по мере своего продвижения, дает начало серии сейсмических импульсов, сопровождающих подземный взрыв. Полость взрыва продолжает расширяться с несколько меньшей чем в начале скоростью, достигая в итоге значительных размеров. Так, радиус полости, образованной взрывом мощностью 150 кт может достичь 50 метров. На этом этапе стены полости представляют собой расплавленную породу. На третьем этапе газ внутри полости остывает, а расплавленная порода застывает на дне.

В течение следующей стадии, которая может длиться от нескольких секунд до нескольких часов, давление газов в полости падает так, что они больше неспособны выдерживать нагрузку верхних слоев породы, которые обрушиваются вниз. В результате образуется вертикальная сигарообразная структура, заполненная обломками породы. Размеры этой структуры зависят от характера породы, в которой произведен взрыв. В верхнем конце этой структуры остается полость, заполненная радиоактивными газами. В случае если взрыв произошел на недостаточно большой глубине, часть газов может выйти на поверхность.

Является самым разрушительным из всех существующих видов вооружений. Количество запасов ядерного оружия на Земле достигает таких размеров, что его хватит на то, чтобы уничтожить нашу планету несколько раз.