Термоядерная пушка. Ядерное и термоядерное оружие

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Термоя́дерное ору́жие (оно же Водородная бомба) - тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом, используемый в водородной бомбе уран-238, распадается под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков.

Схема Теллера-Улама.

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим - основной элемент бомбы. Он изготовлен из урана-238 - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.


A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.

Понятие ядерное оружие объединяет взрывные устройства, в которых энергия взрыва образуется при делении или слиянии ядер. В узком смысле под ядерным оружием понимают взрывные устройства, использующие энергию, выделяемую при делении тяжелых ядер. Устройства, использующее энергию, выделяющуюся при синтезе легких ядер, называются термоядерными .

Ядерное оружие

Ядерная реакция, энергия которой используется в ядерных взрывных устройствах, заключается в делении ядра в результате захвата этим ядром нейтрона. Поглощение нейтрона способно привести к делению практически любого ядра, однако для подавляющего большинства элементов реакция деления возможна только в случае если нейтрон до поглощения его ядром обладал энергией, превышающей некоторое пороговое значение. Возможность практического использования ядерной энергии в ядерных взрывных устройствах или в ядерных реакторах обусловлена существованием элементов, ядра которых делятся под воздействием нейтронов любой энергии, в том числе сколь угодно малой. Вещества, обладающие подобным свойством называются делящимися веществами .

Единственным встречающимся в природе в заметных количествах делящимся веществом является изотоп урана с массой ядра 235 атомных единиц массы (уран-235). Содержание этого изотопа в природном уране составляет всего 0.7%. Оставшаяся часть приходится на уран-238. Поскольку химические свойства изотопов абсолютно одинаковы, для выделения урана-235 из природного урана необходимо осуществление достаточно сложного процесса разделения изотопов. В результате может быть получен высокообогащенный уран , содержащий около 94% урана-235, который пригоден для использования в ядерном оружии.

Делящиеся вещества могут быть получены искусственно, причем наименее сложным с практической точки зрения является получение плутония-239 , образующегося в результате захвата нейтрона ядром урана-238 (и последующей цепочки радиоактивных распадов промежуточных ядер). Подобный процесс можно осуществить в , работающем на природном или слабообогащенном уране. В дальнейшем, плутоний может быть выделен из отработавшего топлива реактора в процессе химической переработки топлива, что заметно проще осуществляемого при получении оружейного урана процесса разделения изотопов.

Для создания ядерных взрывных устройств могут быть использованы и другие делящиеся вещества, например уран-233 , получаемый при облучении в ядерном реакторе тория-232. Однако, практическое применение нашли только уран-235 и плутоний-239, прежде всего из-за относительной простоты получения этих материалов.

Возможность практического использования выделяющейся при делении ядер энергии обусловлена тем, что реакция деления может иметь цепной, самоподдерживающийся характер. В каждом акте деления образуется примерно два вторичных нейтрона, которые, будучи захвачены ядрами делящегося вещества, могут вызвать их деление, в свою очередь приводящее к образованию еще большего количества нейтронов. При создании специальных условий, количество нейтронов, а следовательно и актов деления, растет от поколения к поколению.

Зависимость количества актов деления от времени может быть описана с помощью так называемого коэффициента размножения нейтронов k, равного разности количества нейтронов образующихся в одном акте деления и количества нейтронов, потерянных за счет поглощения, не приводящего к делению, или за счет ухода за пределы массы делящегося вещества. Параметр k, таким образом, соответствует количеству актов деления которое вызывает распад одного ядра. Если параметр k меньше единицы, то реакция деления не имеет цепного характера, так как количество нейтронов, способных вызвать деление оказывается меньшим, чем их начальное количество. При достижении значения k=1 количество нейтронов, вызывающих деление, а значит и актов распада, не меняется от поколения к поколению. Реакция деления приобретает цепной самоподдерживающийся характер. Состояние вещества, в котором реализуется цепная реакция деления с k=1, называется критическим . При k>1 говорят о сверхкритическом состоянии.

Зависимость количества актов деления от времени может быть представлена следующим образом:

N=N o *exp((k-1)*t/T)

  • N — полное число актов деления, произошедших за время t с начала реакции,
  • N 0 — число ядер, претерпевших деление в первом поколении, k-коэффициент размножения нейтронов,
  • T — время «смены поколений,» т.е. среднее время между последовательными актами деления, характерное значение которого составляет 10 -8 сек.

Если предположить, что цепная реакция начинается с одного акта деления и значение коэффициента размножения составляет 2, то несложно оценить количество поколений, необходимое для выделения энергии, эквивалентной взрыву 1 килотонны тринитротолуола (10 12 калорий или 4.1910 12 Дж). Поскольку в каждом акте деления выделяется энергия равная примерно 180 МэВ (2.910 -11 Дж), должно произойти 1.4510 23 актов распада (что соответствует делению примерно 57 г делящегося вещества). Подобное количество распадов произойдет в течение примерно 53 поколений делящихся ядер. Весь процесс займет около 0.5 микросекунд, причем основная доля энергии выделится в течение последних нескольких поколений. Продление процесса всего на несколько поколений приведет к значительному росту выделенной энергии. Так, для увеличения энергии взрыва в 10 раз (до 100 кт) необходимо всего пять дополнительных поколений.

Основным параметром, определяющим возможность осуществления цепной реакции деления и скорость выделения энергии в ходе этой реакции является коэффициент размножения нейтронов. Этот коэффициент зависит как от свойств делящихся ядер, таких как количество вторичных нейтронов, сечения реакций деления и захвата, так и от внешних факторов, определяющих потери нейтронов вызванные их уходом за пределы массы делящегося вещества. Вероятность ухода нейтронов зависит от геометрической формы образца и увеличивается с увеличением площади его поверхности. Вероятность же захвата нейтрона пропорциональна концентрации ядер делящегося вещества и длине пути, который нейтрон проходит в образце. Если взять образец, имеющий форму шара, то при увеличении массы образца вероятность приводящего к делению захвата нейтрона растет быстрее, чем вероятность его ухода, что приводит к увеличению коэффициента размножения. Массу, при которой подобный образец достигает критического состояния (k=1), называют критической массой делящегося вещества. Для высокообогащенного урана значение критической массы составляет около 52 кг, для оружейного плутония-11 кг. Критическую массу можно уменьшить примерно вдвое окружив образец делящегося вещества слоем материала, отражающего нейтроны, например, бериллия или природного урана.

Цепная реакция возможна и при наличии меньшего количества делящегося вещества. Поскольку вероятность захвата пропорциональна концентрации ядер, увеличение плотности образца, например в результате его сжатия, способно привести к возникновению в образце критического состояния. Именно этот способ и применяется в ядерных взрывных устройствах, в которых масса делящегося вещества, находящаяся в подкритическом состоянии переводится в сверхкритическое с помощью направленного взрыва, подвергающего заряд сильной степени сжатия. Минимальное количество делящегося вещества, необходимого для осуществления цепной реакции, зависит в основном от достижимой на практике степени сжатия.

Степень и скорость сжатия массы делящегося вещества определяют не только количество расщепляющегося материала, необходимого для создания взрывного устройства, но и мощность взрыва . Причиной этого служит тот факт, что энергия, выделяющаяся в ходе цепной реакции приводит к быстрому разогреву массы делящегося вещества и, как результат, к разлету этой массы. Через некоторое время заряд теряет критичность и цепная реакция останавливается. Поскольку полная энергия взрыва зависит от количества ядер, успевших претерпеть деление за время в течение которого заряд находился в критическом состоянии, для получения достаточно большой мощности взрыва необходимо удерживать массу делящегося вещества в критическом состоянии как можно дольше. На практике это достигается путем быстрого сжатия заряда с помощью направленного взрыва, так что в момент начала цепной реакции, масса делящегося вещества обладает очень большим запасом критичности.

Поскольку в процессе сжатия заряд находится в критическом состоянии, необходимо устранить посторонние источники нейтронов, которые могут дать начало цепной реакции еще до достижения зарядом необходимой степени критичности. Преждевременное начало цепной реакции приведет, во-первых, к уменьшению скорости выделения энергии, а во-вторых, к более раннему разлету заряда и потере им критичности. После того как масса делящегося вещества оказалась в критическом состоянии, начало цепной реакции могут дать акты спонтанного деления ядер урана или плутония. Однако, интенсивность спонтанного деления оказывается недостаточной для того, чтобы обеспечить необходимую степень синхронизации момента начала цепной реакции с процессом сжатия вещества и для обеспечения достаточно большого количества нейтронов в первом поколении. Для решения этой проблемы в ядерных взрывных устройствах применяют специальный источник нейтронов, который обеспечивает «впрыск» нейтронов в массу делящегося вещества. Момент «впрыска» нейтронов должен быть тщательно синхронизован с процессом сжатия, так как слишком раннее начало цепной реакции приведет к быстрому началу разлета делящегося вещества и, следовательно, к значительному уменьшению энергии взрыва.

Взрыв первого ядерного взрывного устройства был произведен США 16 июля 1945 г. в Аламогордо, штат Нью Мексико. Устройство представляло собой плутониевую бомбу, в которой для создания критичности был использован направленный взрыв. Мощность взрыва составила около 20 кт. В СССР взрыв первого ядерного взрывного устройства, аналогичного американскому, был произведен 29 августа 1949 г.

Термоядерное оружие

В термоядерном оружии энергия взрыва образуется в ходе реакций синтеза легких ядер, таких как дейтерий, тритий, являющихся изотопами водорода или литий. Подобные реакции могут происходить только при очень высоких температурах, при которых кинетическая энергия ядер достаточна для сближения ядер на достаточно малое расстояние. Температуры, о которых идет речь, составляют около 10 7 -10 8 К.

Использование реакций синтеза для увеличения мощности взрыва может быть произведено по-разному. Первый способ заключается в помещении внутрь обычного ядерного устройства контейнера с дейтерием или тритием (или дейтеридом лития). Возникающие в момент взрыва высокие температуры приводят к тому, что ядра легких элементов вступают в реакцию, за счет которой происходит дополнительное выделение энергии. С помощью подобного метода можно заметно увеличить мощность взрыва. В то же время, мощность подобного взрывного устройства по-прежнему ограничивается конечным временем разлета делящегося вещества.

Другой способ-создание многоступенчатых взрывных устройств, в которых за счет специальной конфигурации взрывного устройства энергия обычного ядерного заряда (т.н. первичный заряд) используется для создания необходимых температур в отдельно расположенном «вторичном» термоядерном заряде, энергия которого, в свою очередь, может быть использована для подрыва третьего заряда и т.д. Первое испытание подобного устройства-взрыв «Майк»- было произведено в США 1 ноября 1952 г. В СССР подобное устройство было впервые испытано 22 ноября 1955 г. Мощность взрывного устройства, сконструированного подобным образом, может быть сколь угодно большой. Самый мощный ядерный взрыв был произведен именно с помощью многоступенчатого взрывного устройства. Мощность взрыва составила 60 Мт, причем мощность устройства была использована лишь на одну треть.

Последовательность событий при ядерном взрыве

Выделение огромного количества энергии, происходящее в ходе цепной реакции деления, приводит к быстрому разогреву вещества взрывного устройства до температур порядка 10 7 К. При таких температурах вещество представляет собой интенсивно излучающую ионизированную плазму. На этом этапе в виде энергии электромагнитного излучения выделяется около 80% энергии взрыва. Максимум энергии этого излучения, называемого первичным, приходится на рентгеновский диапазон спектра. Дальнейший ход событий при ядерном взрыве определяется в основном характером взаимодействия первичного теплового излучения с окружающей эпицентр взрыва средой, а также свойствами этой среды.

В случае если взрыв произведен на небольшой высоте в атмосфере, первичное излучение взрыва поглощается воздухом на расстояниях порядка нескольких метров. Поглощение рентгеновского излучения приводит к образованию облака взрыва, характеризующегося очень высокой температурой. На первой стадии это облако растет в размерах за счет радиационной передачи энергии из горячей внутренней части облака к его холодному окружению. Температура газа в облаке примерно постоянна по его объему и снижается по мере его увеличения. В момент когда температура облака снижается до примерно 300 тысяч градусов, скорость фронта облака уменьшается до величин, сравнимых со скоростью звука. В этот момент формируется ударная волна , фронт которой «отрывается» от границы облака взрыва. Для взрыва мощностью 20 кт это событие наступает примерно через 0.1 мсек после взрыва. Радиус облака взрыва в этот момент составляет около 12 метров.

Интенсивность теплового излучения облака взрыва целиком определяется видимой температурой его поверхности. На некоторое время воздух, нагретый в результате прохождения взрывной волны, маскирует облако взрыва, поглощая излучаемую им радиацию, так что температура видимой поверхности облака взрыва соответствует температуре воздуха за фронтом ударной волны, которая падает по мере увеличения размеров фронта. Через примерно 10 миллисекунд после начала взрыва температура во фронте падает до 3000°С и он вновь становится прозрачным для излучения облака взрыва. Температура видимой поверхности облака взрыва вновь начинает расти и через примерно 0.1 сек после начала взрыва достигает примерно 8000°С (для взрыва мощностью 20 кт). В этот момент мощность излучения облака взрыва максимальна. После этого температура видимой поверхности облака и, соответственно, излучаемая им энергия быстро падает. В результате, основная доля энергии излучения высвечивается за время меньшее одной секунды.

Формирование импульса теплового излучения и образование ударной волны происходит на самых ранних стадиях существования облака взрыва. Поскольку внутри облака содержится основная доля радиоактивных веществ, образующихся в ходе взрыва, дальнейшая его эволюция определяет формирование следа радиоактивных осадков. После того как облако взрыва остывает настолько, что уже не излучает в видимой области спектра, процесс увеличения его размеров продолжается за счет теплового расширения и оно начинает подниматься вверх. В процессе подъема облако увлекает за собой значительную массу воздуха и грунта. В течение нескольких минут облако достигает высоты в несколько километров и может достичь стратосферы. Скорость выпадения радиоактивных осадков зависит от размера твердых частиц, на которых они конденсируются. Если в процессе своего формирования облако взрыва достигло поверхности, количество грунта, увлеченного при подъеме облака будет достаточно велико и радиоактивные вещества оседают в основном на поверхности частиц грунта, размер которых может достигать нескольких миллиметров. Такие частицы выпадают на поверхность в относительной близости от эпицентра взрыва, причем за время выпадения их радиоактивность практически не уменьшается.

В случае если облако взрыва не касается поверхности, содержащиеся в нем радиоактивные вещества конденсируются в гораздо меньшие частицы с характерными размерами 0.01-20 микрон. Поскольку такие частицы могут достаточно долго существовать в верхних слоях атмосферы, они рассеиваются над очень большой площадью и за время, прошедшее до их выпадения на поверхность, успевают потерять значительную долю своей радиоактивности. В этом случае радиоактивный след практически не наблюдается. Минимальная высота, взрыв на которой не приводит к образованию радиоактивного следа, зависит от мощности взрыва и составляет примерно 200 метров для взрыва мощностью 20 кт и около 1 км для взрыва мощностью 1 Мт.

Ударная волна, формирующаяся на ранних стадиях существования облака взрыва, представляет собой один из основных поражающих факторов атмосферного ядерного взрыва. Основными характеристиками ударной волны являются пиковое избыточное давление и динамическое давление во фронте волны. Способность объектов выдерживать воздействие ударной волны зависит от множества факторов, таких как наличие несущих элементов, материал постройки, ориентация по отношению ко фронту. Избыточное давление в 1 атм (15 фунтов/кв. дюйм), возникающее на расстоянии 2.5 км от наземного взрыва мощностью 1 Мт, способно разрушить многоэтажное здание из железобетона. Для противостояния воздействию ударной волны военные объекты, особенно шахты баллистических ракет проектируют таким образом, чтобы они могли выдержать избыточные давления в сотни атмосфер. Радиус области, в которой при взрыве в 1 Мт создается подобное давление составляет около 200 метров. Соответственно, для поражения укрепленных целей особую роль играет точность атакующих баллистических ракет.

На начальных стадиях существования ударной волны ее фронт представляет собой сферу с центром в точке взрыва. После того как фронт достигает поверхности, образуется отраженная волна. Так как отраженная волна распространяется в среде, через которую прошла прямая волна, скорость ее распространения оказывается несколько выше. В результате, на некотором расстоянии от эпицентра две волны сливаются возле поверхности, образуя фронт, характеризуемый примерно в два раза большими значениями избыточного давления. Поскольку для взрыва данной мощности расстояние, на котором образуется подобный фронт, зависит от высоты взрыва, высоту взрыва можно подобрать для получения максимальных значений избыточного давления на определенной площади. Если целью взрыва является уничтожение укрепленных военных объектов, оптимальная высота взрыва оказывается очень малой, что неизбежно приводит к образованию значительного количества радиоактивных осадков.

Еще одним поражающим фактором ядерного оружия является проникающая , представляющая собой поток высокоэнергетичных нейтронов и гамма-квантов, образующихся как непосредственно в ходе взрыва так и в результате распада продуктов деления. Наряду с нейтронами и гамма-квантами, в ходе ядерных реакций образуются также альфа- и бета-частицы, влияние которых можно не учитывать из-за того что они очень эффективно задерживаются на расстояниях порядка нескольких метров. Нейтроны и гамма-кванты продолжают выделяться в течение достаточно длительного времени после взрыва, оказывая воздействие на радиационную обстановку. К собственно проникающей радиации обычно относят нейтроны и гамма-кванты появляющиеся в течение первой минуты после взрыва. Подобное определение связано с тем, что за время порядка одной минуты облако взрыва успевает подняться на высоту, достаточную для того, чтобы радиационный поток на поверхности стал практически незаметен.

Интенсивность потока проникающей и расстояние на котором ее действие может нанести существенный ущерб, зависят от мощности взрывного устройства и его конструкции. , полученная на расстоянии около 3 км от эпицентра термоядерного взрыва мощностью 1 Мт достаточна для того чтобы вызвать серьезные биологические изменения в организме человека. Ядерное взрывное устройство может быть специально сконструировано таким образом чтобы увеличить ущерб, наносимый проникающей радиацией по сравнению с ущербом, наносимым другими поражающими факторами (так называемое нейтронное оружие ).

Процессы, происходящие в ходе взрыва на значительной высоте, где плотность воздуха невелика, несколько отличаются от происходящих при проведении взрыва на небольших высотах. Прежде всего, из-за малой плотности воздуха поглощение первичного теплового излучения происходит на гораздо больших расстояниях и размер облака взрыва может достигать десятков километров. Существенное влияние на процесс формирования облака взрыва начинают оказывать процессы взаимодействия ионизированных частиц облака с магнитным полем Земли. Ионизированные частицы, образовавшиеся в ходе взрыва, оказывают также заметное влияние на состояние ионосферы, затрудняя, а иногда и делая невозможным распространение радиоволн (этот эффект может быть использован для ослепления радиолокационных станций).

Одним из результатов проведения высотного взрыва оказывается возникновение мощного электромагнитного импульса , распространяющегося над очень большой территорией. Электромагнитный импульс возникает и в результате взрыва на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли.

В случае если взрыв произведен под землей, на начальной стадии взрыва поглощение окружающей средой первичного теплового излучения приводит к образованию полости, давление в которой в течение менее чем микросекунды возрастает до нескольких миллионов атмосфер. Далее, в течение долей секунды в окружающей породе формируется ударная волна, фронт которой обгоняет распространение полости взрыва. Ударная волна вызывает разрушение породы в непосредственной близости от эпицентра и, ослабляясь по мере своего продвижения, дает начало серии сейсмических импульсов, сопровождающих подземный взрыв. Полость взрыва продолжает расширяться с несколько меньшей чем в начале скоростью, достигая в итоге значительных размеров. Так, радиус полости, образованной взрывом мощностью 150 кт может достичь 50 метров. На этом этапе стены полости представляют собой расплавленную породу. На третьем этапе газ внутри полости остывает, а расплавленная порода застывает на дне.

В течение следующей стадии, которая может длиться от нескольких секунд до нескольких часов, давление газов в полости падает так, что они больше неспособны выдерживать нагрузку верхних слоев породы, которые обрушиваются вниз. В результате образуется вертикальная сигарообразная структура, заполненная обломками породы. Размеры этой структуры зависят от характера породы, в которой произведен взрыв. В верхнем конце этой структуры остается полость, заполненная радиоактивными газами. В случае если взрыв произошел на недостаточно большой глубине, часть газов может выйти на поверхность.

Является самым разрушительным из всех существующих видов вооружений. Количество запасов ядерного оружия на Земле достигает таких размеров, что его хватит на то, чтобы уничтожить нашу планету несколько раз.

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео