Таблица колебания груза на пружине. Формула частоты колебаний пружинного маятника

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона:

следовательно

Частота ω 0 называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω 0 и периода колебаний T справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x : ускорение является второй производной координаты тела x по времени t :

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

(*)

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

x = x m cos (ωt + φ 0).

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры колебательного процесса, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость , то

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k . Второй закон Ньютона для вращательного движения диска записывается в виде

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Я. В. ,
Дальневосточный государственный межрегиональный индустриально-экономический колледж, г. Хабаровск

Колебания тела на пружине

Образовательные цели: формирование представления о процессе научного познания, организация и систематизация знания по теме; формирование представления о зависимости периода колебаний от массы тела и жёсткости пружины; развитие экспериментальных навыков, исследовательских умений.

Оборудование: магнитофон, компьютеры, программа или (раздел «Механические колебания и волны», «Колебания тела на пружине»), § 31 учебника .

Ход урока

1. Начало занятия

Преподаватель (начинает урок со стихотворения Б. Пастернака: «Во всём мне хочется дойти//До самой сути <...> //Свершать открытья»). Что для вас, ребята, значат слова «Я сделал открытие?» (Выслушивает ответы. ) Правильно ли я вас поняла: если человек своим трудолюбием, упорством достигает истины в чём-либо, то это и означает, что он совершил открытие? Сегодня мы также будем совершать хотя и маленькие, но самостоятельные открытия. Итак, тема нашего занятия «Колебания тела на пружине».

2. Повторение и обобщение

Преподаватель. Сначала давайте вместе восхитимся своими глубокими знаниями по теме «Механические колебания». Запишите в карточках пропущенные левые части формул (один учащийся выполняет задание у доски ):

(Класс проверяет свои записи, каждый ставит себе в лист самоконтроля баллы по числу правильно написанных самим формул и числу найденных с ошибками. )

А теперь вытащим из тайников памяти кое-что ценное. Перед вами таблица с физическими величинами, их единицами, цифрами. Я буду задавать вопрос, а вы будете зачёркивать клетку с правильным ответом:

Интервал времени, в течение которого происходит одно полное колебание Максимальное отклонение колеблющейся величины от положения равновесия Число колебаний в единицу времени Единица периода колебаний Единица частоты колебаний Единица амплитуды колебаний За какое время маятник совершил n = 20 колебаний, если период колебаний равен 0,5 с? Чему равна частота этих колебаний? Тело совершает колебание вдоль оси X . Его координата изменяется со временем по закону x = 0,2cos0,63t (СИ). Чему равна амплитуда колебаний тела? Чему равна циклическая частота этих колебаний? Очень мягкая большая пружина за 2 с сокращается от максимально растянутого до исходного состояния. Чему равен период колебаний пружины? Если длина пружины при этом изменилась на 0,5 м, чему равен путь, пройденный незакреплённым концом пружины за период колебания?

(Правильные ответы «рисуют» на карточке цифру «5». Ребята ставят в лист самоконтроля оценку – по 1 баллу за правильный ответ. )

В основе любого раздела физики лежат наблюдения или эксперимент. Сегодня я предлагаю вам провести исследования механических колебаний. Разбейтесь на четыре группы по желанию. Каждая группа берёт карточку с заданием и выполняет его, а потом рассказывает, что делали и что получили.

Задание № 1. Сделайте секундный маятник (период колебаний 1 с). Приборы и материалы: нить, груз, линейка, секундомер.

Задание № 2. Определите период колебаний метрового нитяного маятника. Чему он будет равен, если длину нити уменьшить в четыре раза? Приборы и материалы: метровый маятник, секундомер.

Задание № 3. Определите период, частоту и циклическую частоту колебаний маятника. Запишите уравнение колебаний этого маятника. Приборы и материалы: шарик, линейка, секундомер, нить.

Задание № 4. Определите на практике ускорение свободного падения для данной местности с помощью нитяного маятника. Приборы и материалы: нить, шарик, линейка, секундомер.

(Преподаватель оценивает работу групп. Ребята выставляют баллы в лист самоконтроля: 1 балл – за проведение эксперимента, 1 балл – за защиту. )

3. Изучение нового материала

Преподаватель. А теперь переходим к теме нашего занятия «Колебания тела на пружине». попробуем установить зависимости периода свободных колебаний от массы груза, жёсткости пружины и амплитуды колебаний. (Ребята распределяются на пары по желанию, получают карточки, в ходе компьютерного эксперимента устанавливают эти зависимости и записывают в карточки результаты и выводы .)

Установите зависимость периода свободных колебаний от массы и жёсткости пружины

Заполните таблицу

Сделайте вывод: если увеличить жёсткость пружины, то период: уменьшается .

А , см 5 7 10
Т , с 1,4 1,4 1,4

Сделайте вывод: если увеличить амплитуду колебаний, то период: не изменяется .

Запишите формулу периода свободных колебаний

Используйте § 38 учебника В.А. Касьянова «Физика-10»:

Сделайте вывод: период свободных колебаний пружинного маятника не зависит от амплитуды колебаний, а полностью определяется жёсткостью, массой (собственными характеристиками колебательной системы) .

Проверьте экспериментально зависимость периода свободных колебаний от массы и жёсткости.

Напутствовать вас в работе мне хочется словами А. Толстого: «Знания только тогда знания, когда они приобретены усилиями своей мысли, а не памяти». Удачи вам в ваших исследованиях!

(Ребята устанавливают зависимости, ставят в лист самоконтроля по 1 баллу за каждую формулу. )

4. Закрепление, тренировка, отработка умений

Преподаватель. Теперь порешаем задачи на карточках, а ответ проверим с помощью компьютерного эксперимента. Решение первой задачи оценивается максимально в 1 балл, второй – в 2 балла.

Задача 1. Определите период колебаний пружинного маятника, если масса груза равна 0,5 кг, жёсткость пружины 10 Н/м.

Задача 2. Напишите уравнение движения пружинного маятника x(t) , если m = 1 кг, k = 10 Н/м, A = 10 см. Определите координату в момент времени t = 4 с.

Проверьте ответ по графику, для этого выберите параметры, нажмите Cтарт и следите за показаниями t .

Творческое задание. Придумайте, сформулируйте и решите задачу, проведите компьютерный эксперимент и проверьте ваш ответ. Проставьте в лист самоконтроля оценку преподавателя (до 2 баллов).

5. Рефлексия. Подведение итогов

Преподаватель. Подводим итоги. Что было главным? Что было интересным? Что нового сегодня узнали? Чему научились? (Выслушивает мнения. Ребята считают баллы и выставляют себе отметки: 24–25 баллов – «3», 26–27 баллов – «4», 28–29 баллов – «5». )

ДЗ. § 38, задачи 1, 2. Составьте сами задачи для будущих студентов. Обязательно подпишите свои работы, авторство будет сохранено. А сегодняшнее занятие я хочу закончить словами М. Фарадея: «Искусство экспериментатора состоит в том, чтобы уметь задавать природе вопросы и понимать её ответы». И я думаю, что вам сегодня это удалось. Урок завершён. Спасибо за урок. Успехов вам. До встречи на следующем уроке.

Литература

  1. Физика в картинках 6.2. НЦ ФИЗИКОН, 1993. 1 электрон. опт. диск (DVD-ROM); [Электронный ресурс] URL: http://torrents.ru/forum/ .
  2. Открытая физика 2.6: Ч. 1: ООО ФИЗИКОН, 1996–2005 [Электронный ресурс] URL: http://physics.ru
  3. Касьянов В.А. Физика: учеб. для общеобразоват. учреждений. 10 кл. М. : Дрофа, 2003. С. 123–133.

Яна Владимировна Бочарникова в 1990 г. окончила ДВГУ по специальности «Физик, преподаватель физики», работала в Хабаровском институте инженеров железнодорожного транспорта, затем в ДОУ вела информатику для детей 3–7 лет, преподавала физику в школе и вот уже 9 лет – в колледже. Победитель городского конкурса «Учитель года-99» и конкурса «Преподаватель года-2005» в колледже, лауреат краевого конкурса «Преподаватель года-2005». В своей работе руководствуется словами С. Соловейчика: «Вырастить людей с глубоким чувством собственного достоинства, полных самоуважения и уважения к окружающим, людей, способных выбирать, самостоятельно действовать, – это ли не значит содействовать укреплению и процветанию страны?»


Записи учащихся выделены здесь серым шрифтом. – Ред.

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).

2. Если разность фаз то уравнение (1.1.9) переходит в уравнение эллипса, приведенного к координатным осям, При материальная точка движется по окружности, уравнение которой (рис.1.1.11).

3. Если частоты колебаний неодинаковы, то материальная точка описывает фигуры Лиссажу (рис.1112).

Рассмотрим сложение колебаний одного направления, частоты которых мало отличаются друг от друга. В этом случае результирующее движение можно рассматривать как гармоническое колебание с пульсирующей амплитудой. Такие колебания называются биениями.

Пусть частота одного колебания , второго . Амплитуды обоих колебаний одинаковы и равны а. Начальные фазы равны нулю. В таком случае уравнения колебаний имеют вид:

Сложим эти выражения:

График функции х(t) представлен на рис. 1.1.13. Множитель меняется гораздо медленнее, чем , поэтому (1.1.10) можно рассматривать как гармоническое колебание частоты , амплитуда которого меняется по некоторому периодическому закону

Тема. Колебания груза на пружине. Математический
маятник

Цель урока: ознакомить учащихся с законами колебаний
пружинного и математического маятников
Тип урока: изучение нового материала
План урока
Контроль знаний 5 мин.1. Что такое гармонические колебания?
2. Уравнение гармонических колебаний.
3. Что такое фаза колебаний?
4. Графики гармонических колебаний
Демонстрации
5 мин.1. Свободные колебания пружинного маятника.
Изучение нового
материала
25
мин.
2. Зависимость периода колебаний груза на
пружине от упругих свойств пружины и массы
груза.
3. Свободные колебания математического
маятника.
4. Зависимость периода колебаний
математического маятника от его длины
1. Процесс колебаний пружинного маятника.
2. Период колебаний пружинного маятника.

4. Математический маятник.
5. Период колебаний математического
маятника

Закрепление
изученного
материала
10
мин.
1. Тренируемся решать задачи.
2. Контрольные вопросы

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА
1. Процесс колебаний пружинного маятника
Для того, чтобы описать колебания (листья и колосья; воздуха в
органных трубах и трубах духовых музыкальных
инструментов); для расчета вибрации (корпусов автомашин,
укрепленных на рессорах; фундаментов зданий и станков),
введем модель реальных колебательных систем - пружинный
маятник.

Рассмотрим колебания тележки массой m, прикрепленного к
вертикальной стене пружиной жесткостью k.

Будем считать, что:
1) сила трения, которая действует на тележку, очень мала,
поэтому можно не учитывать ее. В этом случае колебания
пружинного маятника будут незатухаючими;
2) деформации пружины в процессе колебаний тела
незначительны, поэтому их можно считать упругими и
применить закон Гука:

Рассмотрим колебания пружинного маятника более детально.
Когда тележка удаляется от положения равновесия на
расстояние А справа, пружина оказывается растянутой и на
тележку действует максимальная сила упругости Fnp = kA.
Затем тележка начинает двигаться влево с ускорением, что
меняется: удлинение пружины уменьшается и сила упругости
(и ускорение) также уменьшаются. Через четверть периода
тележка вернется в положение равновесия. В этот момент сила
упругости и ускорение равны нулю, а скорость достигает
максимального значения.
По инерции тележка продолжит движение, и возникнет сила
упругости, увеличивается. Она начнет тормозить движение
бруска и на расстоянии А от положения равновесия тележка на
мгновение остановится. От момента начала колебаний прошла
половина периода.
Следующую половину периода движение тележки будет точно
таким, только в обратном направлении.
Необходимо обратить внимание учащихся на то, что, согласно
закону Гука, сила упругости направлена против удлинения
пружины: сила упругости «толкала» тележка к положению
равновесия.
Следовательно, свободные колебания пружинного маятника
обусловлены следующими причинами:
1) действием на тело силы упругости, всегда направленной в
сторону положения равновесия;
2) инертностью колеблющегося тела, благодаря которой оно не
останавливается в положении равновесия, а продолжает
двигаться в том же направлении.
2. Период колебаний пружинного маятника
Первую характерную примету колебаний пружинного маятника
можно установить, постепенно увеличивая массу подвешенных
к пружины грузиков. Подвешивая к пружине грузики разной
массы, мы замечаем, что с увеличением массы тяжелый период
колебаний груза увеличивается. Например, вследствие
увеличения массы тяжелая в 4 раза период колебаний
увеличивается вдвое:

Вторую характерную примету можно установить, меняя
пружины. Проведя серию измерений, легко обнаружить, что тот
же груз быстрее колеблется на жесткой пружине и медленнее -
на мягкой, то есть:
Третья особенность пружинного маятника заключается в том,
что период его колебаний не зависит от ускорения свободного
падения. В этом нетрудно убедиться, используя метод
«увеличения земного притяжения» за счет сильного магнита,
который подкладывается под груз что колеблется.
Таким образом,
период колебаний пружинного маятника не зависит от


Зная период колебаний, легко вычислить частоту и
циклическую частоту колебаний:
3. Уравнение гармонических колебаний
Рассмотрим колебания тележки с точки зрения динамики. На
коляску во время движения действуют три силы: сила реакции
опоры
, сила тяжести m и сила упругости пр. Запишем
уравнение второго закона Ньютона в векторной форме:
Спроецируем это уравнение на горизонтальную и
вертикальную оси:
Согласно закону Гука:

Таким образом, имеем:
Это уравнение называют уравнением свободных колебаний
пружинного маятника.
Обозначим: ω2 = k/m. Тогда уравнение движения груза будет
иметь вид: ах = -ω2х. Уравнения такого вида называют
дифференциальными уравнениями.
Решением такого
уравнения является функция x = Acosωt.
4. Математический маятник
Чтобы вычислить период колебаний груза, висящего на нитке,
необходимо немного «идеализировать» задачу. Во-первых,
будем считать, что размеры груза намного меньше длины нити,
а нить - нерастяжимая и невесомая. Во-вторых, будем считать
угол отклонения маятника достаточно малым (не более 10-15°).


точка.
Рассмотрим колебания математического маятника. Для этого
возьмем небольшую, но достаточно тяжелую, шарик и
подвесим ее на длинную нерозтяжну нить.
Рассматривая колебания математического маятника, мы
приходим к выводу, что причины, которые обусловливают
свободные колебания, такие же, как и в случае пружинного
маятника (см. рис. а-д):

1) действие на шарик сил, равнодействующая которых всегда
направлена в сторону положения равновесия;
2) инертность колеблющейся шарики, благодаря которой она
не останавливается в положении равновесия.
5. Период колебаний математического маятника
Докажем,
гармонические колебания.
Запишем уравнение второго закона Ньютона в проекции на ось
ОХ (см. рис.):

Что математический маятник совершает

Tx + mgx = mах.
Поскольку Тх = 0, то mgx = -mgsin и мы получаем уравнение:
-mgsin = mах, или -gsin = ax.
Значение sin можно рассчитать из треугольника ОАС - он
равен отношению катета ОА до гипотенузы ОС. Если углы
малые, ОС ≈ l, где l - длина нити, а ОА ≈ х, где х - отклонение
шарика от положения равновесия. Поэтому sin = x/l.
Окончательно получаем:

Обозначив ω2 = g/l, имеем уравнения для свободных колебаний
математического маятника:
Циклическая частота колебаний математического маятника:
Воспользовавшись соотношением Т = 2 /ω, найдем формулу
для периода колебаний математического маятника:



маятник.
Известно, что в разных точках земного шара ускорение
свободного падения разное. Оно зависит не только от формы
Земли, но и от наличия в ее недрах тяжелых (металлы) или
легких (газ, нефть) веществ. А следовательно, и период
колебаний маятника в разных точках будет разным. Это
свойство используется, в частности, во время поисков залежей
полезных ископаемых.

Вопрос к ученикам во время изложения нового материала
1. Как изменится период колебаний пружинного маятника
вследствие изменения массы груза? жесткости пружины?
2. Как изменится период колебаний пружинного маятника, если
расположить под ним магнит?

увеличить амплитуду колебаний.
4. При каком условии колебания математического маятника
можно считать гармоническими?

5. Почему шарик колеблется на длинной нитке, не
останавливается в момент прохождения положения
равновесия?
6. Как изменится период колебаний математического маятника,
если массу груза увеличить? уменьшить?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА
1). Тренируемся решать задачи
1. Подвешенный на пружине груз, находясь в равновесии,
растягивает пружину на 10 см. Достаточно ли этих данных,
чтобы вычислить период колебаний груза на пружине?
2. Когда к пружине подвесили груз, она растянулась на 20 см.
Груз отвели вниз и отпустили. Чему равен период Т колебаний,
что возникли?
3. Стальной шарик, подвешенный к пружине, совершает
вертикальные колебания. Как изменится период колебаний,
если к пружине подвесить медный шарик того же радиуса?
4. Вычислите жесткость пружины, если подвешенный на ней
груз массой 700 г совершает 18 колебаний за 21 с.
5. Каково соотношение длин двух математических маятников,
если один из них осуществляет 31 колебания, а второй за точно
такой промежуток времени - 20 колебаний?
2). Контрольные вопросы
1. Назовите причины колебаний пружинного маятника.
2. Можно использовать пружинный маятник для расчета
ускорения свободного падения?
3. Как изменится период колебаний пружинного маятника, если
массу груза увеличить в 4 раза и одновременно увеличить в 4
раза жесткость пружины?
4. Назовите основные свойства математического маятника. Где
их используют?
5. Что общего у пружинного и математического маятников?

Что мы узнали на уроке
Пружинный маятник - это колебательная система,
представляющая собой тело, закрепленное на пружине.
Период колебаний пружинного маятника не зависит от
ускорения свободного падения и тем меньше, чем меньше
масса груза и более жесткая пружина:
Частота и циклическая частота колебаний пружинного
маятника:
Уравнение свободных колебаний пружинного маятника:
Математическим маятником называется идеализированная
колебательная система без трения, состоящую из невесомой и
нерастяжимого нити, на которой подвешена материальная
точка.
Период свободных колебаний математического маятника не
зависит от его массы, а определяется лишь длиной нити и
ускорением свободного падения в том месте, где находится
маятник:
Уравнение свободных колебаний математического маятника:

Домашнее задание

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими ) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными .

Колебания – один из самых распространенных процессов в природе и технике. Крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни, звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой, землетрясения - колебания почвы, биение пульса - периодические сокращения сердечной мышцы человека и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Признаком колебательного движения является его периодичность .

Механические колебания – это движения, которые точно или приблизительно повторяются через одинаковые промежутки времени .

Примерами простых колебательных систем могут служить груз на пружине (пружинный маятник) или шарик на нити (математический маятник).

При механических колебаниях кинетическая и потенциальная энергии периодически изменяются.

При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль . В этом положении потенциальная энергия колеблющегося тела достигает максимального значения . Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия , его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией . Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии.

При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при механических колебаниях остается неизменной.

Для груза на пружине :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии деформированной пружины:

При прохождении положения равновесия полная энергия равна кинетической энергии груза:

Для малых колебаний математического маятника :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии поднятого на высоту h тела:

При прохождении положения равновесия полная энергия равна кинетической энергии тела:

Здесь h m – максимальная высота подъема маятника в поле тяготения Земли, x m и υ m = ω 0 x m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Гармонические колебания и их характеристики. Уравнение гармонического колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

x = x m cos (ωt + φ 0).

Здесь x – смещение тела от положения равновесия,
x m – амплитуда колебаний, то есть максимальное смещение от положения равновесия,
ω – циклическая или круговая частота колебаний,
t – время.

Характеристики колебательного движения.

Смещение х – отклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Амплитуда колебаний А – максимальноеотклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Период колебаний T – минимальный интервал времени, за который происходит одно полное колебание, называется. Единица измерения – 1 секунда.

T=t/N

где t - время колебаний, N - количество колебаний, совершенных за это время.

По графику гармоническихколебаний можно определить период и амплитуду колебаний:

Частота колебаний ν – физическая величина, равная числу колебаний за единицу времени.

ν=N/t

Частота – величина, обратная периоду колебаний:

Частота колебаний ν показывает, сколько колебаний совершается за 1 с.Единица частоты – герц (Гц).

Циклическая частота ω – число колебаний за 2π секунды.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:

Фаза гармонического процесса – величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний φ = ωt + φ 0 . При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой .

График гармонических колебаний представляет собой синусоиду или косинусоиду.

Во всех трех случаях для синих кривых φ 0 = 0:



только большей амплитудой (x" m > x m);



красная кривая отличается от синей только значением периода (T" = T / 2);



красная кривая отличается от синей только значением начальной фазы (рад).

При колебательном движении тела вдоль прямой линии (ось OX ) вектор скорости направлен всегда вдоль этой прямой. Скорость движения тела определяется выражением

В математике процедура нахождения предела отношения Δх/Δt при Δt → 0 называется вычислением производной функции x (t ) по времени t и обозначается как x" (t ).Скорость равна производной функции х(t ) по времени t.

Для гармонического закона движения x = x m cos (ωt + φ 0) вычисление производной приводит к следующему результату:

υ х =x" (t )= ωx m sin (ωt + φ 0)

Аналогичным образом определяется ускорение a x тела при гармонических колебаниях. Ускорение a равно производной функции υ(t ) по времени t , или второй производной функции x (t ). Вычисления дают:

а х =υ х "(t) =x"" (t )= -ω 2 x m cos (ωt + φ 0)=-ω 2 x

Знак минус в этом выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рисунке приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.

Пружинный маятник.

Пружинным маятником называют груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно .

Собственная частота ω 0 свободных колебаний груза на пружине находится по формуле:

Период T гармонических колебаний груза на пружине равен

Значит, период колебаний пружинного маятника зависит от массы груза и от жесткости пружины.

Физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 и период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Математический маятник.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.

В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити N. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = –mg sin φ. Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Математический маятник.φ – угловое отклонение маятника от положения равновесия,

x = lφ – смещение маятника по дуге

Собственная частота малых колебаний математического маятника выражается формулой:

Период колебаний математического маятника:

Значит, период колебаний математического маятника зависит отдлины нити и от ускорения свободного падения той местности, где установлен маятник.

Свободные и вынужденные колебания.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными .

Свободные колебания – это колебания, которые возникают в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению .

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими .

Затухающими называют колебания, амплитуда которых уменьшается со временем .

Чтобы колебания не затухали, необходимо сообщать системе дополнительную энегрию, т.е. воздействовать на колебательную систему периодической силой (например, для раскачивания качели).

Колебания, совершающиеся под воздействием внешней периодически изменяющейся силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты собственных колебаний с частотой внешней вынуждающей силы называется резонансом .

Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой .

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда x m вынужденных колебаний неограниченно возрастает;

2, 3, 4 – реальные резонансные кривые для колебательных систем с различным трением.

В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение, тем больше амплитуда вынужденных колебаний при резонансе.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.