Способы синтеза полимеров. Основные методы получения полимеров Особенности строения и свойств

Полимеризация и поликонденсация

Синтетические полимеры получают в результате реакций полимеризации и поликонденсации. Получение полимеров реакцией полимеризации и поликонденсации - основные пути синтеза ВМС на сегодняшний день.

Полимеризация — это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав.

Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.

Полимеризация мономеров с кратными связями протекает по законам цепных реакций в результате разрыва непредельных связей. Макромолекула при цепной полимеризации образуется очень быстро и сразу же приобретает конечные размеры, т. е не возрастает при увеличении длительности процесса.

Полимеризация мономеров циклического строения происходит за счет раскрытия цикла и в ряде случаев пропекает не по цепному, а по ступенчатому механизму.

Макромолекула при ступенчатой полимеризации образуется постепенно, т. е. сначала образуется димер затем тример и т.д., поэтому молекулярная масса полимера растет со временем.

Принципиальное отличие ценной полимеризации от ступенчатой и от поликонденсации состоит в том, что на разных стадиях процесса реакционная смесь всегда состоит из мономера и полимера и не содержит ди-, три-, тетрамеров. С увеличением продолжительности реакции растет лишь число макромолекул полимера, а мономер расходуется постепенно. Молекулярная масса полимера не зависит от степени завершенности реакции или, что то же, от конверсии мономера, которая определяет только выход полимера.

Реакции в цепях полимеров

Многие полимеры нельзя получить ни полимеризацией, ни поликонденсацией, поскольку или неизвестны исходные мономеры, или мономеры не образуют высокомолекулярных соединений при получении полимеров реакцией полимеризации и поликонденсации. Синтез таких полимеров осуществляют, исходя из высокомолекулярных соединений, макромолекулы которых содержат реакционноспособные функциональные группы. По этим группам полимеры вступают и те же реакции, что и содержащие такие группы низкомолекулярные соединения.

Реакции в цепях полимера могут происходить без существенного изменения молекулярной массы полимера (таи называемые полимер-аналогичные превращения), с увеличением молекулярной массы полимера (синтез привитых и блок сополимеров) или с уменьшением молекулярной массы (деструкция макромолекул).

Литература

1. Энциклопедия полимеров.. М., Советская энциклопедия. Т. 1, 1972, Т. 2, 1974, т. 3, 1977.
2. Бранцхин E. А., Шульгина Э. С., Технология пластических масс. М., Химия, 1974

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация (полиприсоединение). Это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). Большой вклад в изучении процессов полимеризации внесли отечественные ученые С.В.Лебедев, С.С.Медведев и др. и зарубежные исследователи Г.Штаудингер, Г.Марк, К.Циглер и др. При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: С С, С N, С=С, С=О, С=С=О, С=С=С, С=N, либо соединения с циклическими группами, способными раскрываться.

Полимеризация – самопроизвольный экзотермический процесс (), так как разрыв двойных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации.

При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи.

Ионная полимеризация также происходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служит электроноакцепторные соединения, в том числе протонные кислоты, например Н2SO4 и НСI, неорганические апротонные кислоты (SnCI4, ТiCI4, АICI3 и др.), металлоорганические соединения АI(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции:

при катионной полимеризации и

при анионной полимеризации

Полимеризация в массе (в блоке) – это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток – необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризация в суспензии) мономер находится в виде капель, диспрегированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от до м. Недостаток метода – необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты – в жидком или твердом состоянии. Метод применяется для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (Н2О, NН3, НСI, СН2О и др.), называется поликонденсацией. Существенный вклад в изучении процессов поликонденсации внесли российские ученые В.Коршак, Г.Петров и другие, из зарубежных ученых – У.Карозерс, П.Флори, П.Морган и др. Поликонденсация бифункциональных соединений получила название линейной, например:

2NH2 (СН2)5 - СООН

аминокапроновая кислота

NH2 – (CН2)5 - СО – NH – (СН2)5 – СООН + Н2О

NH2 – (СН2)5 – СО – NH (СН2)5 – СООН + NH2 – (CН2)5 - СООН

NH2 – (CH2)5 – СО – NH – (CH2)5 –CO – NH – (CH2)5 – COOH + H2O и т.д.

Конечным продуктом будет поли- -капроамид 2)5 n.

Такой полимер невозможно превратить в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе.

Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10 – 20 выше температуры плавления (размягчения) полимеров (обычно 200 – 400 ). Процесс начинается в среде инертного газа и заканчивается в вакууме.

При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта.

Межфазная поликонденсация происходит на границе раздела фаз газ – раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой.

Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поли- -капроамид (капрон), полигексаметиленадипинамид (найлон) -NH(CH2)6NHCO(CH2)4CO- n, полиэфиры (полиэтилентерефталат -(-ОС)С6Н4(СО)ОСН2СН2- n), полиуретаны -OROCONHR NHCO- n, полисилоксаны -SiR2-О- n, полиацетали -OROCHR- т, фенолоформальдегидные смолы

Полимеры получают методами полимеризации или поликонденсации.

Полимеризация (полиприсоединение). Это реакция образования полимеров путем последовательного присоединения молекул низкомолекулярного вещества (мономера). Большой вклад в изучении процессов полимеризации внесли отечественные ученые С.В.Лебедев, С.С.Медведев и др. и зарубежные исследователи Г.Штаудингер, Г.Марк, К.Циглер и др. При полимеризации не образуются побочные продукты и соответственно элементный состав макромолекул не отличается от состава молекул мономеров. В качестве мономеров используются соединения с кратными связями: С=С, C=N, C=С, С=О, С=С=О,С=С=С, C=N, либо соединения с циклическими группами, способными раскрываться, например:

В процессе полимеризации происходит разрыв кратных связей или раскрытие циклов у мономеров и возникновение химических связей между группами с образованием макромолекул, например:


По числу видов участвующих мономеров различают гомополиме-ризацию (один вид мономера) и сополимеризацию (два и более видов мономеров).

Полимеризация -- самопроизвольный экзотермический процесс (DG<0, DH<0), так как разрыв двойных связей ведет к уменьшению энергии системы. Однако без внешних воздействий (инициаторов, катализаторов и т.д.) полимеризация протекает обычно медленно. Полимеризация является цепной реакцией. В зависимости от характера активных частиц различают радикальную и ионную полимеризации.

При радикальной полимеризации процесс инициируется свободными радикалами. Реакция проходит через несколько стадий: а) инициирование; б) рост цепи; в) передача или обрыв цепи:

  • а) инициирование - образование активных центров - радикалов и макрорадикалов -- происходит в результате теплового, фотохимиче ского, химического, радиационного или других видов воздействий. Чаще всего инициаторами полимеризации служат пероксиды, азосое-динения (имеющие функциональную группу - N = N -) и другие соединения с ослабленными связями. Первоначально образуются радикалы, например:
    • (С6Н5СОО)22C6H5COO*(R*)

пероксид бензоила

Затем образуются макрорадикалы, например при полимеризации хлорвинила:

R* +СН2 = СНСl ® RCH2 - СНСl*

RCH2 -- СНСl* + СН2 = CHCl ® RCH2 -- СНСl -- СН2 -- СНСl* и т.д.;

  • б) рост цепи происходит за счет присоединения к радикалам образующихся мономеров с получением новых радикалов;
  • в) передача цепи заключается в переносе активного центра на другую молекулу (мономер, полимер, молекулы растворителя):

R-(-CH2-CHCl-)n-CH2-CHCl* + CH2=CHCl ®

®R-(-CH2 -CHCl-)n -СН2 -СН2Сl + СН = СНСl*

В результате рост цепи прекращается, а молекула-передатчик, в данном случае молекула мономера, инициирует новую реакционную цепь. Если передатчиком служит полимер, то может произойти разветвление цепи.

В стадии обрыва цепи происходит взаимодействие радикалов с образованием валентно-насыщенных молекул:

R-{-CH2 - СНCl-)n- СН2- СНСl* + R-(-CH2- СНСl-)n- СН2- СНСl* ® R- (-СН2- СНСl-)n- CH2- CHCl - СН2- СНСl- (-СН2-СНСl)n- R

Обрыв цепи может также произойти при образовании малоактивных радикалов, которые не способны инициировать реакцию. Такие вещества называют ингибиторами.

Таким образом, регулирование длины и соответственно молекулярной массы макромолекул можно осуществлять с помощью инициаторов, ингибиторов и других веществ. Тем не менее передача и обрыв цепи могут происходить на различных этапах роста цепи, поэтому макромолекулы имеют различную молекулярную массу, т.е. полидисперсны. Полидисперсность является отличительной особенностью полимеров.

Радикальная полимеризация служит промышленным способом синтеза многих важных полимеров таких, как поливинилхлорид [-СН-СНСl-]n, поливинилацетат [-СН2-СH(ОСОСНз)-]n, полистирол [-СН2-СН(С6Н5)-]n, полиакрилат [-CH2-C(CH3)(COOR)-]n, полиэтилен [-СН2-СН2-]n, полидиены [-CH2-C(R)=CH-CH2-]n, и различных сополимеров.

Ионная полимеризация также происходит через стадию образования активных центров, роста и обрыва цепи. Роль активных центров в этом случае играют анионы и катионы. Соответственно различают анионную и катионную полимеризацию. Инициаторами катионной полимеризации служат электроноакцепторные соединения, в том числе протонные кислоты, например H2SO4 и НСl, неорганические апротонные кислоты (SnCl4, TiCl4, A1Cl3 и др.), металлоорганические соединения А1(С2Н5)3 и др. В качестве инициаторов анионной полимеризации используются элекронодонорные вещества и соединения, в том числе щелочные и щелочноземельные металлы, алкоголяты щелочных металлов и др. Часто одновременно используется несколько инициаторов полимеризации.

Рост цепи можно записать уравнениями реакции:

при катионной полимеризации и

Mn+ + M ® M+n+1

при анионной полимеризации

Mn- + M ® M-n+1

Рассмотрим в качестве примера катионную полимеризацию изобутилена с инициаторами АlСl3 и Н2О. Последние образуют комплекс

полимер мономер синтез

А1Сl3 + Н2О « Н+[АlOНСlз]-

Обозначив этот комплекс формулой H+X- процесс инициирования полимеризации можно представить в виде

H2C=C+ +H+X-®H3C-C+ X-

Возникающий комплексный катион вместе с противоионом X- образует макроион, который обеспечивает рост цепи:

Н3С -- С+ Х-+Н2С = С ®Н3С ѕ С -- СН2 -- С+ Х-и т.д

С помощью некоторых комплексных инициаторов удается получить полимеры, имеющие регулярную структуру (стереорегулярные полимеры). Например, таким комплексным инициатором может быть комплекс тетрахлорида титана и триалкилалюминия AIR3.

Метод ионной полимеризации используется в производстве поли-изобутилена [-СН2-С(СНз)2-]п, полиформальдегида [-СН2О-]n, полиамидов, например поли-e-капроамида (капрона) [-NH-(CH2)5-CO-]n, синтетических каучуков, например бутадиенового каучука [-СН2-СН=СН-СН2-]n.

Методом полимеризации получают 3/4 всего объема выпускаемых полимеров. Полимеризацию проводят в массе, растворе, эмульсии, суспензии или газовой фазе.

Полимеризация в массе (в блоке) - это полимеризация жидкого мономера (мономеров) в неразбавленном состоянии. При этом получают достаточно чистый полимер. Основная сложность проведения процесса связана с отводом теплоты. При полимеризации в растворе мономер растворен в растворителе. При таком способе полимеризации легче отводить теплоту и регулировать состав и структуру полимеров, однако возникает задача удаления растворителя.

Эмульсионная полимеризация (полимеризация в эмульсии) заключается в полимеризации мономера, диспергированного в воде. Для стабилизации эмульсии в среду вводят поверхностно-активные вещества. Достоинство способа - легкость отвода теплоты, возможность получения полимеров с большой молекулярной массой и высокая скорость реакции, недостаток - необходимость отмывки полимера от эмульгатора. Способ широко применяется в промышленности для получения каучуков, полистирола, поливинилхлорида, поливинилацетата, полиметилакрилата и др.

При суспензионной полимеризации (полимеризации в суспензии) мономер находится в виде капель, диспрегированных в воде или другой жидкости. В результате реакции образуются полимерные гранулы размером от 10-6 до 10-3 м. Недостаток метода - необходимость стабилизации суспензии и отмывки полимеров от стабилизаторов.

При газовой полимеризации мономер находится в газовой фазе, а полимерные продукты - в жидком или твердом состоянии. Метод применятся для получения полипропилена и других полимеров.

Поликонденсация. Реакция синтеза полимера из соединений, имеющих две или более функциональные группы, сопровождающаяся образованием низкомолекулярных продуктов (Н2О, NH3, HCl, СН2О и др.), называется поликонденсацией. Существенный вклад в изучении процессов поликонденсации внесли российские ученые В.Коршак, Г.Петров и другие, из зарубежных ученых - У.Карозерс, П.Флори, П.Морган и др. Поликонденсация бифункциональных соединений получила название линейной, например:

2NH2-(CH2)5-COOH ®

амииокапроновая кислота

®NH2-(CH2)5-CO-NH-(CH2)5-COOH + Н2О®

NH2-(CH2)5-CO-NH-(CH2)5-COOH + NH2-(CH2)5-COOH ®

® NH2-(CH2)5-CO-NH-(CH2)5-CO-NH-(CH2)5-COOH+ H2O и т.д.

Конечным продуктом будет поли-e-капроамид [-CO-NH-(CH2)5-]n. Поликонденсация соединений с тремя или более функциональными группами называется трехмерной. Примером трехмерной поликонденсации служит взаимодействие мочевины и формальдегида:

NH2-CO-NH2 + СН2О ® NH2-CO-NH-CH2OH

NH2-CO-NH-CH2OH + СН2О ® CH2OH-NH-CO-NH-CH2OH

2 CH2OH-NH-CO-NH-CH2OH ®

® Н2О + CH2OH-NH-CO-NH-CH2-O-CH2- NH-CO-NH-CH2OH

На первом этапе синтезируется олигомер линейной структуры:

[-СН2- NH-CO-NH-CH2-O]n

На втором этапе при нагревании в кислой среде происходит дальнейшая поликонденсация олигомера с выделением СН2О и возникновением сетчатой структуры:

Такой полимер невозможно превратит, в исходное состояние, он не обладает термопластичными свойствами и называется термореактивным полимером.

Кроме рассмотренной химической связи между мономерами при поликонденсации возникают химические связи между другими группами мономеров, некоторые из них приведены в табл. 1.

Таблица.1. Химические связи между функциональными группами некоторых мономеров, возникающих при их поликонденсации

Так как в процессе поликонденсации наряду с высокомолекулярными образуются низкомолекулярные продукты, то элементные составы полимеров и исходных веществ не совпадают. Этим поликонденсация отличается от полимеризации. Поликонденсация протекает по ступенчатому механизму, при этом промежуточные продукты являются стабильными, т.е. поликонденсация может остановиться на любой стадии. Образующиеся низкомолекулярные продукты реакции (Н2О, NH3, HCl, СН2O и др.) могут взаимодействовать с промежуточными продуктами поликонденсации, вызывая их расщепление (гидролиз, аминолиз, ацидолиз и др.), например:

NH-CO-(CH2)5-NH-CO-(CH2)5- + Н2О ®

® - NH-CO-(CH2)5-NH2-HO-CO-(CH2)5

Поэтому низкомолекулярные продукты приходится удалять из реакционной среды.

Монофункциональные соединения, присутствующие в реакционной среде, взаимодействуют с промежуточными продуктами, образуя нереакционноспособные соединения. Это приводит к обрыву цепи, поэтому исходные мономеры должны быть очищены от монофункциональных соединений. Монофункциональные соединения могут образовываться в ходе реакции из-за термической или окислительной деструкции промежуточных соединений. Это приводит к остановке реакции поликонденсации и уменьшению молекулярной массы полимера.

Поликонденсацию проводят либо в расплаве, либо в растворе, либо на межфазной границе.

Поликонденсацию в расплаве ведут без растворителей, нагревая мономеры при температуре на 10--20 °С выше температуры плавления (размягчения) полимеров (обычно 200--400°С). Процесс начинается в среде инертного газа и заканчивается в вакууме.

При поликонденсации в растворе используют растворитель, который также может служить абсорбентом низкомолекулярного продукта.

Межфазная поликонденсация происходит на границе раздела фаз газ -- раствор или двух несмешивающихся жидкостей и обеспечивает получение полимеров с высокой молекулярной массой.

Методом поликонденсации получают примерно четвертую часть выпускаемых полимеров, например поли-e-капроамид (капрон), поли-гексаметиленадипинамид (найлон) [--NH(CH2)6NHCO(CH2)4CO--]n, полиэфиры (полиэтилентерефталат [-(-ОС)С6Н4(СО)ОСН2СН2-]n), полиуретаны [-OROCONHR"NHCO-]n, полисилоксаны [-SiR2-O-]n, полиацетали [- OROCHR" -]n, фенолоформальдегидные смолы

Таким образом, полимеры получают методами полимеризации и поликонденсации. Полимеризация протекает по цепному механизму. При поликонденсации образуются как полимеры, так и низкомолекулярные продукты.

Существуют 2 основных способа получения полимеров - реакция полимеризации и реакция поликонденсации.

Реакция полимеризации - это химический процесс соединения множества исходных молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера, не сопровождающийся выделением побочных низкомолекулярных веществ (Н 2 О, HCl).

В реакцию полимеризации вступают ненасыщенные мономеры, у которых двойная связь находится между углеродными атомами или между углеродом и любым другим атомом:

n H 2 C = CH 2 (этилен) > n

Как видно из примера, реакция полимеризации не приводит к изменению элементного состава мономера. Как и любая другая химическая реакция, полимеризация начинается с разрыва одних химических связей и возникновения других. Такой разрыв может происходить или по гетеролитическому, или гомолитическому механизму. В первом случае образуются ионы, во вротом - свободные радикалы.

Полимеризация, протекающая через образование ионов называется ионной, а идущая с участием свободных радикалов - радикальной.

Таким образом, радикальная и ионная полимеризация различаются природой активного центра, начинающего и ведущего макромолекулярную цепь.

Полимеризация мономеров протекает по цепному механизму.

I. Радикальная полимеризация

Активным центром цепной полимеризации является свободный радикал. Реакция радикальной полимеризации складывается из трех основных стадий: инициирования, роста цепи и ее обрыва.

А. Инициирование (образование активного центра). На этой стадии происходит образование свободных радикалов (R?·), которые легко взаимодействуют с различными непредельными соединениями (мономерами).

R?· + СН 2 = СН 2 R > R? - CH 2 - CHR

В зависимости от способа образования свободных радикалов, начинающих реакционную цепь, различают несколько видов полимеризации: термическую, фотохимическую, радиационную и инициированную.

Одним из наиболее распространенных и часто применяемых на практике методов полимеризации является инициированная полимеризация. Она активируется соединениями, которые легко распадаются на свободные радикалы в условиях полимеризации. Такие соединения называют инициаторами полимеризации. Они содержат в своих молекулах неустойчивые химические связи (О - О, N - N, S - S, O - N и др.), которые разрываются при гораздо меньшей энергии, чем это требуется для образования свободного радикала из молекулы мономера (при ее активации). Инициаторами могут быть органические пероксиды и гидропероксиды, некоторые азо - и диазосоединения и другие вещества.

С 6 Н 5 - СО - О - О - СО - С 6 Н 5 > 2 С 6 Н 5 - СОО· > 2 С 6 Н 5 ·

Скорость распада инициатора на свободные радикалы можно увеличить не только повышением температуры, но и добавкой в реакционную среду специальных веществ - промоторов и активаторов.

Б. Рост цепи. Реакция роста цепи состоит в многократном присоединении молекул мономера к усложняющемуся каждый раз радикалу с сохранением свободного электрона в концевом звене растущей макромолекулы. Другими словами, растущая макромолекулярная цепь должна оставаться в период ее роста свободным макрорадикалом.

R? + СН 2 - СНR + СН 2 = СНR > R? - СН 2 - СНR - СН 2 - СНR

R? - [- CH 2 - CHR -] n+1 - CH 2 - CHR и т.д.

В результате таких последовательных реакций присоединения двойная связь мономера превращается в простую, что сопровождается выделением энергии.

В. Обрыв цепи. Конец роста цепи связан с исчезновением свободного электрона у конечного звена макромолекулы. Чаще всего это происходит в результате соединения между собой двух радикалов (реакция рекомбинации), что приводит к возникновению углеводородной цепи, не способной к дальнейшему росту.

R? - [- CH 2 - CHR -] n - CH 2 - CHR + R? - СН - СН 2 - R? >

R? - [- CH 2 - CHR -] n - CH 2 - CHR - СН 2 - R?

II. Ионная полимеризация

Ионная полимеризация протекает с образованием либо иона карбония, либо карбаниона, с последующей передачей по росту цепи положительного или отрицательного заряда. В зависимости от этого различают катионную (карбониевую) и анионную (карбанионную) полимеризацию.

Ионная полимеризация, как и радикальная, - цепной процесс.

Ионная полимеризация проходит в присутствии катализаторов, способствующих образованию ионов. Поэтому ионная полимеризация называется также каталитической полимеризацией. Процесс ионной полимеризации протекает также в три стадии.

II. 1. Катионная (карбониевая) полимеризация. Для проведения такой полимеризации используют катализаторы, обладающие электроно-акцепторными свойствами: кислоты, катализаторы Фриделя - Крафтса (AlCl 3, BF 3 и др.).

Полимеризацию проводят в присутствии специальных добавок - сокатализаторов (вода, кислоты, другие вещества, являющиеся донорами электронов).

А. Инициирование. На этой стадии происходит взаимодействие катализатора (AlCl 3) и сокатализатора (НВ) с образованием комплексного соединения, которое проявляет свойства сильной кислоты

AlCl 3 + НВ >[ AlCl 3 В] - + Н +

Эта кислота, отдавая протон молекуле мономера, превращает его в карбониевый ион, уравновешенный комплексным противоионом (ионная пара):

[ AlCl 3 В] - Н + + СН 2 = СНR > СН 3 - СНR AlCl3В-

Сокатализаторами могут быть те вещества, которые взаимодействуют с катализаторами. Роль сокатализатора во многом зависит от характера реакционной среды. Большое значение имеет характер заместителя в молекуле иономера. Электронодонорные заместители (R) создают избыток электронной плотности на противоположном конце молекулы мономера и этим способствуют присоединению протона или карбатиона.

Б. Рост цепи. В процессе роста цепи полярные молекулы мономера присоединяются к растущему иону, «внедряясь» между макрокарбкатионом (со стороны его заряженной части) и противоионом (AlCl 3 В -):

СН 2 = СНR + СН 3 - СНR > СН 3 - СНR - СН 3 - СНR AlCl3В- >

В. Обрыв цепи. Рост цепи прекращается при отщеплении (регенерации) от растущего иона комплексной кислоты или катализатора:

СН 3 - СНR - [- CH 2 - CHR -] n - CH 2 - CHR AlCl3В-

> СН 3 - СНR - [- CH 2 - CHR -] n - CH 2 - CHRB

> СН 3 - СНR - [- CH 2 - CHR -] n - CH = CHR

В результате катализатор снова выделяется в свободном виде.

II. 2. Анионная (карбанионная) полимеризация. Катализаторами этой полимеризации служат электроннодонорные вещества - основания, щелочные металлы, гидриды металлов, амид калия, а также металлорганические соединения.

Механизм анионной полимеризации в присутствии катализатора KNH 2 в среде жидкого аммиака.

А. Инициирование.

KNH 2 - К + + NH 2 - > H 2 N - CH 2 - CHR k+

Электроноакцепторные заместители (R) в молекуле мономера способствуют присоединению аниона. Оттягивая электронную плотность, они создают дефицит электронов на конце молекулы, к которому присоединяется отрицательно заряженная группа (NH 2 -).

Б. Рост цепи.

H 2 N - CH 2 - CHR > H 2 N - CH 2 - CHR - CH 2 - CHR K+ >

H 2 N - [- CH 2 - CHR - ] n+1 - CH 2 - CHR K+

Как и при каталитической полимеризации, мономер занимает место между макрокарбанионом и противоионом.

В. Обрыв цепи. Прекращение роста макромолекулярной цепи может произойти в результате ее взаимодействия с растворителем:

H 2 N - [- CH 2 - CHR - ] n+1 - CH 2 - CHR K+ + HNH 2 >

H 2 N - [- CH 2 - CHR - ] n+1 - CH 2 - CH 2 R + KNH 2

Особое значение получила анионная полимеризация в присутствии металлорганических катализаторов. Из этих катализаторов наиболее высокой полимеризационной активностью обладают катализаторы Циглера - Натта - комплексы триэтилалюминия с солями титана: Al(C 2 H 5) 3 + TiCl 4 (или TiCl 3). Эти катализаторы позволили полностью изменить технологию получения многих полимеров.

Например, для синтеза полиэтилена без таких катализаторов требуются довольно жесткие условия (давление 150-200 МПа, 300 0 С). Используя же катализаторы Циглера - Натта, полиэтилен получают при давлении, не превышающем 1МПа, и температуре, которая не выше 60 0 С. Полиэтилен, синтезированный без этих катализаторов, называют полиэтиленом высокого давления - ПЭВД, в противоположность полиэтилену низкого давления - ПЭНД (с катализатором Циглера -Натта).

Свойства полиэтилена, полученного при низком давлении, отличаются от свойств полиэтилена, полученного при высоком давлении. ПЭНД прочнее и жестче, его плотность выше, а ПЭВД - более эластичный и гибкий, при растяжении образует прозрачную пленку.

Реакция поликонденсации - это химический процесс соединения исходных молекул мономера в макромолекулы полимера, идущий с образованием побочного низкомолекулярного продукта (чаще всего воды).

В реакцию поликонденсации вступают мономеры, содержащие в молекулах функциональные группы (- ОН, - СООН, галогены и др.).

Мономеры, участвующие в реакциях поликонденсации, должны быть не менее чем бифункциональными:

HOOC - (CH 2) 4 - COOH + HNH - (CH 2) 6 - NH 2 -

HOOC - (CH 2) 4 - CO - NH - (CH 2) 6 - NH 2 + H 2 O

С помощью реакций поликонденсации получают полиэфиры, полиамиды, полиуретаны, полиакрил и т. д.

Вопросы и упражнения

1. Какие вы знаете основные методы получения полимеров?

2. Какая реакция называется полимеризацией? Приведите примеры такой реакции.

3. Какие мономеры могут вступать в реакцию полимеризации?

4. Какие разновидности полимеризации вы знаете?

5. Какая частица является активным центром радикальной полимеризации?

6. Из каких трех стадий состоит процесс цепной полимеризации?

7. Чем отличается радикальная полимеризация от ионной?

8. Какие вещества катализируют катионную полимеризацию?

9. Какие катализаторы используют при анионной полимеризации?

10. Что представляет собой катализатор Циглера - Натта?

11. Какая реакция называется поликонденсацией? Чем она отличается от реакции полимеризации?

12. Какие мономеры могут вступать в реакцию поликонденсации?

Синтезы полимеров обычно осуществляют на основе, реакций двух типов: полимеризации и поликонденсации. Кроме того, некоторые виды полимеров получают с помощью метода полимераналогичных превращений, основанного на химических превращениях готовых полимерных соединений.

Полимеризация. Полимеризацией называется химическая реакция образования высокомолекулярных органических соединений из низкомолекулярных (мономеров), причем образующиеся полимеры имеют тот же элементный состав, что и исходные мономеры. Полимеризация может быть цепной или ступенчатой.

Механизм цепной полимеризации аналогичен механизму реакций, получавших общее название цепных, теория которых была разработана советским ученым академиком Н. Н. Семеновым.

Цепная полимеризация, в результате которой образуются длинные макромолекулы полимеров, состоит из трех основных этапов: 1) начало роста цепи (возникновение активных центров); 2) рост цепи; 3) обрыв цепи.

Для того чтобы начался рост цепи, необходимо активировать молекулы мономеров. Для этой цели пользуются инициаторами или катализаторами.

Некоторые мономеры (например, стирол) обладают способностью полимеризоваться под действием повышенной температуры. При этом, по-видимому, инициирование происходит в результате термического распада мономера на радикалы. Скорость термического инициирования значительно меньше скорости, инициирования в присутствии, инициатора.

В качестве инициаторов полимеризации используют сравнительно нестойкие химические вещества (главным образом переписного характера), способные распадаться с образованием свободных радикалов. Так, например, часто применяемая в качестве инициатора полимеризации перекись бензоила разлагается с образованием свободных радикалов, имеющих неспаренный электрон:

Образовавшийся свободный радикал взаимодействует с непредельным мономером; этом разрывается двойная связь и

образуется новый свободный радикал с неспаренным электрбном;

При каждом присоединении один электрон двойной связи образует пару с электроном свободного радикала (ковалент-ную связь), а второй электрон остается неспаренным (свободным) и может снова присоединиться к двойной связи молекулы мономера. Таким образом к растущей цепи в течение короткого промежутка времени присоединяется множество молекул мономера, в результате чего образуется макрорадикал.

При столкновении такого макрорадикала с другим свободным радикалом или с молекулой растворителя происходит обрыв реакционной цепи:

Образовавшаяся макромолекула полимера теряет способность участвовать в дальнейшей реакции.

Остаток инициатора входит в состав полимера в виде концевой группы цепи.

Из приведенной схемы видно, что инициатор целиком расходуется на образование макромолекулы полимера.

Если реакция полимеризации ведется в присутствии катализаторов (например, таких, как хлористый алюминий, трехфтористый бор и т. п.), то образование активных центров происходит путем присоединения катализатора к непредельному мономеру; при этом получается неустойчивый комплексный ион. Такой комплексный ион (как и свободный радикал) присоединяет молекулы мономера с образованием макроиона. В отличие

от радикальной полимеризации обрыв реакционной цепи протекает с отщеплением катализатора, который поэтому не расходуется на образование макромолекулы полимера.

Цепная полимеризация протекает с большой скоростью, и выделить промежуточные продукты реакции не удается.

Полимеризация под влиянием ионных катализаторов получила название ионной каталитической полимеризации в отличие от радикальной полимеризации, протекающей под действием свободных радикалов.

Скорость полимеризации зависит от температуры, давления, количества инициатора (а в случае ионной полимеризации - от химической природы катализатора).

Молекулярный вес полимера как при радикальной, так и при ионной полимеризации зависит от соотношения скоростей реакций роста цепи и ее обрыва. Чем больше скорость роста депи и меньше скорость ее обрыва, тем длиннее цепь образующейся макромолекулы и тем больше молекулярный вес получаемого полимера.

Сравнительно недавно открыта новая реакция - реакция теломеризации. Сущность ее заключается в радикальной полимеризации непредельных соединений в присутствии предельных галоидпроизводных углеводородов или других насыщенных соединений (телогенов), способных обрывать реакционную цепь, присоединяясь к макромолекуле полимера с двух её концов.

Если обозначить насыщенное соединение (телоген) через то реакцию теломеризации можно изобразить схемой:

В результате реакции теломеризацйи образуются сравнительно низкомолекулярные соединения.

Значение реакции теломеризации заключается а том, что с ее помощью можно, исходя из простейшего сырья, достаточно легко получать различные высшие бифункциональные соединения (гликоле, дикарбоновые кислоты, аминокислоты, оксикислоты и др.), получение которых другими путями обычно связано с большими трудностями.

Примёром практического применения реакции теломеризации служит разработанный в Советском Союзе способ получения -аминоэнантовой кислоты - исходного вещества для производства полиамидного волокна - энанта (стр. 349).

Сначала проводят теломеризацию этилена в присутствии четыреххлористого углерода при

В качестве инициатора реакции применяют, например, перекись бензоила.

Затем из полученной смеси тетрахлоралканов выделяют с помощью ректификации -тетрахлоргептан и получают из него -хлррэнантовую кислоту, которую действием аммиака переводят в -аминоэнантовую кислоту:

Ступенчатая полимеризация протекает с постепенным (ступенчатым) ростом молекулярного веса. При ступенчатой полимеризации присоединекие каждой следующей молекулы мономера происходит с образованием промежуточных соединений, которые могут быть выделены.

Механизм реакции ступенчатой полимеризации олефинов заключается в перемещении атома водорода и образовании промежуточных соединений с двойной связью на конце растущей цепи, например:

К ступенчатой полимеризации относится и полимеризация циклов, например полимеризация лактамов -аминокислот. Активаторами полимеризации циклов являются вода, некоторые органические кислоты, металлический натрий и др.

Например, при действии воды в качестве активатора на капролактам (стр. 199) вначале образуется аминокислота

Образовавшийся продукт присоединения линейной структуры снова взаимодействует с новой молекулой капролактама:

Реакция проводится при повышенных температуре и давлении.

Поликонденсация. Для получения полимеров широкр применяется также реакция поликонденсации. Она значительно отличается по механизму от реакции полимеризации. При полимеризации превращение мономера в полимер происходит без выделения каких-либо других химических соединений. Реакция поликонденсации состоит во взаимодействии функциональных групп мономеров и сопровождается выделением какого-либо вещества, например воды, аммиака, хлористого водорода. Реакция поликонденсации носит ступенчатый характер: рост цепи происходит постепенно. Сначала реагируют друг с другом две молекулы исходного вещества, затем образовавшееся соединение взаимодействует с третьей молекулой исходного вещества, с четвертой и т. д.

Все промежуточные продукты реакции, образующиеся в результате постепенного присоединения новых молекул мономера, вполне устойчивы, их можно выделить. Они сохраняют свою реакционную способность, определяющуюся наличием у них непрореагировавших функциональных групп.

Полимеры могут образовываться лишь в том случае, если реагирующие молекулы имеют не менее двух функциональных групп. Соединения с тремя и больше функциональными группами могут образовывать пространственные полимеры.

Реакцию поликонденсации часто подразделяют на гомополиконденсацию и гетерополиконденсацию.

Гомополиконденсацией называется реакция поликонденсации, в которой участвуют однородные молекулы, например поликонденсация -аминоэнантовой кислоты:

Гетерополиконденсацией называется поликонденсация с участием двух или нескольких разнородных соединений, молекулы которых имеют две или более одинаковые функциональные группы, например поликонденсация диаминов с дикарбоновыми кислотами:

Реакция поликонденсации проводится в присутствии ионных катализаторов (кислот или оснований).

Полимераналогичные превращения. Получение полимеров путем полимераналогичных превращений основано на химических реакциях функциональных групп в макромолекулах полимеров. Функциональные группы в полимерных соединениях обладают такой же реакционной способностью, как и соответствующие функциональные группы в низкомолекулярных соединениях.

К полимераналогичным превращениям прибегают в случае отсутствия соответствующих исходных мономеров или в случае невозможности синтеза полимера доступными методами. Этим путем получают, например, поливиниловый спирт, который невозможно получить из мономерного винилового спирта ввиду его неустойчивости и быстрой изомеризации в ацетальдегид:

Поливиниловый спирт получают путем гидролиза, полимерных сложных виниловых эфиров, например поливинил ацетата:

Механохимический метод. Привитые и блоксополимеры могут быть получены не только химическим, но и механическим путем. Например, когда два разных каучука вальцуют (перетирают между валками) в бескислородной среде, происходит разрыв молекул взятых каучуков с образованием высокомолекулярных свободных радикалов. Такие остатки макромолекулы могут присоединить остаток или молекулу другого каучука. Если остаток

или молекулярная цепочка одного каучука образует участок в главной цепи молекулы второго каучука, то получаются блок-сополимеры, если он образует боковые, цепи, - получакся привитые сополимеры.