Решение систем уравнений методом вычитания. Основные методы решения систем уравнений

Этим видео я начинаю цикл уроков, посвящённых системам уравнений. Сегодня мы поговорим о решении систем линейных уравнений методом сложения — это один из самых простых способов, но одновременно и один из самых эффективных.

Способ сложения состоит из трёх простых шагов:

  1. Посмотреть на систему и выбрать переменную, у которой в каждом уравнении стоят одинаковые (либо противоположные) коэффициенты;
  2. Выполнить алгебраическое вычитание (для противоположных чисел — сложение) уравнений друг из друга, после чего привести подобные слагаемые;
  3. Решить новое уравнение, получившееся после второго шага.

Если всё сделать правильно, то на выходе мы получим одно-единственное уравнение с одной переменной — решить его не составит труда. Затем останется лишь подставить найденный корень в исходную система и получить окончательный ответ.

Однако на практике всё не так просто. Причин тому несколько:

  • Решение уравнений способом сложения подразумевает, что во всех строчках должны присутствовать переменные с одинаковыми/противоположными коэффициентами. А что делать, если это требование не выполняется?
  • Далеко не всегда после сложения/вычитания уравнений указанным способом мы получим красивую конструкцию, которая легко решается. Возможно ли как-то упростить выкладки и ускорить вычисления?

Чтобы получить ответ на эти вопросы, а заодно разобраться с несколькими дополнительными тонкостями, на которых «заваливаются» многие ученики, смотрите мой видеоурок:

Этим уроком мы начинаем цикл лекций, посвященный системам уравнений. А начнем мы из самых простых из них, а именно из те, которые содержат два уравнения и две переменных. Каждое из них будет являться линейным.

Системы — это материал 7-го класса, но этот урок также будет полезен старшеклассникам, которые хотят освежить свои знания в этой теме.

Вообще, существует два метода решения подобных систем:

  1. Метод сложения;
  2. Метод выражения одной переменной через другую.

Сегодня мы займемся именно первым методом — будем применять способ вычитания и сложения. Но для этого нужно понимать следующий факт: как только у вас есть два или более уравнений, вы вправе взять любые два из них и сложить друг с другом. Складываются они почленно, т.е. «иксы» складываются с «иксами» и приводятся подобные, «игреки» с «игреками» — вновь приводятся подобные, а то, что стоит справа от знака равенства, также складывается друг с другом, и там тоже приводятся подобные.

Результатами подобных махинаций будет новое уравнение, которое, если и имеет корни, то они обязательно будут находиться среди корней исходного уравнения. Поэтому наша задача — сделать вычитание или сложение таким образом, чтобы или $x$, или $y$ исчез.

Как этого добиться и каким инструментом для этого пользоваться — об этом мы сейчас и поговорим.

Решение легких задач с применением способа сложения

Итак, учимся применять метод сложения на примере двух простейших выражений.

Задача № 1

\[\left\{ \begin{align}& 5x-4y=22 \\& 7x+4y=2 \\\end{align} \right.\]

Заметим, что у $y$ коэффициент в первом уравнении $-4$, а во втором — $+4$. Они взаимно противоположны, поэтому логично предположить, что если мы их сложим, то в полученной сумме «игреки» взаимно уничтожатся. Складываем и получаем:

Решаем простейшую конструкцию:

Прекрасно, мы нашли «икс». Что теперь с ним делать? Мы вправе подставить его в любое из уравнений. Подставим в первое:

\[-4y=12\left| :\left(-4 \right) \right.\]

Ответ: $\left(2;-3 \right)$.

Задача № 2

\[\left\{ \begin{align}& -6x+y=21 \\& 6x-11y=-51 \\\end{align} \right.\]

Здесь полностью аналогичная ситуация, только уже с «иксами». Сложим их:

Мы получили простейшее линейное уравнение, давайте решим его:

Теперь давайте найдем $x$:

Ответ: $\left(-3;3 \right)$.

Важные моменты

Итак, только что мы решили две простейших системы линейных уравнений методом сложения. Еще раз ключевые моменты:

  1. Если есть противоположные коэффициенты при одной из переменных, то необходимо сложить все переменные в уравнении. В этом случае одна из них уничтожится.
  2. Найденную переменную подставляем в любое из уравнений системы, чтобы найти вторую.
  3. Окончательную запись ответа можно представить по-разному. Например, так — $x=...,y=...$, или в виде координаты точек — $\left(...;... \right)$. Второй вариант предпочтительней. Главное помнить, что первой координатой идет $x$, а второй — $y$.
  4. Правило записывать ответ в виде координат точки применимо не всегда. Например, его нельзя использовать, когда в роли переменных выступают не $x$ и $y$, а, к примеру, $a$ и $b$.

В следующих задачах мы рассмотрим прием вычитания, когда коэффициенты не противоположны.

Решение легких задач с применением метода вычитания

Задача № 1

\[\left\{ \begin{align}& 10x-3y=5 \\& -6x-3y=-27 \\\end{align} \right.\]

Заметим, что противоположных коэффициентов здесь нет, однако есть одинаковые. Поэтому вычитаем из первого уравнения второе:

Теперь подставляем значение $x$ в любое из уравнений системы. Давайте в первое:

Ответ: $\left(2;5 \right)$.

Задача № 2

\[\left\{ \begin{align}& 5x+4y=-22 \\& 5x-2y=-4 \\\end{align} \right.\]

Мы снова видим одинаковый коэффициент $5$ при $x$ в первом и во втором уравнении. Поэтому логично предположить, что нужно из первого уравнения вычесть второе:

Одну переменную мы вычислили. Теперь давайте найдем вторую, например, подставив значение $y$ во вторую конструкцию:

Ответ: $\left(-3;-2 \right)$.

Нюансы решения

Итак, что мы видим? По существу, схема ничем не отличается от решения предыдущих систем. Отличие только в том, что мы уравнения не складываем, а вычитаем. Мы проводим алгебраическое вычитание.

Другими словами, как только вы видите систему, состоящую из двух уравнений с двумя неизвестными, первое, на что вам необходимо посмотреть — это на коэффициенты. Если они где-либо одинаковые, уравнения вычитаются, а если они противоположные — применяется метод сложения. Всегда это делается для того, чтобы одна из них исчезла, и в итогом уравнении, которая осталась после вычитания, осталась бы только одна переменная.

Разумеется, это еще не все. Сейчас мы рассмотрим системы, в которых уравнения вообще несогласованны. Т.е. нет в них таких переменных, которые были бы либо одинаковые, либо противоположные. В этом случае для решения таких систем применяется дополнительный прием, а именно домножение каждого из уравнений на специальный коэффициент. Как найти его и как решать вообще такие системы, сейчас мы об этом и поговорим.

Решение задач методом домножения на коэффициент

Пример № 1

\[\left\{ \begin{align}& 5x-9y=38 \\& 3x+2y=8 \\\end{align} \right.\]

Мы видим, что ни при $x$, ни при $y$ коэффициенты не только не взаимно противоположны, но и вообще никак не соотносятся с другим уравнением. Эти коэффициенты никак не исчезнут, даже если мы сложим или вычтем уравнения друг из друга. Поэтому необходимо применить домножение. Давайте попытаемся избавиться от переменной $y$. Для этого мы домножим первое уравнение на коэффициент при $y$ из второго уравнения, а второе уравнение — при $y$ из первого уравнения, при этом не трогая знак. Умножаем и получаем новую систему:

\[\left\{ \begin{align}& 10x-18y=76 \\& 27x+18y=72 \\\end{align} \right.\]

Смотрим на нее: при $y$ противоположные коэффициенты. В такой ситуации необходимо применять метод сложения. Сложим:

Теперь необходимо найти $y$. Для этого подставим $x$ в первое выражение:

\[-9y=18\left| :\left(-9 \right) \right.\]

Ответ: $\left(4;-2 \right)$.

Пример № 2

\[\left\{ \begin{align}& 11x+4y=-18 \\& 13x-6y=-32 \\\end{align} \right.\]

Вновь коэффициенты ни при одной из переменных не согласованы. Домножим на коэффициенты при $y$:

\[\left\{ \begin{align}& 11x+4y=-18\left| 6 \right. \\& 13x-6y=-32\left| 4 \right. \\\end{align} \right.\]

\[\left\{ \begin{align}& 66x+24y=-108 \\& 52x-24y=-128 \\\end{align} \right.\]

Наша новая система равносильна предыдущей, однако коэффициенты при $y$ являются взаимно противоположными, и поэтому здесь легко применить метод сложения:

Теперь найдем $y$, подставив $x$ в первое уравнение:

Ответ: $\left(-2;1 \right)$.

Нюансы решения

Ключевое правило здесь следующее: всегда умножаем лишь на положительные числа — это избавит вас от глупых и обидных ошибок, связанных с изменением знаков. А вообще, схема решения довольно проста:

  1. Смотрим на систему и анализируем каждое уравнение.
  2. Если мы видим, что ни при $y$, ни при $x$ коэффициенты не согласованы, т.е. они не являются ни равными, ни противоположными, то делаем следующее: выбираем переменную, от которой нужно избавиться, а затем смотрим на коэффициенты при этих уравнениях. Если первое уравнение домножим на коэффициент из второго, а второе, соответственное, домножим на коэффициент из первого, то в итоге мы получим систему, которая полностью равносильна предыдущей, и коэффициенты при $y$ будут согласованы. Все наши действия или преобразования направлены лишь на то, чтобы получить одну переменную в одном уравнении.
  3. Находим одну переменную.
  4. Подставляем найденную переменную в одно из двух уравнений системы и находим вторую.
  5. Записываем ответ в виде координаты точек, если у нас переменные $x$ и $y$.

Но даже в таком нехитром алгоритме есть свои тонкости, например, коэффициенты при $x$ или $y$ могут быть дробями и прочими «некрасивыми» числами. Эти случаи мы сейчас рассмотрим отдельно, потому что в них можно действовать несколько иначе, чем по стандартному алгоритму.

Решение задач с дробными числами

Пример № 1

\[\left\{ \begin{align}& 4m-3n=32 \\& 0,8m+2,5n=-6 \\\end{align} \right.\]

Для начала заметим, что во втором уравнении присутствуют дроби. Но заметим, что можно разделить $4$ на $0,8$. Получим $5$. Давайте второе уравнение домножим на $5$:

\[\left\{ \begin{align}& 4m-3n=32 \\& 4m+12,5m=-30 \\\end{align} \right.\]

Вычитаем уравнения друг из друга:

$n$ мы нашли, теперь посчитаем $m$:

Ответ: $n=-4;m=5$

Пример № 2

\[\left\{ \begin{align}& 2,5p+1,5k=-13\left| 4 \right. \\& 2p-5k=2\left| 5 \right. \\\end{align} \right.\]

Здесь, как и в предыдущей системе, присутствуют дробные коэффициенты, однако ни при одной из переменных коэффициенты в целое число раз друг в друга не укладываются. Поэтому используем стандартный алгоритм. Избавится от $p$:

\[\left\{ \begin{align}& 5p+3k=-26 \\& 5p-12,5k=5 \\\end{align} \right.\]

Применяем метод вычитания:

Давайте найдем $p$, подставив $k$ во вторую конструкцию:

Ответ: $p=-4;k=-2$.

Нюансы решения

Вот и вся оптимизация. В первом уравнении мы не стали домножать вообще ни на что, а второе уравнение домножили на $5$. В итоге мы получили согласованное и даже одинаковое уравнение при первой переменной. Во второй системе мы действовали по стандартному алгоритму.

Но как найти числа, на которые необходимо домножать уравнения? Ведь если домножать на дробные числа, мы получим новые дроби. Поэтому дроби необходимо домножить на число, которое бы дало новое целое число, а уже после этого домножать переменные на коэффициенты, следуя стандартному алгоритму.

В заключение хотел бы обратить ваше внимание на формат записи ответа. Как я уже и говорил, поскольку здесь у нас тут не $x$ и $y$, а другие значения, мы пользуемся нестандартной записью вида:

Решение сложных систем уравнений

В качестве заключительного аккорда к сегодняшнему видеоуроку давайте рассмотрим пару действительно сложных систем. Их сложность будет состоять в том, что в них и слева, и справа будут стоять переменные. Поэтому для их решения нам придется применять предварительную обработку.

Система № 1

\[\left\{ \begin{align}& 3\left(2x-y \right)+5=-2\left(x+3y \right)+4 \\& 6\left(y+1 \right)-1=5\left(2x-1 \right)+8 \\\end{align} \right.\]

Каждое уравнение несет в себе определенную сложность. Поэтому с каждым выражением давайте поступим как с обычной линейной конструкцией.

Итого мы получим окончательную систему, которая равносильна исходной:

\[\left\{ \begin{align}& 8x+3y=-1 \\& -10x+6y=-2 \\\end{align} \right.\]

Посмотрим на коэффициенты при $y$: $3$ укладывается в $6$ два раза, поэтому домножим первое уравнение на $2$:

\[\left\{ \begin{align}& 16x+6y=-2 \\& -10+6y=-2 \\\end{align} \right.\]

Коэффициенты при $y$ теперь равны, поэтому вычитаем из первого уравнения второе: $$

Теперь найдем $y$:

Ответ: $\left(0;-\frac{1}{3} \right)$

Система № 2

\[\left\{ \begin{align}& 4\left(a-3b \right)-2a=3\left(b+4 \right)-11 \\& -3\left(b-2a \right)-12=2\left(a-5 \right)+b \\\end{align} \right.\]

Преобразуем первое выражение:

Разбираемся со вторым:

\[-3\left(b-2a \right)-12=2\left(a-5 \right)+b\]

\[-3b+6a-12=2a-10+b\]

\[-3b+6a-2a-b=-10+12\]

Итого, наша первоначальная система примет такой вид:

\[\left\{ \begin{align}& 2a-15b=1 \\& 4a-4b=2 \\\end{align} \right.\]

Посмотрев на коэффициенты при $a$, мы видим, что первое уравнение нужно домножить на $2$:

\[\left\{ \begin{align}& 4a-30b=2 \\& 4a-4b=2 \\\end{align} \right.\]

Вычитаем из первой конструкции вторую:

Теперь найдем $a$:

Ответ: $\left(a=\frac{1}{2};b=0 \right)$.

Вот и все. Надеюсь, этот видеоурок поможет вам разобраться в этой нелегкой теме, а именно в решении систем простых линейных уравнений. Дальше еще будет много уроков, посвященных этой теме: мы разберем более сложные примеры, где переменных будет больше, а сами уравнения уже будут нелинейными. До новых встреч!

Урок и презентация на тему: "Системы уравнений. Метод подстановки, метод сложения, метод введения новой переменной"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Тренажер к учебникам Атанасяна Л.С. Тренажер к учебникам Погорелова А.В.

Способы решения систем неравенств

Ребята, мы с вами изучили системы уравнений и научились решать их с помощью графиков. Теперь давайте посмотрим, какие еще существуют способы решения систем?
Практически все способы их решения не отличаются от тех, что мы изучали в 7 классе. Сейчас нам нужно внести некоторые корректировки согласно тем уравнениям, что мы научились решать.
Суть всех методов, описанных в данном уроке, это замена системы равносильной системой с более простым видом и способом решения. Ребята, вспомните, что такое равносильная система.

Метод подстановки

Первый способ решения систем уравнений с двумя переменными нам хорошо известен - это метод подстановки. С помощью этого метода мы решали линейные уравнения. Теперь давайте посмотрим, как решать уравнения в общем случае?

Как же нужно действовать при решении?
1. Выразить одну из переменных через другую. Чаще всего в уравнениях используют переменные x и y. В одном из уравнений выражаем одну переменную через другую. Совет: внимательно посмотрите на оба уравнения, прежде чем начать решать, и выберете то, где будет легче выразить переменную.
2. Полученное выражение подставить во второе уравнение, вместо той переменной, которую выражали.
3. Решить уравнение, которое у нас получилось.
4. Подставить получившееся решение во второе уравнение. Если решений несколько, то подставлять надо последовательно, чтобы не потерять пару решений.
5. В результате вы получите пару чисел $(x;y)$, которые надо записать в ответ.

Пример.
Решить систему с двумя переменными методом подстановки: $\begin{cases}x+y=5, \\xy=6\end{cases}$.

Решение.
Внимательно посмотрим на наши уравнения. Очевидно, что выразить y через x в первом уравнении гораздо проще.
$\begin{cases}y=5-x, \\xy=6\end{cases}$.
Подставим первое выражение во второе уравнение $\begin{cases}y=5-x, \\x(5-2x)=6\end{cases}$.
Решим второе уравнение отдельно:
$x(5-x)=6$.
$-x^2+5x-6=0$.
$x^2-5x+6=0$.
$(x-2)(x-3)=0$.
Получили два решения второго уравнения $x_1=2$ и $x_2=3$.
Последовательно подставим во второе уравнение.
Если $x=2$, то $y=3$. Если $x=3$, то $y=2$.
Ответом будет две пары чисел.
Ответ: $(2;3)$ и $(3;2)$.

Метод алгебраического сложения

Этот метод мы также изучали в 7 классе.
Известно, что рациональное уравнение от двух переменных мы можем умножить на любое число, не забывая умножить обе части уравнения. Мы умножали одно из уравнений на некое число так, чтобы при сложении получившегося уравнения со вторым уравнением системы, одна из переменных уничтожалась. Потом решали уравнение относительно оставшейся переменной.
Этот метод работает и сейчас, правда не всегда возможно уничтожить одну из переменных. Но позволяет значительно упростить вид одного из уравнений.

Пример.
Решить систему: $\begin{cases}2x+xy-1=0, \\4y+2xy+6=0\end{cases}$.

Решение.
Умножим первое уравнение на 2.
$\begin{cases}4x+2xy-2=0, \\4y+2xy+6=0\end{cases}$.
Вычтем из первого уравнения второе.
$4x+2xy-2-4y-2xy-6=4x-4y-8$.
Как видим, вид получившегося уравнения гораздо проще исходного. Теперь мы можем воспользоваться методом подстановки.
$\begin{cases}4x-4y-8=0, \\4y+2xy+6=0\end{cases}$.
Выразим x через y в получившемся уравнении.
$\begin{cases}4x=4y+8, \\4y+2xy+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2(y+2)y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\4y+2y^2+4y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\2y^2+8y+6=0\end{cases}$.
$\begin{cases}x=y+2, \\y^2+4y+3=0\end{cases}$.
$\begin{cases}x=y+2, \\(y+3)(y+1)=0\end{cases}$.
Получили $y=-1$ и $y=-3$.
Подставим эти значения последовательно в первое уравнение. Получим две пары чисел: $(1;-1)$ и $(-1;-3)$.
Ответ: $(1;-1)$ и $(-1;-3)$.

Метод введения новой переменной

Этот метод мы также изучали, но давайте посмотрим на него еще раз.

Пример.
Решить систему: $\begin{cases}\frac{x}{y}+\frac{2y}{x}=3, \\2x^2-y^2=1\end{cases}$.

Решение.
Введем замену $t=\frac{x}{y}$.
Перепишем первое уравнение с новой переменной: $t+\frac{2}{t}=3$.
Решим получившееся уравнение:
$\frac{t^2-3t+2}{t}=0$.
$\frac{(t-2)(t-1)}{t}=0$.
Получили $t=2$ или $t=1$. Введем обратную замену $t=\frac{x}{y}$.
Получили: $x=2y$ и $x=y$.

Для каждого из выражений исходную систему надо решить отдельно:
$\begin{cases}x=2y, \\2x^2-y^2=1\end{cases}$.   $\begin{cases}x=y, \\2x^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\8y^2-y^2=1\end{cases}$.    $\begin{cases}x=y, \\2y^2-y^2=1\end{cases}$.
$\begin{cases}x=2y, \\7y^2=1\end{cases}$.       $\begin{cases}x=2y, \\y^2=1\end{cases}$.
$\begin{cases}x=2y, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.      $\begin{cases}x=y, \\y=±1\end{cases}$.
$\begin{cases}x=±\frac{2}{\sqrt{7}}, \\y=±\frac{1}{\sqrt{7}}\end{cases}$.     $\begin{cases}x=±1, \\y=±1\end{cases}$.
Получили четыре пары решений.
Ответ: $(\frac{2}{\sqrt{7}};\frac{1}{\sqrt{7}})$; $(-\frac{2}{\sqrt{7}};-\frac{1}{\sqrt{7}})$; $(1;1)$; $(-1;-1)$.

Пример.
Решить систему: $\begin{cases}\frac{2}{x-3y}+\frac{3}{2x+y}=2, \\\frac{8}{x-3y}-\frac{9}{2x+y}=1\end{cases}$.

Решение.
Введем замену: $z=\frac{2}{x-3y}$ и $t=\frac{3}{2x+y}$.
Перепишем исходные уравнения с новыми переменными:
$\begin{cases}z+t=2, \\4z-3t=1\end{cases}$.
Воспользуемся методом алгебраического сложения:
$\begin{cases}3z+3t=6, \\4z-3t=1\end{cases}$.
$\begin{cases}3z+3t+4z-3t=6+1, \\4z-3t=1\end{cases}$.
$\begin{cases}7z=7, \\4z-3t=1\end{cases}$.
$\begin{cases}z=1, \\-3t=1-4\end{cases}$.
$\begin{cases}z=1, \\t=1\end{cases}$.
Введем обратную замену:
$\begin{cases}\frac{2}{x-3y}=1, \\\frac{3}{2x+y}=1\end{cases}$.
$\begin{cases}x-3y=2, \\2x+y=3\end{cases}$.
Воспользуемся методом подстановки:
$\begin{cases}x=2+3y, \\4+6y+y=3\end{cases}$.
$\begin{cases}x=2+3y, \\7y=-1\end{cases}$.
$\begin{cases}x=2+3(\frac{-1}{7}), \\y=\frac{-1}{7}\end{cases}$.
$\begin{cases}x=\frac{11}{7}, \\x=-\frac{11}{7}\end{cases}$.
Ответ: $(\frac{11}{7};-\frac{1}{7})$.

Задачи на системы уравнений для самостоятельного решения

Решите системы:
1. $\begin{cases}2x-2y=6, \\xy =-2\end{cases}$.
2. $\begin{cases}x+y^2=3, \\xy^2=4\end{cases}$.
3. $\begin{cases}xy+y^2=3, \\y^2-xy=5\end{cases}$.
4. $\begin{cases}\frac{2}{x}+\frac{1}{y}=4, \\\frac{1}{x}+\frac{3}{y}=9\end{cases}$.
5. $\begin{cases}\frac{5}{x^2-xy}+\frac{4}{y^2-xy}=-\frac{1}{6}, \\\frac{7}{x^2-xy}-\frac{3}{y^2-xy}=\frac{6}{5}\end{cases}$.
Разберем два вида решения систем уравнения:

1. Решение системы методом подстановки.
2. Решение системы методом почленного сложения (вычитания) уравнений системы.

Для того чтобы решить систему уравнений методом подстановки нужно следовать простому алгоритму:
1. Выражаем. Из любого уравнения выражаем одну переменную.
2. Подставляем. Подставляем в другое уравнение вместо выраженной переменной, полученное значение.
3. Решаем полученное уравнение с одной переменной. Находим решение системы.

Чтобы решить систему методом почленного сложения (вычитания) нужно:
1.Выбрать переменную у которой будем делать одинаковые коэффициенты.
2.Складываем или вычитаем уравнения, в итоге получаем уравнение с одной переменной.
3. Решаем полученное линейное уравнение . Находим решение системы.

Решением системы являются точки пересечения графиков функции.

Рассмотрим подробно на примерах решение систем.

Пример №1:

Решим методом подстановки

Решение системы уравнений методом подстановки

2x+5y=1 (1 уравнение)
x-10y=3 (2 уравнение)

1. Выражаем
Видно что во втором уравнении имеется переменная x с коэффициентом 1,отсюда получается что легче всего выразить переменную x из второго уравнения.
x=3+10y

2.После того как выразили подставляем в первое уравнение 3+10y вместо переменной x.
2(3+10y)+5y=1

3.Решаем полученное уравнение с одной переменной.
2(3+10y)+5y=1 (раскрываем скобки)
6+20y+5y=1
25y=1-6
25y=-5 |: (25)
y=-5:25
y=-0,2

Решением системы уравнения является точки пересечений графиков, следовательно нам нужно найти x и у, потому что точка пересечения состоит их x и y.Найдем x, в первом пункте где мы выражали туда подставляем y.
x=3+10y
x=3+10*(-0,2)=1

Точки принято записывать на первом месте пишем переменную x, а на втором переменную y.
Ответ: (1; -0,2)

Пример №2:

Решим методом почленного сложения (вычитания).

Решение системы уравнений методом сложения

3x-2y=1 (1 уравнение)
2x-3y=-10 (2 уравнение)

1.Выбираем переменную, допустим, выбираем x. В первом уравнении у переменной x коэффициент 3, во втором 2. Нужно сделать коэффициенты одинаковыми, для этого мы имеем право домножить уравнения или поделить на любое число. Первое уравнение домножаем на 2, а второе на 3 и получим общий коэффициент 6.

3x-2y=1 |*2
6x-4y=2

2x-3y=-10 |*3
6x-9y=-30

2.Из первого уравнения вычтем второе, чтобы избавиться от переменной x.Решаем линейное уравнение.
__6x-4y=2

5y=32 | :5
y=6,4

3.Находим x. Подставляем в любое из уравнений найденный y, допустим в первое уравнение.
3x-2y=1
3x-2*6,4=1
3x-12,8=1
3x=1+12,8
3x=13,8 |:3
x=4,6

Точкой пересечения будет x=4,6; y=6,4
Ответ: (4,6; 6,4)

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно . Без шуток.

На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.

Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени : без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.

В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:

Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения

Но как бы ни обозначались переменные, принципы, методы и способы решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.

Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::

– Решение системы линейных уравнений методом подстановки («школьный метод») ;
– Решение системы методом почленного сложения (вычитания) уравнений системы ;
– Решение системы по формулам Крамера ;
– Решение системы с помощью обратной матрицы ;
– Решение системы методом Гаусса .

С системами линейных уравнений все знакомы из школьного курса математики. По сути дела, начинаем с повторения.

Решение системы линейных уравнений методом подстановки

Данный метод также можно назвать «школьным методом» или методом исключения неизвестных. Образно говоря, его еще можно назвать «недоделанным методом Гаусса».

Пример 1


Здесь у нас дана система из двух уравнений с двумя неизвестными. Обратите внимание, что свободные члены (числа 5 и 7) расположены в левой части уравнения. Вообще говоря, без разницы, где они находятся, слева или справа, просто в задачах по высшей математике нередко они расположены именно так. И такая запись не должна приводить в замешательство, при необходимости систему всегда можно записать «как обычно»: . Не забываем, что при переносе слагаемого из части в часть у него нужно поменять знак.

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти множество её решений. Решение системы представляет собой набор значений всех входящих в неё переменных, который обращает КАЖДОЕ уравнение системы в верное равенство. Кроме того, система может быть несовместной (не иметь решений) .Не тушуйтесь, это общее определение =) У нас же будет всего лишь одно значение «икс» и одно значение «игрек», которые удовлетворяют каждому уравнению с-мы.

Существует графический метод решения системы, с которым можно ознакомиться на уроке Простейшие задачи с прямой . Там же я рассказал о геометрическом смысле системы двух линейных уравнений с двумя неизвестными. Но сейчас на дворе эра алгебры, и числа-числа, действия-действия.

Решаем : из первого уравнения выразим:
Полученное выражение подставляем во второе уравнение:

Раскрываем скобки, приводим подобные слагаемые и находим значение :

Далее вспоминаем про то, от чего плясали:
Значение нам уже известно, осталось найти:

Ответ :

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку (устно, на черновике либо калькуляторе) . Благо, делается это легко и быстро.

1) Подставляем найденный ответ в первое уравнение :

– получено верное равенство.

2) Подставляем найденный ответ во второе уравнение :

– получено верное равенство.

Или, если говорить проще, «всё сошлось»

Рассмотренный способ решения не является единственным, из первого уравнения можно было выразить , а не .
Можно наоборот – что-нибудь выразить из второго уравнения и подставить в первое уравнение. Кстати, заметьте, самый невыгодный из четырех способов – выразить из второго уравнения:

Получаются дроби, а оно зачем? Есть более рациональное решение.

Тем не менее, в ряде случаев без дробей всё-таки не обойтись. В этой связи обращаю Ваше вниманиена то, КАК я записал выражение. Не так: , и ни в коем случае не так: .

Если в высшей математике Вы имеете дело с дробными числами, то все вычисления старайтесь проводить в обыкновенных неправильных дробях .

Именно , а не или !

Запятую можно использовать лишь иногда, в частности, если – это окончательный ответ какой-нибудь задачи, и с этим числом больше не нужно выполнять никаких действий.

Многие читатели наверняка подумали «да зачем такое подробное объяснение, как для класса коррекции, и так всё понятно». Ничего подобного, вроде бы такой простой школьный пример, а сколько ОЧЕНЬ важных выводов! Вот еще один:

Любое задание следует стремиться выполнить самым рациональным способом . Хотя бы потому, что это экономит время и нервы, а также снижает вероятность допустить ошибку.

Если в задаче по высшей математике Вам встретилась система двух линейных уравнений с двумя неизвестными, то всегда можно использовать метод подстановки (если не указано, что систему нужно решить другим методом) Ни один преподаватель не подумает, что ты лох снизит оценку за использование «школьного метода».
Более того, в ряде случаев метод подстановки целесообразно использовать и при большем количестве переменных.

Пример 2

Решить систему линейных уравнений с тремя неизвестными

Похожая система уравнений часто возникает при использовании так называемого метода неопределенных коэффициентов, когда мы находим интеграл от дробно-рациональной функции . Рассматриваемая система взята мной как раз оттуда.

При нахождении интеграла – цель быстро найти значения коэффициентов , а не изощряться формулами Крамера, методом обратной матрицы и т.д. Поэтому, в данном случае уместен именно метод подстановки.

Когда дана любая система уравнений, в первую очередь желательно выяснить, а нельзя ли ее как-нибудь СРАЗУ упростить? Анализируя уравнения системы, замечаем, что второе уравнение системы можно разделить на 2, что мы и делаем:

Справка: математический знак обозначает «из этого следует это», он часто используется в ходе решения задач.

Теперь анализируем уравнения, нам нужно выразить какую-нибудь переменную через остальные. Какое уравнение выбрать? Наверное, Вы уже догадались, что проще всего для этой цели взять первое уравнение системы:

Здесь без разницы, какую переменную выражать, можно было с таким же успехом выразить или .

Далее, выражение для подставляем во второе и третье уравнения системы:

Раскрываем скобки и приводим подобные слагаемые:

Третье уравнение делим на 2:

Из второго уравнения выразим и подставим в третьей уравнение:

Практически всё готово, из третьего уравнения находим:
Из второго уравнения:
Из первого уравнения:

Проверка: Подставим найденные значения переменных в левую часть каждого уравнения системы:

1)
2)
3)

Получены соответствующие правые части уравнений, таким образом, решение найдено верно.

Пример 3

Решить систему линейных уравнений с 4 неизвестными

Это пример для самостоятельного решения (ответ в конце урока).

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных .

Напомним для начала определение решения системы уравнений с двумя переменными.

Определение 1

Пара чисел называется решением системы уравнений с двумя переменными, если при их подстановки в уравнение получается верное равенство.

В дальнейшем будем рассматривать системы из двух уравнений с двумя переменными.

Существуют четыре основных способа решения систем уравнений : способ подстановки, способ сложения, графический способ, способ ведения новых переменных. Рассмотрим эти способы на конкретных примерах. Для описания принципа использования первых трех способов будем рассматривать систему двух линейных уравнений с двумя неизвестными:

Способ подстановки

Способ подстановки заключается в следующем: берется любое из данных уравнений и выражается $y$ через $x$, затем $y$ подставляется в уравнение системы, откуда и находится переменная $x.$ После этого мы легко можем вычислить переменную $y.$

Пример 1

Выразим из второго уравнения $y$ через $x$:

Подставим в первое уравнение, найдем $x$:

\ \ \

Найдем $y$:

Ответ: $(-2,\ 3)$

Способ сложения.

Рассмотрим данный способ на примере:

Пример 2

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {3x-y=-9} \end{array} \right.\]

Умножим второе уравнение на 3, получим:

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {9x-3y=-27} \end{array} \right.\]

Теперь сложим оба уравнения между собой:

\ \ \

Найдем $y$ из второго уравнения:

\[-6-y=-9\] \

Ответ: $(-2,\ 3)$

Замечание 1

Отметим, что в данном способе необходимо умножать одно или оба уравнения на такие числа, чтобы при сложении одна из переменных «исчезла».

Графический способ

Графический способ заключается в следующем: оба уравнения системы изображается на координатной плоскости и находится точка их пересечения.

Пример 3

\[\left\{ \begin{array}{c} {2x+3y=5} \\ {3x-y=-9} \end{array} \right.\]

Выразим из обоих уравнений $y$ через $x$:

\[\left\{ \begin{array}{c} {y=\frac{5-2x}{3}} \\ {y=3x+9} \end{array} \right.\]

Изобразим оба графика на одной плоскости:

Рисунок 1.

Ответ: $(-2,\ 3)$

Способ введения новых переменных

Этот способ рассмотрим на следующем примере:

Пример 4

\[\left\{ \begin{array}{c} {2^{x+1}-3^y=-1} \\ {3^y-2^x=2} \end{array} \right.\]

Решение.

Данная система равносильна системе

\[\left\{ \begin{array}{c} {{2\cdot 2}^x-3^y=-1} \\ {3^y-2^x=2} \end{array} \right.\]

Пусть $2^x=u\ (u>0)$, а $3^y=v\ (v>0)$, получим:

\[\left\{ \begin{array}{c} {2u-v=-1} \\ {v-u=2} \end{array} \right.\]

Решим полученную систему методом сложения. Сложим уравнения:

\ \

Тогда из второго уравнения, получим, что

Возвращаясь к замене, получим новую систему показательных уравнений:

\[\left\{ \begin{array}{c} {2^x=1} \\ {3^y=3} \end{array} \right.\]

Получаем:

\[\left\{ \begin{array}{c} {x=0} \\ {y=1} \end{array} \right.\]