Пространственный континуум. Что такое пространство-время на самом деле? Что такое пространственно-временной континуум

Если движение представляет собой общий способ существо­вания материального мира, то пространство и время явля­ются общими формами его существования. Пространство - это мера бытия, покоя, устойчивости в движении . Различные формы бытия сосуществуют в пространстве. Время - это мера небытия, изменчивости, неустойчивости в движении . Время представляет собой последователь­ную смену состояний предмета действительности, смену событий. Пространство и время неразрывно связаны меж­ду собой и обладают следующими свойствами: они неотде­лимы от своего материального носителя, нет и не может быть пространства и времени самих по себе - вне и до сво­его носителя; они объективны; универсальны; противоре­чивы (одновременно конечны и бесконечны, абсолютны и относительны). Частные свойства пространства и време­ни определяются характеристиками тех материальных объектов, формой которых они являются.

В классической науке пространство и время рассмат­ривались как независимые друг от друга и от тех процес­сов, которые в них происходят. Благодаря созданию тео­рии относительности было выяснено, что в действительно­сти пространство и время - это стороны одного и того же явления. Поэтому было введено понятие пространственно- временного континуума . Оказалось, что пространство и время определяются теми процессами, событиями, ко­торые в них возникают и существуют. Поэтому самое про­стое представление о реальности - это представление о том, что мир есть множество (континуум) событий, кото­рое имеет четыре измерения: три из них пространствен­ные, а четвертое - время. Хотя время - это такая же ко­ордината, как и любая из трех пространственных, но все же она характеризует континуум с точки зрения направ­ленности его изменений, в то время как пространственные координаты характеризуют сосуществование его событий.

Поскольку континуум образует единое целое, то нельзя говорить о времени и пространстве, а следует говорить о пространстве-времени. Всякая попытка измерять отдель­но пространство и время имеет смысл лишь тогда, когда мы имеем дело с макровеличинами. Как в микро-, так и в мегамирах разделение на пространство и время и сохра­нение этого разделения ведут к неверному пониманию ре­альности. В зависимости от распределения вещества и энергии изменяются характеристики пространственно-временного континуума. Астрономические наблюдения за последние пятнадцать лет показали, что пространство в окружающем нас мире не изотропно, что подрывает ис­ходные принципы теории относительности и ограничива­ет применимость понятия «пространственно-временной континуум» в том смысле, как оно трактуется в теории от­носительности.


Все же в настоящее время пространственно-временной континуум остается наиболее общим представлением от­носительно пространства и времени. Рассмотрение про­странственно-временного континуума в космологических моделях, и особенно в модели «Большого взрыва», приве­ло к принципиально новым идеям относительно мерности пространства и времени. Так, оказалось, что в некоторых моделях «Большого взрыва» пространство оказывается не трехмерным, а десятимерным и лишь затем при переходе к привычным для нас пространственно-временным отноше­ниям, с точки зрения их масштаба, семь координат свора­чиваются в точки, и пространство становится трехмерным. Более того, выяснилось, что процесс возникновения нашей части Вселенной предполагает возникновение и самых известных нам физических законов, таких как законы тяготения, законы электромагнитных взаимодействий, а также слабых и сильных взаимодействий. Этих законов до момента «Большого взрыва» не существует, потому что нет самих соответствующих взаимодействий. Предполага­ется, что существует лишь некоторая «Суперсила», кото­рая порождает известные нам физические взаимодействия.

Хотя пространство и время едины, но в макромире они относительно обособлены, и поэтому время и пространство в данном случае можно и даже нужно рассматривать раз­дельно. При этом оказывается, что время также имеет не­сколько измерений. Во-первых, есть внешнее время, ког­да данный процесс сравнивается с каким-то другим про­цессом, внутри которого он находится и от которого он зависит. Так, продолжительность жизни, измеряемая в годах, - это внешнее время, поскольку процесс жизни сравнивается с вращением Земли вокруг Солнца. Во-вто­рых, есть собственное время, которое определяется соот­ношением внутренних процессов в данной системе. И на­конец, существует время, выражающее отношение зако­номерного бытия данного объекта к его реальному бытию. Так, продолжительность жизни закономерно определена для каждого вида живых организмов. Однако в зависимо­сти от условий, она может оказаться короче и длиннее того времени, которое является закономерным для бытия дан­ного объекта.

Как следует из взаимосвязи пространства и времени со спецификой той реальности, которая существует и взаи­модействует в них, качественное и количественное раз­личия даже в одной и той же реальности могут суще­ственно менять свойства пространства и времени . Так, в физике выделяют макропроцессы, микропроцессы и мегапроцессы. Они различаются не только количественно, но и качественно. Естественно, что и свойства простран­ства и времени в них существенно различны. Эти разли­чия настолько существенны, что нередко теоретики даже не признают соответствующих теорий. Например, А. Эй­нштейн не признавал специфику законов квантовой меха­ники, поскольку описанный им мысленный эксперимент дает возможность сделать вывод о том, что законы кван­товой механики допускают бесконечно большую скорость распространения взаимодействия, в то время как в теории относительности она не может быть больше скорости све­та. Теоретический вывод Эйнштейна был подтвержден в 80-е гг. экспериментально. Но это не опровергло теорию относительности, и тем более квантовую механику, а лишь показало, что законы в разных областях физики и свой­ства пространственно-временного континуума в них име­ют различную природу.

Когда мы переходим к пространственно-временным отношениям в живой природе, а затем в социальных сис­темах, то там также обнаруживаем специфику этих отно­шений. Однако современная наука еще не сформулирова­ла общих законов пространственно-временных отношений для биологических и социальных систем, хотя некоторые частные случаи изучены.

Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Физические, химические и другие величины непосредственно или опосредованно связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.

Основные положения картины мира, связанные с пространством и временем, заключаются в следующем:

Пространство считалось бесконечным, плоским, "прямолинейным", евклидовым. Его метрические свойства описывались геометрией Евклида. Оно рассматривалось как абсолют­ное, пустое, однородное и изотропное (нет выделенных точек и направлений) и выступало в качестве "вместилища" материальных тел как независимая от них инерциальная система.

Время понималось абсолютным, однородным, равномерно текущим. Оно идет сразу и везде во всей Вселенной "единообразно и синхронно"" и выступает как независимый от материальных объектов процесс длительности. Фактически классическая механика сводила время к длительности, фиксируя определяющее свойство времени "показывать продолжи­тельность события". Значение указаний времени в классической механике считалось абсолютным, не зависящим от состояния движения тела отсчета.

Абсолютное время и пространство служили основой для преобразований Галилея- Ньютона, посредством которых осуществлялся переход кинерциальным системам.Эти системы выступали в качестве избранной системы координат в классической механике.

Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной явилось основой длятеории дальнодействия. В качестве дальнодействующей силы выступало тяготение, которое с бесконечной скоростью, мгновенно и прямолинейно распространяло силы на бесконечные расстояния. Эти мгновенные, вневременные взаимодействия объектов служили физическим каркасом для обоснования абсолютного пространства, существующего независимо от времени.

В общей теории относительности Эйнштейн доказал, что структура пространства-времени определяется распределением масс материи. Обычно выделяют всеобщие и специ­фические свойства пространства и времени, а также исследуют особенности пространства и времени в микромире и мегамире. К всеобщим относятся такие пространственно-временные ха­рактеристики, которые проявляются на всех известных структурных уровнях материи и неразрывно связаны с другими ее атрибутами. Специфические, или локальные, свойства прояв­ляются лишь на определенных структурных уровнях, присущи только некоторым классам материальных систем.

Из всеобщих свойств пространства и времени можно всего отметить:

1. Их объективность и независимость от человеческого сознания и сознания всех других разумных существ в мире (если такие есть).

2. Их абсолютность - они являются универсальными формами бытия материи, проявляющимися на всех структурных уровнях ее существования.

3. Неразрывную связь друг с другом и с движущейся материей.

4. Единство прерывности и непрерывности в их структуре наличие отдельных тел. фиксированных в пространстве при отсутствии каких-либо «разрывов» в самом пространстве.

5. Количественную и качественную бесконечность, неотделимую от структурной бесконечности материи невозможность найти место, где отсутствовали бы пространство и время, а также неисчерпаемость их свойств.

К общим свойствам пространства относятся:

1. Протяженность, рядоположенность , существование и связь различных элементов (точек, отрезков, объемов и др.), возможность прибавления к каждому данному элементу неко­торого следующего элемента либо возможность уменьшения числа элементов. Протяженность тесно связана со структурностью материальных объектов; обусловлена взаимодействием между составляющими тела элементами материи. Непротяженные объекты не обладали бы структурой, внутренними связями и способностями к изменениям, из них не могли бы обра­зовываться никакие системы.

2. Связность и непрерывность проявляются в характере перемещений тел от точки к точке, в распространении воздействий через различные материальные поля в виде близко действия в передаче материи и энергии. Связность означает отсутствие каких-либо «разрывов» в пространстве и нарушений в распространении воздействий в полях. Вместе с тем пространству свойственна относительная прерывность, проявляющаяся в раздельном существовании материальных объектов и систем, имеющих определенные размеры и границы, в существовании многообразных структурных уровней материи с различными пространствен­ными отношениями,

3. Трехмерность - общее свойство пространства, обнаруживающееся на всех известных структурных уровнях, органически связано со структурностью систем и их движением. Все материальные процессы и взаимодействия реализуются в пространстве трех измерений (длина, ширина, высота). В одномерном или двумерном пространстве (линия, плоскость) не могли бы происходить взаимодействия частиц и полей. Три измерения являются тем необходимым и достаточным минимумом, в рамках которого могут осуществляться все типы взаимодействий материальных объектов.

4. Пространству на всех известных структурных уровнях материи присуще единство метрических и топологических свойств . Метрические свойства проявляются в протяженности и характере связи элементов тел. Метрика может быть различной - евклидовой и неевклидовой, причем возможно много разновидностей неевклидовых пространств с различными значениями кривизны. Топологические свойства характеризуют связность, трехмерность, непрерывность, неоднородность, бесконечность пространства, его единство со временем и движением.

Рассмотрим теперь общие свойства времени :

1. Длительност ь - выступает как последовательность сменяющих друг друга моментов или состоянии, возникновение за каждым данным интервалом времени последующих. Длитель­ность предполагает возможность прибавления к каждому данному моменту времени другого, а также возможность деления любого отрезка времени на меньшие интервалы. Длительность обусловлена сохранением материи и ее атрибутов, единством устойчивости и изменчивости в мире. Никакой процесс в природе не может происходить сразу, мгновенно, он обязательно длится во времени, что обусловлено конечной скоростью распространения взаимодействий и изменения состояний. Аналогично протяженности пространства длительность относится к метрическим свойствам. Отсутствие же всякой длительности, связанное, например, с состоянием материи тина сингулярности (объект с бесконечной плотностью, гравитационным полем и точечными размерами), означало бы, что материя в этом состоянии не обладает способностью к сохранению и последовательной смене состояний, что равносильно отрицанию всякого материального бытия.

2. Длительность бытия объектов во времени выступает как единство прорывного и непрерывного . Сохраняемость материи и непрерывная последовательность ее изменений, близкодействие в причинных отношениях определяют и непрерывность времени, проявляющуюся в непрерывном переходе предшествующих состоянии в последующие. Прежде чем произойдет какое-либо явление в будущем, должны осуществиться все предшествующие ему изменения, которые его вызывают. Но время как форма бытия материи складывается из множества последовательностей и длительностей существования конкретных объектов, каждый из которых существует конечный период. Поэтому время характеризуется прерывностью бытия конкретных качественных состояний. Но эта прерывность относительна, так как между всеми сменяющими друг друга качествами имеется внутренняя связь и непрерывный переход.

3. Всеобщим свойством времени является необратимое I, означающая однонаправленное изменение от прошлою к будущему. Прошлое порождает настоящее и будущее, переходит в них. К прошлому относятся все те события, которые уже осуществились и превратились в последующие. Будущие события это те, которые возникнут из настоящих и непосредственно предшествующих им событий. Настоящее охватывает все те объекты, системы и процессы, которые реально существуют и способны к взаимодействию между собой. Взаимодействие возможно лишь при одновременном сосуществовании объектов. Объекты, сосуществовавшие в прошлом, но перешедшие в другие последующие состояния материи уже недоступны никакому воздействию.

4. Одномерность времени проявляется в линейной последовательности событий, генетически связанных между собой.

31.Корпускулярная и континуальная концепции описа­ния природы. Единство корпускулярных и волновых свойств микрообъектов.

Одним из наиболее важных вопросов как философии, так и естествознания является проблема материи. Представления о строении материи нашли свое выражение в борьбе двух концепций: прерывности (дискретности) материи – корпускулярная концепция, и непрерывности (континуальности) материи – континуальная концепция. С ними тесно связаны проблемы взаимодействия материальных объектов, которые проявляются как концепции близкодействия (передача действия от точки к точке) и дальнодействия (передача действия без физической среды).

Корпускулярная концепция опирается на идеи Демокрита, отождествившего пространство с пустотой и приписавшего пустоте индивидуальное существование. По Демокриту пространство есть то, что существует само по себе, независимо от материи и является "вместилищем" тел. Оно может быть заполнено телами, а может быть абсолютно пустым в виде особого реального объекта. Ньютон в своей механике эту идею развил до четкого представления об абсолютном пространстве и абсолютном времени, которые не зависят друг от друга и не связаны с материей. Ньютон разработал концепцию прерывности. Его подход основывался на признании дальнодействующих сил. В 1672-1676 годах он распространил атомистику на световые явления и создал корпускулярную теорию света. По своему мировоззрению Ньютон был вторым после Декарта великим представителем механистического материализма в естествознании XVII-XVIII веков. Декарт стремился построить общую картину природы, в которой все явления объяснялись как результат движения больших и малых частиц, образованных из единой материи. Недостатки механистической атомистики:

– отсутствие достоверного экспериментального материала;

– атомы рассматривались как частицы, лишенные возможности превращения;

– единственной формой движения принималось механическое движение.

Сложившиеся к началу XIX века представления о строении материи были односторонними и не давали возможности объяснить ряд экспериментальных фактов. Разработанная М. Фарадеем и Дж. Максвеллом в XIX веке теория электромагнитного поля показала, что признанная концепция не может быть единственной для объяснения структуры материи. В своих работах М. Фарадей и Дж. Максвелл показали, что поле – это самостоятельная физическая реальность. Таким образом, в науке произошла определенная переоценка основополагающих принципов, в результате которой обоснованное Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях, т.е. развитие получила континуальная концепция.

Двойственность описание природы особенно проявляется при рассмотрении пространственных и временных свойств материи. На эмпирическом уровне познания мира понятие пространства позволяет описывать порядок сосуществования материальных объектов по признакам "слева – справа", "дальше – ближе", "сверху – снизу", "больше по размерам – меньше". Понятие времени выражает порядок смены событий по признаку "раньше – позже". Пространство и время органически связаны с материей, не могут существовать самостоятельно, обособленно от нее. Основы такого взгляда заложил Аристотель и развил Г. В. Лейбниц (1646-1716). Дальнейшее углубление этого представления о пространстве и времени осуществил Эйнштейн в теории относительности.

В современной физике строго доказано, что пространство и время неразрывно связаны между собой, то есть составляют единое четырехмерное пространство-время и наш мир, следовательно, четырехмерен. Это доказательство осуществлено Эйнштейном в рамках специальной теории относительности. В общей теории относительности установлена количественная связь геометрических свойств (метрики) пространства-времени с материей. Вблизи тяготеющих масс пространство-время "искривляется" и уже не является привычным для нас используемым в классической физике (так называемым эвклидовым). Это представление о четырехмерном пространстве-времени эффективно "работает" в масштабах от размеров видимой Вселенной до размеров элементарных частиц.

Итак, по современным представлениям наш реальный мир четырехмерен: три измерения являются пространственными и одно – временным. Строго показано, что если бы наше геометрическое пространство имело больше 3-х измерений, то планеты, движущиеся вблизи Солнца, и электроны, движущиеся вблизи ядер атомов, не могли бы образовывать устойчивые планетарные и атомные системы. Тем не менее, современные теории, правильно отражающие закономерности в глубоком микромире и ранние стадии эволюции Вселенной, вынуждены оперировать многомерными пространствами. Однако "избыточные" измерения, сыграв свою роль при объяснении тех или иных свойств материи или определенных этапов ее эволюции, неизбежно выпадают из игры.

Установлено, что пространство и время обладают тремя фундаментальными свойствами (тремя видами симметрии ): время однородно, а пространство однородно и изотропно. Изотропность пространства означает, что в любых направлениях его свойства абсолютно одинаковы, то есть пространство обладает симметрией относительно операции поворота. Однородность пространства (симметрия относительно операции сдвига, перемещения) означает абсолютную одинаковость свойств пространства в различных его точках. Аналогичная симметрия времени относительно "сдвига" (выбора момента начала отсчета времени) отражает одинаковость его свойств в прошлом, настоящем и будущем. Перечисленные свойства пространства и времени физически проявляются в одинаковости законов Природы, в различных направлениях во Вселенной, в различных ее местах и в различные моменты времени.

В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности, в частности, дуализм свойств. В 1900 г. М. Планк показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили свое подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона). Таким образом, частицы неотделимы от создаваемых ими полей, и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболее важных проявлений единства прерывности и непрерывности в структуре материи. Для характеристики прерывного и непрерывного в структуре материи следует также упомянуть единство корпускулярных и волновых свойств всех частиц и фотонов. Единство корпускулярных и волновых свойств материальных объектов представляет собой одно из фундаментальных противоречий современной физики и конкретизируется в процессе дальнейшего познания микроявлений. Изучение процессов макромира показали, что прерывность и непрерывность существуют в виде единого взаимосвязанного процесса. При определенных условиях макромира микрообъект может трансформироваться в частицу или поле и проявлять соответствующие им свойства.

Вся обстановка в науке в начале XX века складывалась так, что представления о дискретности и непрерывности материи получили свое четкое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки показало, что такое противопоставление является весьма условным. Было показано, что материя проявляет как непрерывные, так и корпускулярные свойства. Необходимо добавить, что представление о дискретности пространства-времени в современном естествознании все-таки существует, но оно применяется только в связи с объяснением самых ранних этапов эволюции Вселенной.

Понятие «пространственно-временной континуум» является одним из центральных в современном восприятии физической картины мира. Данная теория основывается на представлении современного мира с точки зрения четырех основных измерений - три из них относятся к пространственным характеристикам, а четвертое - к временным.

Пространственно-временной континуум как основная модель, описывающая окружающую действительность, претендует на то, чтобы создать как можно более исчерпывающую картину миру. В то же время постоянно появляются теории, которые ставят отдельные положения этой теории или всю концепцию в целом под сомнение.

Основа для современного представления о пространстве и времени была заложена еще более ста лет назад при выходе в свет А. Эйнштейна. Опираясь на ее положения, сам Эйнштейн и его последователи пришли к выводу, что каждая из трех пространственных характеристик, как, впрочем, и временной континуум, равнозначны между собой, поэтому только непосредственно от наблюдателя зависит, какая из них будет принята за отправную систему отсчета.

Движение, пространство и время представляют собой характеристики окружающей действительности, которые постоянно изменяются. Основным механизмом, с помощью которого происходит взаимодействие этих элементов со всеми физическими телами, является гравитация.

Первичным понятием, характеризующим пространственно-временной континуум, согласно теории Эйнштейна, является некое «событие», которое есть не что иное, как обладающая конкретными характеристиками точка, имеющая четкие пространственные и временные координаты.

Все эти точки располагаются не беспорядочно, а в точном соответствии с основными аксиомами, лежащими в основе данной теории. К наиболее важным аксиомам следует отнести концепцию упорядоченности, топологические аксиомы, основным принципом которых служит принцип размерности, аксиомы допустимых координатных систем, а также все основные арифметические аксиомы.

Пространственно-временной континуум - это безостановочно, постоянно меняющее свой облик многообразие. При этом оно носит объемный характер и может в зависимости от тех или иных внешних условий изменять свою кривизну.

Особое место в данной теории отводится временному континууму. Многие ученые не согласны с тем, что он обладает теми же правами и может быть такой же системой отсчета, как и пространственные характеристики - длина, ширина, высота. Но все дело в том, что одно из принципиальных положений теории относительности заключается в признании зависимости времени от скорости движения наблюдателя, который находится в исходной точке отсчета. Таким образом, мы получаем, что временной континуум напрямую зависит от пространственных характеристик, как, впрочем, последние зависят от самого времени.

Если для нашей планеты является вполне привычным и понятным, то на уровне Вселенной многие ученые выделяют уже гораздо больше уровней. Так, например, один из первых вариантов знаменитой «теории суперструн» подразумевал неизбежность существования 27 измерений. Сегодня их количество снизилось до десяти, хотя характеристики самих «лишних» измерений значительно усложнились.

Пространственно-временной континуум

«Французская революция началась в Париже 14 июля 1789 года». В этом предложении установлены место и время события. Тому, кто слышит это утверждение впервые и кто не знает, что значит Париж, можно было бы сказать: это город на нашей Земле, расположенный на 2° восточной долготы и 49° северной широты. Два числа характеризовали бы тогда место, а 14 июля 1789 года - время, в которое произошло событие. В физике точная характеристика, когда и где произошло событие, чрезвычайно важна, гораздо важнее, чем в истории, так как эти числа образуют основу количественного описания.

Ради простоты мы рассматривали прежде только движение вдоль прямой. Нашей координатной системой был твердый стержень с началом, но без конца. Сохраним это ограничение. Отметим на стержне различные точки; положение каждой из них может быть охарактеризовано только одним числом - координатой точки. Говоря, что координата точки равна 7,586 м, мы подразумеваем, что ее расстояние от начала стержня равно 7,586 м. Наоборот, если кто-то задает мне любое число и единицу измерения, я всегда могу найти точку на стержне, соответствующую этому числу. Мы видим, что каждому числу соответствует определенная точка на стержне, а каждой точке соответствует определенное число. Этот факт выражается математиками в следующем предложении:

Все точки стержня образуют одномерный континуум.

Тогда существует точка, сколь угодно близкая к данной точке стержня. Мы можем связать две отдаленные точки на стержне рядом отрезков, расположенных один за другим, каждый из которых сколь угодно мал. Таким образом, тот факт, что эти отрезки, связывающие отдаленные точки, могут быть взяты сколь угодно малыми, является характеристикой континуума.

Возьмем другой пример. Пусть мы имеем плоскость или, если вы предпочитаете что-либо более конкретное, поверхность прямоугольного стола (рис. 66). Положение точки на этом столе можно охарактеризовать двумя числами, а не одним, как раньше. Два числа суть расстояния от двух перпендикулярных краев стола. Не одно число, а пара чисел соответствует каждой точке плоскости; каждой паре чисел соответствует определенная точка. Другими словами, плоскость есть двумерный континуум. Тогда существуют точки, сколь угодно близкие к данной точке плоскости. Две отдаленные точки могут быть связаны кривой, разделенной на отрезки, сколь угодно малые. Таким образом, произвольная малость отрезков, последовательно укладывающихся на кривой, связывающей две отдаленные точки, каждая из которых может быть определена двумя числами, снова является характеристикой двумерного континуума.

Еще один пример. Представим себе, что вы хотите в качестве системы координат рассматривать свою комнату. Это означает, что вы хотите любое положение тела определить относительно стен комнаты. Положение центра лампы, если она в покое, может быть описано тремя числами: два из них определяют расстояние от двух перпендикулярных стен, а третье - расстояние от пола или потолка. Каждой точке пространства соответствуют три определенных числа; каждым трем числам соответствует определенная точка в пространстве (рис. 67). Это выражается предложением:

Наше пространство есть трехмерный континуум.

Существуют точки, весьма близкие к каждой данной точке пространства. И опять произвольная малость отрезков линии, связывающей отдаленные точки, каждая из которых представлена тремя числами, есть характеристика трехмерного континуума.

Но все это едва ли относится к физике. Чтобы вернуться к физике, нужно рассмотреть движение материальных частиц. Чтобы исследовать и предсказывать явления в природе, необходимо рассматривать не только место, но и время физических событий. Возьмем снова простой пример.

Маленький камешек, который примем за частицу, падает с башни. Допустим, что высота башни равна 80 м. Со времен Галилея мы в состоянии предсказать координаты камня в произвольный момент времени после начала его падения. Ниже представлено «расписание», приближенно описывающее положение камня после 1, 2, 3 и 4 секунд.

В нашем «расписании» зарегистрированы пять событий, каждое из которых представлено двумя числами - временем и пространственной координатой каждого события. Первое событие есть начало движения камня с высоты 80 м от земли в момент времени, равный нулю. Второе событие есть совпадение камня с отметкой на стержне на высоте 75 м от земли. Это будет отмечено по истечении одной секунды. Последнее событие есть удар камня о землю.

Те сведения, которые записаны в «расписании», можно было бы представить иначе. Пять пар чисел его можно было бы представить как пять точек на плоскости. Установим сначала масштаб. Например: пусть один отрезок будет изображать метр, а другой секунду (рис. 68).

Затем начертим две перпендикулярные линии; одну из них, скажем горизонтальную, назовем временно?й осью, вертикальную же - пространственной осью. Мы сразу же видим, что наше «расписание» можно представить пятью точками в пространственно-временно?й плоскости (рис. 69).

Расстояния точек от пространственной оси представляют собой координаты времени, указанные в первой колонке «расписания», а расстояния от временно?й оси - их пространственные координаты.

Одна и та же связь выражена двумя способами - с помощью «расписания» и точками на плоскости. Одно может быть построено из другого. Выбор между этими двумя представлениями является лишь делом вкуса, ибо в действительности они оба эквивалентны.

Сделаем теперь еще один шаг. Представим себе улучшенное «расписание», дающее положения не для каждой секунды, а, скажем, для каждой сотой или тысячной доли секунды. Тогда у нас будет много точек в нашей пространственно-временно?й плоскости. Наконец, если положение дается для каждого мгновения или, как говорят математики, если пространственная координата дается как функция времени, то совокупность точек становится непрерывной линией. Поэтому наш следующий рисунок (рис. 70) дает не отрывочные сведения, как прежде, а полное представление о движении камня.

Движение вдоль твердого стержня (башни), т. е. движение в одномерном пространстве, представлено здесь в виде кривой в двумерном пространственно-временно?м континууме. Каждой точке в нашем пространственно-временно?м континууме соответствует пара чисел, одно из которых отмечает временну?ю, а другое - пространственную координату. Наоборот, определенная точка в нашем пространственно-временно?м континууме соответствует некоторой паре чисел, характеризующей событие. Две соседние точки представляют собой два события, происшедших в местах, близких друг от друга, и в моменты времени, непосредственно следующие друг за другом.

Вы могли бы возразить против нашего способа представления следующим образом: мало смысла в том, чтобы представлять время отрезками и механически соединять его с пространством, образуя двумерный континуум из двух одномерных континуумов. Но тогда вы должны были бы столь же серьезно протестовать против всех графиков, представляющих, например, изменение температуры в Нью-Йорке в течение последнего лета, или против графиков, изображающих изменение стоимости жизни за последние несколько лет, так как в каждом из этих случаев употребляется тот же самый метод. В температурных графиках одномерный температурный континуум соединяется с одномерным временны?м континуумом в двумерный температурно-временной континуум.

Вернемся к частице, падающей с 80-метровой башни. Наша графическая картина движения есть полезное соглашение, так как она позволяет нам характеризовать положение частицы в любой произвольный момент времени. Зная, как движется частица, мы хотели бы изобразить ее движение еще раз. Сделать это можно двумя путями.

Вспомним изображение частиц, изменяющих свое положение со временем в одномерном пространстве. Мы изображаем движение как ряд событий в одномерном пространственном континууме. Мы не смешиваем время и пространство, применяя динамическую картину, в которой положения изменяются со временем.

Но можно изобразить то же самое движение другим путем. Мы можем образовать статическую картину, рассматривая кривую в двумерном пространственно-временно?м континууме. Теперь движение рассматривается как нечто заданное, существующее в двумерном пространственно-временно?м континууме, а не как нечто, изменяющееся в одномерном пространственном континууме.

Обе эти картины совершенно равноценны, и предпочтение одной из них перед другой есть лишь дело соглашения и вкуса.

То, что здесь сказано о двух картинах движения, не имеет отношения к теории относительности. Оба представления могут быть использованы с одинаковым правом, хотя классическая теория скорее предпочитала динамическую картину описания движения как того, что происходит в пространстве, статической картине, описывающей его в пространстве-времени. Но теория относительности изменила этот взгляд. Она явно предпочла статическую картину и нашла в этом представлении движения как того, что существует в пространстве-времени, более удобную и более объективную картину реальности. Мы должны еще ответить на вопрос, почему эти две картины эквивалентны с точки зрения классической физики и не эквивалентны с точки зрения теории относительности. Ответ будет понятным, если снова рассмотреть две системы координат, движущиеся прямолинейно и равномерно друг относительно друга.

Согласно классической физике, наблюдатели в обеих системах, движущихся прямолинейно и равномерно друг относительно друга, найдут для одного и того же события различные пространственные координаты, но одну и ту же временну?ю координату. Таким образом, в нашем примере удар камня о землю характеризуется при нашем выборе системы координат временно?й координатой 4 и пространственной координатой 0. Согласно классической механике, наблюдатели, движущиеся прямолинейно и равномерно относительно выбранной системы координат, обнаружат, что камень достигнет земли спустя четыре секунды после начала падения. Но каждый из наблюдателей относит расстояние к своей системе координат, и они будут, вообще говоря, связывать различные пространственные координаты с событием соударения, хотя временна?я координата будет одной и той же для всех других наблюдателей, движущихся прямолинейно и равномерно друг относительно друга. Классическая физика знает только «абсолютное» время, текущее одинаково для всех наблюдателей. Для каждой системы координат двумерный континуум может быть разбит на два одномерных континуума - время и пространство. Благодаря «абсолютному» характеру времени переход от «статики» к «динамической» картине движения имеет в классической физике объективный смысл.

Но мы уже убедились в том, что классические преобразования не могут применяться в физике в общем случае. С практической точки зрения они еще пригодны для малых скоростей, но не годятся для обоснования фундаментальных физических вопросов.

Согласно теории относительности, момент соударения камня с землей не будет одним и тем же для всех наблюдателей. И временна?я, и пространственная координата будут различными в двух различных системах координат, и изменение временно?й координаты будет весьма заметным, если относительная скорость систем приближается к скорости света. Двумерный континуум не может быть разбит на два одномерных континуума, как в классической физике. Мы не можем рассматривать пространство и время раздельно при определении пространственно-временны?х координат в другой системе координат. Разделение двумерного континуума на два одномерных оказывается с точки зрения теории относительности произвольным процессом, не имеющим объективного смысла.

Все, что мы только что сказали, нетрудно обобщить для случая движения, не ограниченного прямой линией. В самом деле, для описания событий в природе нужно применить не два, а четыре числа. Физическое пространство, постигаемое через объекты и их движения, имеет три измерения, и положения объектов характеризуются тремя числами. Момент события есть четвертое число. Каждому событию соответствует четыре определенных числа; каким-либо четырем числам соответствует определенное событие. Поэтому мир событий образует четырехмерный континуум. В этом нет ничего мистического, и последнее предложение одинаково справедливо и для классической физики, и для теории относительности. И опять различие обнаруживается лишь тогда, когда рассматриваются две системы координат, движущиеся друг относительно друга. Пусть движется комната, а наблюдатели внутри и вне ее определяют пространственно-временны?е координаты одних и тех же событий. Сторонник классической физики разобьет четырехмерный континуум на трехмерное пространство и одномерный временно?й континуум. Старый физик заботится только о преобразовании пространства, так как время для него абсолютно. Он находит разбиение четырехмерного мирового континуума на пространство и время естественным и удобным. Но с точки зрения теории относительности время, так же как и пространство, изменяется при переходе от одной системы координат к другой; при этом преобразования Лоренца выражают трансформационные свойства четырехмерного пространственно-временно?го континуума - нашего четырехмерного мира событий.

Мир событий может быть описан динамически с помощью картины, изменяющейся во времени и набросанной на фоне трехмерного пространства. Но он может быть также описан посредством статической картины, набросанной на фоне четырехмерного пространственно-временно?го континуума. С точки зрения классической физики обе картины, динамическая и статическая, равноценны. Но с точки зрения теории относительности статическая картина более удобна и более объективна.

Даже в теории относительности мы можем еще употреблять динамическую картину, если мы ее предпочитаем. Но мы должны помнить, что это деление на время и пространство не имеет объективного смысла, так как время больше не является «абсолютным». Дальше мы еще будем пользоваться «динамическим», а не «статическим» языком, но при этом всегда будем учитывать его ограниченность.

Пространственно-временной континуум как понятие возник в начале XX века и буквально перевернул представления физиков-теоретиков того времени о природе вещей в нашем мире. Кстати, это новое видение во многом предопределило картину

современного высокотехнологичного мира.

Пространственно-временной континуум и классическая механика

Принципы классической механики были сформированы известнейшим английским ученым Исааком Ньютоном. С момента своего появления в последней четверти XVII века вплоть до конца XIX века его законы, описывающие природные явления, доминировали и считались незыблемыми. Однако рождение во второй половине 1800-х годов электродинамики (науки о распространении и поведении световых и электромагнитных волн) продемонстрировало ее расхождение с ньютоновской моделью. В частности это касалось закона классической механики о сложении скоростей. Например, если два тела движутся навстречу друг другу, то относительно неподвижного объекта каждый из них будет обладать собственной скоростью, но скорость одного относительно другого будет определяться сложением скоростей. Как если ехать в автомобиле

навстречу неподвижному барьеру или приближающемуся по встречной другому автомобилю. Однако эксперименты продемонстрировали, что этот закон никак не подходит к скорости распространения света. Она всегда остается постоянной.

Пространственно-временно континуум и теория относительности

Первым осознать это постоянство смог молодой немецкий физик Альберт Эйнштейн. Он заключил, что постоянство движения света позволяет связать в единую систему движение, пространство и время. Отношение было выражено известной сегодня формулой E=mc2. Однако из этой зависимости вытекал и ряд других положений, предположенных в формулах ученого и проверенных на практике. Так, единый пространственно-временной континуум, предполагавший зависимость одного от другого, означал возможное изменение этих параметров. Для Ньютона обе эти категории были бездейственной ширмой для событий, однако в новой концепции они становились весьма активными их участниками.

Пространственно-временной континуум и его искривление

Не вдаваясь в подробности математических выкладок, необходимо отметить, что

Эйнштейн смог продемонстрировать влияние сил гравитации на эти параметры, буквально искривляющие их. На практике это означает, что вблизи такого массивного тела, как Земля, время замедляет свой ход, а пространство сжимается. В то же время на орбите нашей планеты время течет чуть-чуть быстрее, и сама материя пространства немного менее ускорена. Сегодня это предположение нашло опытное подтверждение со сверхточных часов, установленных на околоземных станциях. Следует учитывать, что расхождения крайне малы, поскольку и гравитационное поле Земли невелико. Но если взять в расчет гораздо более массивные тела, то происходят удивительные вещи. Солнце влияет на временной континуум еще сильнее. А если вообразить, что тело может достичь определенной точки плотности, то и вовсе выйдет, что возле него течение времени почти замирает, а свет из-за гравитации не может вырваться. Такие объекты были названы черными дырами, и их существование неоднократно было подтверждено другими косвенными фактами.