Понятие уравнения линии. Задание линии при помощи уравнения

1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Помогите Пожалуйста с вопросами по геометрии(9 класс)! 2)Что значит разложить вектор по двум

данным векторам. 9)Что такое радиус-вектора точки?Докажите, что координаты точки равны соответствующим координатам векторов. 10)Выведите формулы для вычисления координат вектора по координатам его начала и конца. 11)Выведите формулы для вычисления координат вектора по координатам его концов. 12) Выведите формулу для вычисления длины вектора по его координатам. 13)Выведите формулу для вычисления расстояния между двумя точками по их координатам. 15)Какое уравнение называется уравнением данной линии?Приведите пример. 16)Выведите уравнение окружности данного радиуса с центром в данной точке.

1)Сформулируйте и докажите лемму о коллинеарных векторах.


3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
10)Выведите формулы для вычисления координат вектора по координатам его начала и конца.
11)Выведите формулы для вычисления координат вектора по координатам его концов.
12) Выведите формулу для вычисления длины вектора по его координатам.
13)Выведите формулу для вычисления расстояния между двумя точками по их координатам.
14)Приведите пример решения геометрической задачи с применением метода координат.
16)Выведите уравнение окружности данного радиуса с центром в данной точке.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Пожалуйста очень надо! Желательно с рисунками(где надо)!

ГЕОМЕТРИЯ 9 КЛАСС.

1)Сформулируйте и докажите лемму о коллинеарных векторах.
2)Что значит разложить вектор по двум данным векторам.
3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
9)Что такое радиус-вектора точки? Докажите, что координаты точки равны соответствующим координатам векторов.
14)Приведите пример решения геометрической задачи с применением метода координат.
15)Какое уравнение называется уравнением данной линии? Приведите пример.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Прямая на плоскости и в пространстве.

Изучение свойств геометрических фигур с помощью алгебры носит название аналитической геометрии , а использовать при этом мы будем так называемый метод координат .

Линия на плоскости обычно задается как множество точек, которые обладают присущими только им свойствами. Тот факт, что координаты (числа) х и у точки, лежащей на этой линии, аналитически записываются в виде некоторого уравнения.

Опр.1Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение (*), которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой другой точки, не лежащей на этой линии.

Из определения 1 следует, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х,у ) точки этой линии и наоборот, всякому уравнению соответствует, вообще говоря, некоторая линия.

Отсюда возникают две основные задачи аналитической геометрии на плоскости.

1.Дана линия в виде множества точек. Нужно составить уравнение этой линии.

2. Дано уравнение линии. Необходимо изучить ее геометрические свойства (форму и расположение).

Пример . Лежат ли точки А (-2;1) и В (1;1) на линии 2х +у +3=0?

Задача о нахождении точек пересечения двух линий, заданных уравнениями и, сводится к отысканию координат, которые удовлетворяют уравнению обеих линий, т.е. к решению системы из двух уравнений с двумя неизвестными.

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогично вводится понятие линии в ПСК.

Линию на плоскости можно задать двумя уравнениями

где х и у – произвольные координаты точки М(х;у), лежащей на данной линии, а t - переменная, называемая параметром , параметр определяет положение точки на плоскости.

Например, если , то значению параметра t=2 соответствует на плоскости точка (3;4).

Если параметр изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способом задания линии называется параметрическим, а уравнение (5.1) –параметрическим уравнением линии.

Чтобы перейти от параметрических уравнений к общему уравнению (*), надо каким – либо способом из двух уравнений исключают параметр. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t- скалярный переменный параметр. Каждому значению параметра соответствует определенный вектор плоскости. При изменении параметра конец вектора опишет некоторую линию.

Векторному уравнению в ДСК соответствуетдва скалярных уравнения

(5.1), т.е. уравнения проекций на оси координат векторного уравнения линии есть ее



параметрическое уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , а линия – траектория точки, параметр t при этом есть время.

Вывод: всякой линии на плоскости соответствует уравнение вида .

ВСЯКОМУ УРАВНЕНИЮ ВИДАсоответствует в общем случае некоторая линия, свойства которой определяются данным уравнением (исключение – уравнению на плоскости не соответствует никакой геометрический образ).

Пусть выбрана система координат на плоскости.

Опр. 5.1. Уравнением линии называется такое уравнение вида F(x;y) =0, которому удовлетворяют координаты каждой точки, лежащей на этой линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней.

Уравнение вида F(x;y )=0 – называют общим уравнением линии или уравнением в неявной форме.

Таким образом, линия Г есть геометрическое место точек, удовлетворяющее данному уравнению Г={(x, y): F(x;y)=0}.

Линию называют также кривой.

Давайте повторим * Какое уравнение называется квадратным? * Какие уравнения называются неполными квадратными уравнениями? * Какое квадратное уравнение называется приведенным? * Что называют корнем квадратного уравнения? * Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение?
















Алгоритм решения квадратного уравнения: 1. Опредилить каким способом рациональней решить квадратное уравнение 2. Выбрать наиболее рациональный способ решения 3. Определение количества корней квадратного уравнения 4. Нахождение корней квадратного уравнения Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу…






Дополнительное условие Уравнение Корни Примеры 1. в = с = 0, а 0 ах 2 = 0 х 1 = 0 2. с = 0, а 0, в 0 ах 2 + bх = 0 х 1 = 0, х 2 =-b/а 3. в = 0, а 0, в 0 ах 2 + с = 0 а) х 1,2 = ±(c/а), где с/а 0. б) если с/а 0, то решений нет 4. а 0 ах 2 + bх + с = 0 x 1,2 =(-b±D)/2 а, где D = в 2 – 4 ас, D0 5. в – четное число (в = 2k), а 0, в 0, с 0 ах 2 + 2kx + c = 0 х 1,2 =(-b±D)/а, D 1 = k 2 – ac, где k = 6. Теорема обратная теореме Виета x 2 + px + q = 0x 1 + x 2 = - p x 1 x 2 = q


II. Специальные методы 7. Метод выделения квадрата двучлена. Цель: Привести уравнение общего вида к неполному квадратному уравнению. Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения. Пример: решите уравнение х 2 -6 х+8=0 8. Метод «переброски» старшего коэффициента. Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 +by+ac=0 связаны соотношениями: и Замечание: метод хорош для квадратных уравнений с «удобными» коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно. Пример: решите уравнение 2 х 2 -9 х-5=0 На основании теорем:Пример: решите уравнение 157 х х-177=0 9. Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен с /а 10. Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен –с/а Пример: решите уравнение 203 х х+17=0 х 1 =у 1 /а, х 2 =у 2 /а


III. Общие методы решения уравнений 11. Метод разложения на множители. Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Способы: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Пример: решите уравнение 3 х 2 +2 х-1=0 12. Метод введения новой переменной. Удачный выбор новой переменной делает структуру уравнения более прозрачной Пример: решите уравнение (х 2 +3 х-25) 2 -6(х 2 +3 х-25)= - 8









Уравнением линии на плоскости XOY называется уравнение, которому удовлетворяют координаты x и y каждой точки этой линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. В общем случае уравнение линии может быть записано в виде 0), (yx. F или)(xfy

Пусть задана прямая, пересекающая ось у в точке В (0, в) и образующая с осью х угол α Выберем на прямой произвольную точку М(х, у).

x y M N

Координаты точки N (x , в). Из треугольника BMN: k – угловой коэффициент прямой. k x by NB MN tg bkxy

Рассмотрим частные случаи: — уравнение прямой, проходящей через начало координат. 10 bkxy 2 bytg 00 — уравнение прямой, параллельной оси х.

т. е. у вертикальной прямой нет углового коэффициента. 3 22 tg — не существует Уравнение прямой, параллельной оси у, в этом случае имеет вид ax где а – отрезок, отсекаемый прямой на оси х.

Пусть задана прямая, проходящая через заданную точку2 и образующая с осью х угол α), (111 yx. M

Т. к. точка М 1 лежит на прямой, ее координаты должны удовлетворять уравнению (1): Вычитаем это уравнение из уравнения (1): bkxy 11)(11 xxkyy

Если в этом уравнении угловой коэффициент не определен, то оно задает пучок прямых, проходящих через данную точку, кроме прямой, параллельной оси у, не имеющей углового коэффициента. xy

Пусть задана прямая, проходящая через две точки: Запишем уравнение пучка прямых, проходящих через точку М 1:), (111 yx. M), (222 yx. M)(11 xxkyy

Т. к. точка М 2 лежит на данной прямой, подставим ее координаты в уравнение пучка прямых:)(1212 xxkyy 12 12 xx yy k Подставляем k в уравнение пучка прямых. Тем самым мы выделяем из этого пучка прямую, проходящую через две данные точки:

1 12 12 1 xx xx yy yy или 12 1 xx xx yy yy

РЕШЕНИЕ. Подставляем координаты точек в уравнение прямой, проходящей через две точки. 53 5 42 4 xy)5(8 6 4 xy 4 1 4 3 xy

Пусть задана прямая, отсекающая на осях координат отрезки, равные а и в. Это значит, что она проходит через точки)0, (a. A), 0(b. B Найдем уравнение этой прямой.

xy 0 ab

Подставим координаты точек А и В в уравнение прямой, проходящей через две точки (3): a ax b y 00 0 a ax b y 1 ax b y 1 b y a x

ПРИМЕР. Составить уравнение прямой, проходящей через точку А(2, -1) если она отсекает от положительной полуоси у отрезок, вдвое больший, чем на положительной полуоси х.

РЕШЕНИЕ. По условию задачи, ab 2 Подставляем в уравнение (4): 1 2 a y a x Точка А(2, -1) лежит на этой прямой, следовательно ее координаты удовлетворяют этому уравнению: 1 2 12 aa 1 2 41 a 23 a 1 35. 1 yx

Рассмотрим уравнение: Рассмотрим частные случаи этого уравнения и покажем, что при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, это уравнение есть уравнение прямой на плоскости. 0 CBy. Ax

Тогда уравнение (5) можно представить в виде: Тогда получаем уравнение (1): Обозначим: 10 B B C x B A y k B A b B C bkxy

Тогда уравнение имеет вид: Получаем уравнение: — уравнение прямой, проходящей через начало координат. 2000 CAB x B A y 3 000 CAB BC y — уравнение прямой, параллельной оси х.

Тогда уравнение имеет вид: Получаем уравнение: — уравнение оси х. 40 y 5 000 CAB — уравнение прямой, параллельной оси у. 000 CAB A C x

Тогда уравнение имеет вид: — уравнение оси у. 60 x 000 CAB Таким образом, при любых значениях коэффициентов А, В (не равных нулю одновременно) и С, уравнение (5) есть уравнение прямой на плоскости. Это

Цель: Рассмотреть понятие линии на плоскости, привести примеры. Основываясь на определение линии, ввести понятие уравнения прямой на плоскости. Рассмотреть виды прямой, привести примеры и способы задания прямой. Закрепить умение переводить уравнение прямой из общего вида в уравнение прямой «в отрезках», с угловым коэффициентом.

  1. Уравнение линии на плоскости.
  2. Уравнение прямой на плоскости. Виды уравнений.
  3. Способы задания прямой.

1. Пусть х и у – две произвольные переменные.

Определение : Соотношение вида F(x,y)=0 называется уравнением , если оно справедливо не для всяких пар чисел х и у.

Пример : 2х + 7у – 1 = 0 , х 2 + y 2 – 25 = 0.

Если равенство F(x,y)=0 выполняется для любых х, у, то, следовательно, F(x,y) = 0 – тождество.

Пример: (х + у) 2 - х 2 - 2ху - у 2 = 0

Говорят, что числа х 0 и у 0 удовлетворяют уравнению , если при их подстановке в это уравнение оно обращается в верное равенство.

Важнейшим понятием аналитической геометрии является понятие уравнения линии.

Определение : Уравнением данной линии называется уравнение F(x,y)=0, которому удовлетворяют координаты всех точек, лежащих на этой линии, и не удовлетворяют координаты никакой из точек, не лежащих на этой линии.

Линия, определяемая уравнением y = f(x), называется графиком функции f(x). Переменные х и у – называются текущими координатами, т. к. являются координатами переменной точки.

Несколько примеров определения линий.

1) х – у = 0 => х = у. Это уравнение определяет прямую:

2) х 2 - у 2 = 0 => (х-у)(х+у) = 0 => точки должны удовлетворять либо уравнению х - у = 0, либо уравнению х + у = 0, что соответствует на плоскости паре пересекающихся прямых, являющихся биссектрисами координатных углов:

3) х 2 + у 2 = 0. Этому уравнению удовлетворяет только одна точка О(0,0).

2. Определение: Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких–либо заданных начальных условий.

Уравнение прямой с угловым коэффициентом.



Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем , то получим

xcosj + ysinj - p = 0 –нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

3. Уравнение прямой по точке и угловому коэффициенту.

Пусть угловой коэффициент прямой равен k, прямая проходит через точку М(х 0 , у 0). Тогда уравнение прямой находится по формуле: у – у 0 = k(x – x 0)

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.