Полупроводниковые кристаллы космического совершенства. Космическая технология и производство


Первые эксперименты по получению материалов в космосе начались 50 лет назад. За прошедшие годы основные методики и подходы к данным исследованиям не претерпели больших изменений, но цели работ, лежащих в этом русле, стали совсем другими: от поиска новых термостойких металлов учёные перешли к полупроводниковым кристаллам для солнечной энергетики. К очередному эксперименту из этой серии готовятся исследователи из совместно с коллегами из Университета Хьюстона (University of Houston): на борту Международной космической станции (МКС) они хотят вырастить кристаллы совершенной структуры для солнечных панелей.

Полупроводниковые кристаллы – это основа всей электроники, и, конечно, существует масса методов их получения в земных условиях. К сожалению, все они обладают общими недостатками: выращенные кристаллы часто оказываются неоднородными, слишком маленькими или испорченными посторонними примесями. Причин на то много, но среди них существует одна наиболее общего характера – сила притяжения. В земных условиях гравитация порождает явление термогравитационной конвекции, перемешивания жидкости под действием разности температур в поле тяготения. В условиях же космической невесомости роль этого фактора значительно спадает, и становится возможным получать полупроводниковые кристаллы более чистой структуры и совершенного состава.

Первые эксперименты по выращиванию материалов в космосе начались вскоре после полёта Гагарина , в 1961 году, и их результаты часто оказывались противоречивыми. Так, кристаллы Ge(Ca) и InSb(Te), полученные в американских экспериментах «Скайлэб», отличались высокой однородностью структуры, а кристаллы с борта «Аполлона-Союза», напротив, проигрывали своим земным аналогам. Причин для подобных неудач приводилось несколько: вибрации механизмов, остаточные микроускорения (ускорение свободного падения на борту космических аппаратов не равняется строго нулю вопреки распространяемым заблуждениям), некоторые конвекционные эффекты, незаметные при земном притяжении. Так учёным стало понятно, что космические условия намного сложнее, чем выглядят на первый взгляд, и многие эксперименты стали сопровождаться численными моделированиями. Они подтвердили: получать кристаллы совершенной структуры в космосе возможно, но чрезвычайно трудно.

Поэтому следующим этапом в изучении возможностей создания идеальных кристаллов стал метод физического моделирования. Полупроводниковые кристаллы часто получают методом направленной кристаллизации. Грубо говоря, тигель с нагретым расплавом нужного состава постепенно вносится в область с пониженной температурой, где и начинают расти кристаллы. Для ослабления земного явления термогравитации в подобных условиях учёные предложили перемещать не сам расплав, а создавать движущееся температурное поле с малыми радиальными температурными градиентами. Такой подход позволил моделировать космические условия роста кристаллов и заранее планировать эксперименты с экономией времени и материала. Один из самых ярких подобных опытов был проведён самими авторами обзорной статьи. Полупроводниковые кристаллы GaSb(Te) были перекристаллизованы в земных условиях и на борту АКА «Фотон-М3». В обоих случаях получились однородные кристаллы высокой чистоты, в которых наблюдались некоторые периодические зависимости физических свойств от структуры. При этом период зависимости для космических образцов составил 90 минут (что совпадает с периодом обращения спутника), а для наземных – 5–20 минут.

Очередной эксперимент по получению полупроводниковых кристаллов в космосе планируется провести уже в 2013 году. На борту МКС исследователи хотят вырастить кристаллы совершенной структуры для солнечных панелей – так уже отработанные методики находят новые практические приложения. При этом результаты подобных, несколько экзотических экспериментов помогают и совершенствованию наземных технологий.

Подробно результаты теоретических и экспериментальных работ, посвящённых выращиванию в космосе полупроводниковых кристаллов, описаны в обзорной статье российских физиков из ФТИ им. А. Ф. Иоффе РАН и НИЦ «Космическое материаловедение» . Публикация размещена на страницах журнала «Физика твёрдого тела» . Материалами для обзора послужили как многочисленные результаты исследований самих авторов, так и наиболее яркие работы их зарубежных коллег.

Выращивание полупроводниковых кристаллов в космосе

Полупроводниковые кристаллы – это основа всей электроники, и, конечно, существует масса методов их получения в земных условиях. К сожалению, все они обладают общими недостатками: выращенные кристаллы часто оказываются неоднородными, слишком маленькими или испорченными посторонними примесями. Причин на то много, но среди них существует одна наиболее общего характера – сила притяжения. В земных условиях гравитация порождает явление термогравитационной конвекции, перемешивания жидкости под действием разности температур в поле тяготения. В условиях же космической невесомости роль этого фактора значительно спадает, и становится возможным получать полупроводниковые кристаллы более чистой структуры и совершенного состава.

Первые эксперименты по выращиванию материалов в космосе начались вскоре после полёта Гагарина, в 1961 году, и их результаты часто оказывались противоречивыми. Так, кристаллы Ge(Ca) и InSb(Te), полученные в американских экспериментах «Скайлэб», отличались высокой однородностью структуры, а кристаллы с борта «Аполлона-Союза», напротив, проигрывали своим земным аналогам. Причин для подобных неудач приводилось несколько: вибрации механизмов, остаточные микроускорения (ускорение свободного падения на борту космических аппаратов не равняется строго нулю вопреки распространяемым заблуждениям), некоторые конвекционные эффекты, незаметные при земном притяжении. Так учёным стало понятно, что космические условия намного сложнее, чем выглядят на первый взгляд, и многие эксперименты стали сопровождаться численными моделированиями. Они подтвердили: получать кристаллы совершенной структуры в космосе возможно, но чрезвычайно трудно.

Поэтому следующим этапом в изучении возможностей создания идеальных кристаллов стал метод физического моделирования. Полупроводниковые кристаллы часто получают методом направленной кристаллизации. Грубо говоря, тигель с нагретым расплавом нужного состава постепенно вносится в область с пониженной температурой, где и начинают расти кристаллы. Для ослабления земного явления термогравитации в подобных условиях учёные предложили перемещать не сам расплав, а создавать движущееся температурное поле с малыми радиальными температурными градиентами. Такой подход позволил моделировать космические условия роста кристаллов и заранее планировать эксперименты с экономией времени и материала. Используя этот подход были перекристаллиизованы полупроводниковые кристаллы GaSb(Te) в земных условиях и на борту АКА «Фотон-М3». В обоих случаях получились однородные кристаллы высокой чистоты, в которых наблюдались некоторые периодические зависимости физических свойств от структуры. При этом период зависимости для космических образцов составил 90 минут (что совпадает с периодом обращения спутника), а для наземных – 5–20 минут. Подробно результаты теоретических и экспериментальных работ, посвящённых выращиванию в космосе полупроводниковых кристаллов, описаны в обзорной статье российских физиков из ФТИ им. А. Ф. Иоффе РАН и НИЦ (Физика твёрдого тела, 2012, том 54, выпуск 7).

© И.Ж.Безбах, В.И.Стрелов, Б.Г.Захаров
© Государственный музей истории космонавтики им. К.Э. Циолковского , г. Калуга
Секция "К.Э. Циолковский и проблемы космического производства"
2004 г.

Одним из важных направлений как земной, так и космической биотехнологии является получение кристаллов биомакромолекул с целью определения их пространственной структуры кристаллографическими методами и дальнейшего использования полученной информации в биологических, медицинских и промышленных целях.

За последние несколько десятков лет были получены результаты по сотням макромолекул и тысячам их кристаллов, были значительно усовершенствованы методики кристаллизации, наука о выращивании кристаллов биоматериалов из эмпирической становится все более точной. Однако до сих пор стабильное получение биокристаллов пригодного для исследований размера и однородности является проблемным местом во всем этом процессе. К настоящему времени около 35% кристаллов белков, серийно выращенных в космических условиях, оказались более высокого структурного качества, чем полученные в аналогичных условиях на Земле. В невесомости удалось получить биокристаллы, превосходящие по объему и разрешению любые из их земных аналогов. Однако же остальные 65% кристаллов вопреки прогнозам оказались худшего качества, чем их земные аналоги.

В этой связи важно определить, какие факторы являются определяющими с точки зрения качества получаемых биокристаллов. Из-за слабых сил связи между молекулами в биокристаллах влияние как внешних условий, так и внутренних причин на процесс кристаллизации может быть определяющим. Обычно считается, что необходим переход к чисто диффузионным условиям. В полной мере это достижимо при проведении экспериментов в условиях невесомости.

Основным негативным моментом, влияющим на процесс кристаллизации биоматериалов на Земле, является следующее: в земных условиях, помимо диффузионного массопереноса, типичным является возникновение конвективных течений в растворе, что, при большой их величине, может крайне негативно влиять на процессы роста и качество получаемых кристаллов. Также может наблюдаться осаждение кристаллов, нарушающее симметричность подвода к ним растворенного биоматериала и влияющее на их форму. При этом попытки различными способами осуществить кристаллизацию биоматериала за счет исключительно диффузионного механизма приводит к значительному увеличению требуемого для проведения эксперимента времени и снижению устойчивости условий эксперимента.

В космических же условиях эти недостатки устранимы. Однако свое влияние обычно начинают оказывать вибрационные воздействия, особенно значительные на борту Международной космической станции. При этом важным являются способы их влияния и механизмы их компенсации.

Дальнейшее изучение процесса кристаллизации биоматериалов с целью лучшего его понимания, совершенствование методик кристаллизации и аппаратуры, снижение влияния внешних условий на процесс и т. д. даст возможность проведения космических экспериментов с получением совершенных биокристаллов.

Если Вы сам деятель науки или просто любознательный человек, и Вы частенько смотрите или читаете последние новости в сфере науки или техники. Именно для Вас мы создали такой раздел, где освещаются последние новости мира в сфере новых научных открытий, достижений, а также в сфере техники. Только самые свежие события и только проверенные источники.


В наше прогрессивное время наука двигается быстрыми темпами, так что не всегда можно уследить за ними. Какие-то старые догмы рушатся, какие-то выдвигаются новые. Человечество не стоит на месте и не должно стоять, а двигателем человечества, являются ученые, научные деятели. И в любой момент может произойти открытие, которое способно не просто поразить умы всего населения земного шара, но и в корне поменять нашу жизнь.


Особая роль в науке выделяется медицине, так как человек, к сожалению не бессмертен, хрупок и очень уязвим к всякого рода заболеваниям. Многим известно, что в средние века люди в среднем жили лет 30, а сейчас 60-80 лет. То есть, как минимум вдвое увеличилась продолжительность жизни. На это повлияло, конечно, совокупность факторов, однако большую роль привнесла именно медицина. И, наверняка 60-80 лет для человека не предел средней жизни. Вполне возможно, что когда-нибудь люди перешагнут через отметку в 100 лет. Ученые со всего мира борются за это.


В сфере и других наук постоянно ведутся разработки. Каждый год ученые со всего мира делаю маленькие открытия, потихоньку продвигая человечество вперед и улучшая нашу жизнь. Исследуется не тронутые человеком места, в первую очередь, конечно на нашей родной планете. Однако и в космосе постоянно происходят работы.


Среди техники особенно рвется вперед робототехника. Ведется создание идеального разумного робота. Когда-то давно роботы – были элементом фантастики и не более. Но уже на данный момент некоторые корпорации имеют в штате сотрудников настоящих роботов, которые выполняют различные функции и помогают оптимизировать труд, экономить ресурсы и выполнять за человека опасные виды деятельности.


Ещё хочется особое внимание уделить электронным вычислительным машинам, которые ещё лет 50 назад занимали огромное количество места, были медленными и требовали для своего ухода целую команду сотрудников. А сейчас такая машина, практически, в каждом доме, её уже называют проще и короче – компьютер. Теперь они не только компактны, но и в разы быстрее своих предшественников, а разобраться в нем может уже каждый желающий. С появлением компьютера человечество открыло новую эру, которую многие называют «технологической» или «информационной».


Вспомнив о компьютере, не стоит забывать и о создании интернета. Это дало тоже огромный результат для человечества. Это неиссякаемый источник информации, который теперь доступен практически каждому человеку. Он связывает людей с разных континентов и молниеносно передает информацию, о таком лет 100 назад невозможно было даже мечтать.


В этом разделе, Вы, безусловно, найдете для себя что-то интересное, увлекательное и познавательное. Возможно, даже когда-нибудь Вы сможете одним из первых узнать об открытии, которое не просто изменит мир, а перевернет Ваше сознание.

Рост однородных кристаллов твердых растворов соединений А2В6 и А3В5 считается одним из перспективных направлений космического материаловедения. Этот метод уже использовался при выращивании кристаллов в космосе.

Однако и здесь в некоторых случаях наблюдалась большая неоднородность свойств выращенных кристаллов. В настоящее время за рубежом исследования в этом направлении продолжаются. В частности, в Японии выполняется обширная программа теоретических исследований и наземных экспериментов по подготовке космических экспериментов по получению на японском модуле МКС однородных кристаллов In1-xGaxAs и Cd1-xZnxTe. Аналогичные эксперименты планируются европейскими учеными в рамках программы MAP. Поэтому планируемый эксперимент ВАМПИР соответствует новейшим направлениям в космическом материаловедении.

Получение кристаллов А2В6 методом движущейся зоны растворителя обладает рядом преимуществ по сравнению с методами выращивания из расплава . Снижение температуры процесса определяет уменьшение количества собственных термодинамических дефектов в кристалле и загрязнение раствора материалом ампулы. В случае выращивания тройных твердых растворов метод позволяет получить кристаллы постоянного состава. Другим важным преимуществом метода является эффект очистки растущего кристалла от примесей, который наблюдается при использовании теллура в качестве растворителя. Недостатком метода является малая скорость роста, поэтому проведение таких экспериментов возможно только на долговременных КА.

Существенным отличием эксперимента ВАМПИР от планируемых за рубежом является использование вращающегося магнитного поля. Полученные ранее результаты космических экспериментов показывают необходимость управления процессами массопереноса в расплаве. Одним из возможных методов управления является использование вращающихся магнитных полей. Идея метода заключается в том, что в растворе возбуждается ламинарная стационарная конвекция, полностью определяющая массоперенос к растущей поверхности. В данном эксперименте предполагается изучить возможность управления процессами массопереноса в жидкой фазе с помощью вращающихся магнитных полей в условиях переменных во времени и по амплитуде динамических воздействий. При выбранной надлежащим образом величине магнитной индукции вынужденная конвекция является доминирующей и действием имеющихся на борту ПКК возмущений можно пренебречь. Отсутствие гидростатического давления в условиях микротяжести также должно привести к улучшению качества кристалла вследствие снижения термических напряжений при контакте кристалла со стенками контейнера.

Еще одним важным отличием предлагаемого эксперимента от проводимых ранее являются достаточно большие размерыг выращиваемых кристаллов (диаметр 25 мм). Известно, что увеличение размера кристаллов приводит не только к количественным, но и качественным изменениям в характере процесса роста. Поэтому нельзя отработать технологию получения кристаллов большого диаметра на малыгх образцах. Из изложенного следует, что предлагаемые эксперименты имеют приоритетное научное и практическое значение.