Первое термоядерное устройство. Современное термоядерное оружие

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Атомное оружие – устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА.

Об Атомном оружиии

Атомное оружие – самое мощное оружие на сегодняшний день, находящееся на вооружении пяти стран: России, США, Великобритании, Франции и Китая. Существует также ряд государств, которые ведут более-менее успешные разработки атомного оружия, однако их исследования или не закончены, или эти страны не обладают необходимыми средствами доставки оружия к цели. Индия, Пакистан, Северная Корея, Ирак, Иран имеют разработки ядерного оружия на разных уровнях, ФРГ, Израиль, ЮАР и Япония теоретически обладают необходимыми мощностями для создания ядерного оружия в сравнительно короткие сроки.

Трудно переоценить роль ядерного оружия. С одной стороны, это мощное средство устрашения, с другой – самый эффективный инструмент укрепления мира и предотвращения военного конфликтами между державами, которые обладают этим оружием. С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества.

Атомное оружие

АТОМНОЕ ОРУЖИЕ, устройство, получающее огромную взрывную мощность от реакций ДЕЛЕНИЯ АТОМНОГО ЯДРА и ЯДЕРНОГО СИНТЕЗА. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. Эти атомные бомбы состояли из двух стабильных доктритических масс УРАНА и ПЛУТОНИЯ, которые при сильном сталкивании вызвали превышение КРИТИЧЕСКОЙ МАССЫ, тем самым провоцируя бесконтрольную ЦЕПНУЮ РЕАКЦИЮ деления атомных ядер. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола. Гораздо более мощная водородная бомба (термоядерная бомба), впервые испытанная в 1952 г., состоит из атомной бомбы, которая во время взрыва создает температуру, достаточно высокую для того, чтобы вызвать ядерный синтез в близлежащем твердом слое, обычно - в детеррите лития. Взрывная мощность может равняться мощности нескольких миллионов тонн (мегатонн) тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Она вызывает слабый взрыв, который, однако, сопровождается интенсивным выбросом высокоскоростных НЕЙТРОНОВ. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели.

Вначале взрыв атомной бомбы (А) образует огненный шар (1) с температурой и миллионы градусов по Цельсию и испускает радиационное излучение (?) Через несколько минут (В) шар увеличивается в обьеме и создав!ударную волну с высоким давлением (3). Огненный шар поднимается (С), всасывая пыль и обломки, и образует грибовидное облако (D), По мере увеличения в обьеме огненный шар создает мощное конвекционное течение (4), выделяя горячее излучение (5) и образуя облако (6), При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным (7) в радиусе 8 км, серьезными (8) в радиусе 15км и заметными (Я) в радиусе 30 км Даже на расстоянии 20 км (10) взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров. Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.

Современные атомные бомбы и снаряды

Радиус действия

В зависимости от мощности атомного заряда атомные бомбы,снаряды делят на калибры:малый,средний и крупный . Чтобы получить энергию, равную энергии взрыва атомной бомбы малого калибра, нужно взорвать несколько тысяч тонн тротила. Тротиловый эквивалент атомной бомбы среднего калибра составляет десятки тысяч, а бомбы крупного калибра – сотни тысяч тонн тротила. Еще большей мощностью может обладать термоядерное (водородное) оружие, его тротиловый эквивалент может достигать миллионов и даже десятков миллионов тонн. Атомные бомбы, тротиловый эквивалент которых равен 1- 50 тыс. т,относят к классу тактических атомных бомб и предназначают для решения оперативно-тактических задач. К тактическому оружию относят также: артиллерийские снаряды с атомным зарядом мощность 10 – 15 тыс. т. и атомные заряды (мощностью около 5 – 20 тыс. т) для зенитных управляемых снарядов и снарядов, используемых для вооружения истребителей. Атомные и водородные бомбы мощностью свыше 50 тыс. т относят к классу стратегического оружия.

Нужно отметить,что подобная классификация атомного оружия является лишь условной, поскольку в действительности последствие применения тактического атомного оружия могут быть не меньшими, чем те, которые испытало на себе население Хиросимы и Нагасаки, а даже большими. Сейчас очевидно, что взрыв только одной водородной бомбы способен вызвать такие тяжелые последствия на огромных территориях, каких не несли с собой десятки тысяч снарядов и бомб, применявшихся в прошлых мировых войнах. А нескольких водородных бомб вполне достаточно, чтобы превратить в зону пустыни огромные территории.

Ядерное оружие подразделяется на 2 основных типа: атомное и водородное (термоядерное). В атомном оружии выделение энергии происходит за счет реакции деления ядер атомов тяжелых элементов урана или плутония. В водородном оружии энергия выделяется в результате образования (или синтеза) ядер атомов гелия из атомов водорода.

Термоядерное оружие

Современное термоядерное оружие относится к стратегическому оружию, которое может применяться авиацией для разрушения в тылу противника важнейших промышленных, военных объектов, крупных городов как цивилизационных центров. Наиболее известным типом термоядерного оружия являются термоядерные (водородные) бомбы, которые могут доставляться к цели самолетами. Термоядерными зарядами могут начиняться также боевые части ракет различного назначения, в том числе межконтинентальных баллистических ракет. Впервые подобная ракета была испытана в СССР еще в 1957 году, в настоящее время на вооружения Ракетных Войск Стратегического Назначения состоят ракеты нескольких типов, базирующиеся на мобильных пусковых установках, в шахтных пусковых установках, на подводных лодках.

Атомная бомба

В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород – дейтерий, ядра которого имеют необычную структуру – один протон и один нейтрон. При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии.

Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии (для поддержания из жидкостного агрегатного состояния). Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес (более 60 т.), из-за чего нельзя было и думать об использовании таких зарядов на стратегических бомбардировщиках, а уж тем более в баллистических ракетах любой дальности. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение.

В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах.

Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности – сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

Водородная бомба

Первые разработки этой модификации термоядерной бомбы появились еще в 1957 году, на волне пропагандистских заявлений США о создании некоего «гуманного» термоядерного оружия, которое не несет столько вреда для будущих поколений, сколько обычная термоядерная бомба. В претензиях на «гуманность» была доля истины. Хотя разрушительная сила бомбы не была меньшей, в то же время она могла быть взорвана так, чтобы не распространялся стронций-90, который при обычном водородном взрыве в течение длительного времени отравляем земную атмосферу. Все, что находится в радиусе действия подобной бомбы, будет уничтожено, однако опасность для живых организмов, которые удалены от взрыва, а также для будущих поколений, уменьшится. Однако данные утверждения были опровергнуты учеными, которые напомнили, что при взрывах атомных или водородных бомб образуется большое количество радиоактивной пыли, которая поднимается мощным потоком воздуха на высоту до 30 км, а потом постепенно оседает на землю на большой площади, заражая её. Исследования, проведенные учеными, показывают, что понадобится от 4 до 7 лет, чтобы половина этой пыли выпала на землю.

Видео

Северная Корея угрожает США испытаниями сверхмощной водородной бомбы в Тихом океане. Япония, которая может пострадать из-за испытаний, назвала планы КНДР абсолютно неприемлемыми. Президенты Дональд Трамп и Ким Чен Ын ругаются в интервью и говорят об открытом военном конфликте. Для тех, кто не разбирается в ядерном оружии, но хочет быть в теме, «Футурист» составил путеводитель.

Как работает ядерное оружие?

Как и в обычной динамитной шашке, в ядерной бомбе используется энергия. Только высвобождается она не в ходе примитивной химической реакции, а в сложных ядерных процессах. Существует два основных способа выделения ядерной энергии из атома. В ядерном делении ядро ​​атома распадается на два меньших фрагмента с нейтроном. Ядерный синтез – процесс, с помощью которого Солнце вырабатывает энергию – включает объединение двух меньших атомов с образованием более крупного. В любом процессе, делении или слиянии выделяются большие количества тепловой энергии и излучения. В зависимости от того, используется деление ядер или их синтез, бомбы делятся на ядерные (атомные) и термоядерные .

А можно поподробнее про ядерное деление?

Взрыв атомной бомбы над Хиросимой (1945 г)

Как вы помните, атом состоит из трех типов субатомных частиц: протонов, нейтронов и электронов. Центр атома, называемый ядром , состоит из протонов и нейтронов. Протоны положительно заряжены, электроны – отрицательно, а нейтроны вообще не имеют заряда. Отношение протон-электрон всегда один к одному, поэтому атом в целом имеет нейтральный заряд. Например, атом углерода имеет шесть протонов и шесть электронов. Частицы удерживаются вместе фундаментальной силой – сильным ядерным взаимодействием .

Свойства атома могут значительно меняться в зависимости от того, сколько различных частиц в нем содержится. Если изменить количество протонов, у вас будет уже другой химический элемент. Если же изменить количество нейтронов, вы получите изотоп того же элемента, что у вас в руках. Например, углерод имеет три изотопа: 1) углерод-12 (шесть протонов + шесть нейтронов), стабильную и часто встречающуюся форму элемента, 2) углерод-13 (шесть протонов + семь нейтронов), который является стабильным, но редким и 3) углерод-14 (шесть протонов + восемь нейтронов), который является редким и неустойчивым (или радиоактивным).

Большинство атомных ядер стабильны, но некоторые из них неустойчивы (радиоактивны). Эти ядра спонтанно излучают частицы, которые ученые называют радиацией. Этот процесс называется радиоактивным распадом . Существует три типа распада:

Альфа-распад : ядро ​​выбрасывает альфа-частицу – два протона и два нейтрона, связанных вместе. Бета-распад : нейтрон превращается в протон, электрон и антинейтрино. Выброшенный электрон является бета-частицей. Спонтанное деление: ядро распадается на несколько частей и выбрасывает нейтроны, а также излучает импульс электромагнитной энергии – гамма-луч. Именно последний тип распада используется в ядерной бомбе. Свободные нейтроны, выброшенные в результате деления, начинают цепную реакцию , которая высвобождает колоссальное количество энергии.

Из чего делают ядерные бомбы?

Их могут делать из урана-235 и плутония-239. Уран в природе встречается в виде смеси трех изотопов: 238 U (99,2745 % природного урана), 235 U (0,72 %) и 234 U (0,0055 %). Наиболее распространенный 238 U не поддерживает цепную реакцию: на это способен лишь 235 U. Чтобы достичь максимальной мощности взрыва, необходимо, чтобы содержание 235 U в «начинке» бомбы составляло не менее 80%. Поэтому уран приходится искусственно обогащать . Для этого смесь урановых изотопов разделяют на две части так, чтобы в одной из них оказалось больше 235 U.

Обычно при разделении изотопов остается много обедненного урана, не способного вступить в цепную реакцию – но есть способ заставить его это сделать. Дело в том, что плутоний-239 в природе не встречается. Зато его можно получить, бомбардируя нейтронами 238 U.

Как измеряется их мощность?

​Мощность ядерного и термоядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения аналогичного результата. Она измеряется в килотоннах (кт) и мегатоннах (Мт). Мощность сверхмалых ядерных боеприпасов составляет менее 1 кт, в то время как сверхмощные бомбы дают более 1 Мт.

Мощность советской «Царь-бомбы» составляла по разным данным от 57 до 58,6 мегатонн в тротиловом эквиваленте, мощность термоядерной бомбы, которую в начале сентября испытала КНДР, составила около 100 килотонн.

Кто создал ядерное оружие?

Американский физик Роберт Оппенгеймер и генерал Лесли Гровс

В 1930-х годах итальянский физик Энрико Ферми продемонстрировал, что элементы, подвергшиеся бомбардировке нейтронами, могут быть преобразованы в новые элементы. Результатом этой работы стало обнаружение медленных нейтронов , а также открытие новых элементов, не представленных на периодической таблице. Вскоре после открытия Ферми немецкие ученые Отто Ган и Фриц Штрассман бомбардировали уран нейтронами, в результате чего образовался радиоактивный изотоп бария. Они пришли к выводу, что низкоскоростные нейтроны заставляют ядро ​​урана разрываться на две более мелкие части.

Эта работа взбудоражила умы всего мира. В Принстонском университете Нильс Бор работал с Джоном Уилером для разработки гипотетической модели процесса деления. Они предположили, что уран-235 подвергается делению. Примерно в то же время другие ученые обнаружили, что процесс деления привел к образованию еще большего количества нейтронов. Это побудило Бора и Уилера задать важный вопрос: могли ли свободные нейтроны, созданные в результате деления, начать цепную реакцию, которая высвободила бы огромное количество энергии? Если это так, то можно создать оружие невообразимой силы. Их предположения подтвердил французский физик Фредерик Жолио-Кюри . Его заключение стало толчком для разработок по созданию ядерного оружия.

Над созданием атомного оружия трудились физики Германии, Англии, США, Японии. Перед началом Второй мировой войны Альберт Эйнштейн написал президенту США Франклину Рузвельту о том, что нацистская Германия планирует очистить уран-235 и создать атомную бомбу. Сейчас выяснилось, что Германия была далека от проведения цепной реакции: они работали над «грязной», сильно радиоактивной бомбой. Как бы то ни было, правительство США бросило все силы на создание атомной бомбы в кратчайшие сроки. Был запущен «Манхэттенский проект», которым руководили американский физик Роберт Оппенгеймер и генерал Лесли Гровс . В нем участвовали крупные ученые, эмигрировавшие из Европы. К лету 1945 года было создано атомное оружие, основанное на двух видах делящегося материала - урана-235 и плутония-239. Одну бомбу, плутониевую «Штучку», взорвали на испытаниях, а еще две, уранового «Малыша» и плутониевого «Толстяка» сбросили на японские города Хиросиму и Нагасаки.

Как работает термоядерная бомба и кто ее изобрел?


Термоядерная бомба основана на реакции ядерного синтеза . В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов (отсюда и название). Термоядерные реакции бывают трех видов: самоподдерживающиеся (проходят в недрах звезд), управляемые и неуправляемые или взрывные – они используются в водородных бомбах.

Идею бомбы с термоядерным синтезом, инициируемым атомным зарядом, предложил Энрико Ферми своему коллеге Эдварду Теллеру еще в 1941 году, в самом начале Манхэттенского проекта. Однако тогда эта идея оказалась не востребована. Разработки Теллера усовершенствовал Станислав Улам , сделав идею термоядерной бомбы осуществимой на практике. В 1952 году на атолле Эниветок в ходе операции Ivy Mike испытали первое термоядерное взрывное устройство. Однако это был лабораторный образец, непригодный в боевых действиях. Год спустя Советский Союз взорвал первую в мире термоядерную бомбу, собранную по конструкции физиков Андрея Сахарова и Юлия Харитона . Устройство напоминало слоёный пирог, поэтому грозное оружие прозвали «Слойкой». В ходе дальнейших разработок на свет появилась самая мощная бомба на Земле, «Царь-бомба» или «Кузькина мать». В октябре 1961 года ее испытали на архипелаге Новая Земля.

Из чего делают термоядерные бомбы?

Если вы думали, что водородные и термоядерные бомбы - это разные вещи, вы ошибались. Эти слова синонимичны. Именно водород (а точнее, его изотопы - дейтерий и тритий) требуется для проведения термоядерной реакции. Однако есть сложность: чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать. Поэтому в случае с термоядерной бомбой большую роль играет конструкция.

Широко известны две схемы. Первая - сахаровская «слойка». В центре располагался ядерный детонатор, который был окружен слоями дейтерида лития в смеси с тритием, которые перемежались со слоями обогащенного урана. Такая конструкция позволяла достичь мощности в пределах 1 Мт. Вторая - американская схема Теллера - Улама, где ядерная бомба и изотопы водорода располагались раздельно. Выглядело это так: снизу - емкость со смесью жидких дейтерия и трития, по центру которой располагалась «свеча зажигания» - плутониевый стержень, а сверху - обычный ядерный заряд, и все это в оболочке из тяжелого металла (например, обедненного урана). Быстрые нейтроны, образовавшиеся при взрыве, вызывают в урановой оболочке реакции деления атомов и добавляют энергию в общую энергию взрыва. Надстраивание дополнительных слоев дейтерида лития урана-238 позволяет создавать снаряды неограниченной мощности. В 1953 году советский физик Виктор Давиденко случайно повторил идею Теллера - Улама, и на ее основе Сахаров придумал многоступенчатую схему, которая позволила создавать оружие небывалых мощностей. Именно по такой схеме работала «Кузькина мать».

Какие еще бомбы бывают?

Еще бывают нейтронные, но это вообще страшно. По сути, нейтронная бомба - это маломощная термоядерная бомба, 80% энергии взрыва которой составляет радиация (нейтронное излучение). Это выглядит как обычный ядерный заряд малой мощности, к которому добавлен блок с изотопом бериллия - источником нейтронов. При взрыве ядерного заряда запускается термоядерная реакция. Этот вид оружия разрабатывал американский физик Сэмюэль Коэн . Считалось, что нейтронное оружие уничтожает все живое даже в укрытиях, однако дальность поражения такого оружия невелика, так как атмосфера рассеивает потоки быстрых нейтронов, и ударная волна на больших расстояниях оказывается сильнее.

А как же кобальтовая бомба?

Нет, сынок, это фантастика. Официально кобальтовых бомб нет ни у одной страны. Теоретически это термоядерная бомба с оболочкой из кобальта, которая обеспечивает сильное радиоактивное заражение местности даже при сравнительно слабом ядерном взрыве. 510 тонн кобальта способны заразить всю поверхность Земли и уничтожить все живое на планете. Физик Лео Силард , описавший эту гипотетическую конструкцию в 1950 году, назвал ее «Машиной судного дня».

Что круче: ядерная бомба или термоядерная?


Натурный макет «Царь-бомбы"

Водородная бомба является гораздо более продвинутой и технологичной, чем атомная. Ее мощность взрыва намного превосходит атомную и ограничена только количеством имеющихся в наличии компонентов. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ.

Как бомбы доставляют до цели?

Поначалу их сбрасывали с самолетов, однако средства противовоздушной обороны постоянно совершенствовались, и доставлять ядерное оружие таким образом оказалось неразумным. С ростом производства ракетной техники все права на доставку ядерного оружия перешли к баллистическим и крылатым ракетам различного базирования. Поэтому под бомбой теперь подразумевается не бомба, а боеголовка.

Есть мнение, что северокорейская водородная бомба слишком большая , чтобы ее можно было установить на ракете - поэтому, если КНДР решит воплотить угрозу в жизнь, ее повезут на корабле к месту взрыва.

Каковы последствия ядерной войны?

Хиросима и Нагасаки - это лишь малая часть возможного апокалипсиса. ​Например, известна гипотеза "ядерной зимы", которую выдвигали американский астрофизик Карл Саган и советский геофизик Георгий Голицын. Предполагается, что при взрыве нескольких ядерных боезарядов (не в пустыне или воде, а в населенных пунктах) возникнет множество пожаров, и в атмосферу выплеснется большое количество дыма и сажи, что приведет к глобальному похолоданию. Гипотезу критикуют, сравнивая эффект с вулканической активностью, которая оказывает незначительный эффект на климат. Кроме того, некоторые ученые отмечают, что скорее наступит глобальное потепление,чем похолодание - впрочем, обе стороны надеются, что мы этого никогда не узнаем.

Разрешено ли использовать ядерное оружие?

После гонки вооружений в XX веке страны одумались и решили ограничить использование ядерного оружия. ООН были приняты договоры о нераспространении ядерного оружия и запрещении ядерных испытаний (последний не был подписан молодыми ядерными державами Индией, Пакистаном, и КНДР). В июле 2017 года был принят новый договор о запрещении ядерного оружия.

"Каждое государство-участник обязуется никогда и ни при каких обстоятельствах не разрабатывать, не испытывать, не производить, не изготавливать, не приобретать иным образом, не иметь во владении и не накапливать ядерное оружие или другие ядерные взрывные устройства," - гласит первая статья договора.

Однако документ не вступит в силу до тех пор, пока его не ратифицируют 50 государств.

Термоя́дерное ору́жие (оно же Водородная бомба) - тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например, синтеза одного ядра атома гелия из двух ядер атомов дейтерия (тяжёлого водорода)), при которой выделяется колоссальное количество энергии. Имея те же поражающие факторы, что и у ядерного оружия, термоядерное оружие имеет намного бо́льшую мощность взрыва. Теоретически она ограничена только количеством имеющихся в наличии компонентов. Следует отметить, что часто упоминаемое утверждение о том, что радиоактивное заражение от термоядерного взрыва гораздо слабее, чем от атомного, касается реакций синтеза, которые используются только совместно с гораздо более «грязными» реакциями деления. Термин «чистое оружие», появившийся в англоязычной литературе, к концу 1970-х годов вышел из употребления. На деле всё зависит от выбранного типа реакции, используемой в том или ином изделии. Так, включение в термоядерный заряд элементов из урана-238 (При этом, используемый в водородной бомбе уран-238, распадается под действием быстрых нейтронов и даёт радиоактивные осколки. Сами нейтроны производят наведённую радиоактивность.) позволяет намного (до пяти раз) повысить общую мощность взрыва, но значительно (в 5-10 раз) увеличивает количество радиоактивных осадков.

Схема Теллера-Улама.

Общее описание

Термоядерное взрывное устройство может быть построено как с использованием жидкого дейтерия, так и газообразного сжатого. Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития - дейтериду лития-6. Это соединение тяжёлого изотопа водорода - дейтерия и изотопа лития с массовым числом 6.

Дейтерид лития-6 - твёрдое вещество, которое позволяет хранить дейтерий (обычное состояние которого в нормальных условиях - газ) при плюсовых температурах, и, кроме того, второй его компонент - литий-6 - это сырьё для получения самого дефицитного изотопа водорода - трития. Собственно, 6Li - единственный промышленный источник получения трития:

В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотоп лития с массовым числом 7. Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше.

Термоядерная бомба, действующая по принципу Теллера-Улама, состоит из двух ступеней: триггера и контейнера с термоядерным горючим.

Триггер - это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера - создать необходимые условия для разжигания термоядерной реакции - высокую температуру и давление.

Контейнер с термоядерным горючим - основной элемент бомбы. Он изготовлен из урана-238 - вещества, распадающегося под воздействием быстрых нейтронов (>1 МэВ), выделяющихся при реакции синтеза, и поглощающего медленные нейтроны. Может быть выполнен из свинца. Контейнер покрывается слоем нейтронного поглотителя (соединений бора) для предотвращения преждевременного разогрева термоядерного горючего потоком нейтронов от триггера, что может помешать его эффективному обжатию. Внутри контейнера находится термоядерное горючее - дейтерид лития-6 - и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Возможен вариант, когда вторая ступень делается не в виде цилиндра, а в виде сферы. Принцип действия тот же, но вместо плутониевого запального стержня используется плутониевая полая сфера, находящаяся внутри и перемежающаяся со слоями дейтерида лития-6. Ядерные испытания бомб со сферической формы второй ступени показали бо́льшую эффективность, чем у бомб, использующих цилиндрическую форму второй ступени.

При взрыве триггера 80 % выделяющейся из него энергии расходуется на мощный импульс мягкого рентгеновского излучения, которое поглощается оболочкой второй ступени. В результате резкого нагрева урановой (свинцовой) оболочки происходит абляция вещества оболочки и появляется реактивная тяга, которая вместе со световым давлением обжимает вторую ступень. При этом её объём уменьшается в несколько тысяч раз, и термоядерное топливо нагревается до температур, близких к минимальным для начала реакции. Плутониевый стержень переходит в надкритическое состояние, и начинается ядерная реакция внутри контейнера. Испускаемые сгорающим плутониевым стержнем нейтроны взаимодействуют с литием-6, в результате чего получается тритий, который взаимодействует с дейтерием.


A Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Характерной особенностью американской внешней политики с приходом в Белый дом Джорджа Буша-младшего (уже во время первого срока его президентства) стал резкий крен в сторону использования силовых методов для обеспечения национальной безопасности и национальных интересов США, практически при полном игнорировании роли ООН и мирового общественного мнения. Достаточно ярким подтверждением этого явилось принятие администрацией Соединенных Штатов так называемой "превентивной военной доктрины", предусматривающей возможность проведения упреждающих военных акций по сугубо субъективному обоснованию их необходимости. В эту доктрину вписывается и силовая модель "контрраспространения", допускающая физическое разрушение ядерной инфраструктуры подозрительного, с точки зрения Вашингтона, государства, которая может быть использована для создания ЯО.

ПРОНИКАЮЩИЕ БОЕГОЛОВКИ

По свидетельству сенаторов-демократов Карла Левина и Джека Рида, "вступив в должность президента США, Буш отказался от Договора по противоракетной обороне. Он оказал давление на Конгресс, чтобы утвердить меры и программы, снижающие порог применения ядерного оружия. Московский Договор об ограничении ядерных потенциалов станет началом и концом инициатив администрации Буша по контролю над вооружениями. Для этой администрации деятельность после окончания холодной войны заключается в том, чтобы опираться на ядерное оружие и уходить от контроля над вооружениями".

В представленном Конгрессу в январе 2002 года "Обзоре ядерной политики" (Nuclear Posture Review; далее для краткости "Ядерный обзор") отражено стремление администрации нивелировать различие между применением ЯО малой мощности и оружия обычного назначения при проведении боевых операций на ТВД. В разделе "Поражение прочных глубоко заглубленных целей" высказано требование о необходимости принятия на вооружение ударостойкой проникающей в грунт на большую глубину ядерной боеголовки малой мощности (до 5 кт). При этом подразумевается, что при использовании такой боеголовки не произойдет выброса радиоактивного заражения на поверхность, а прочные командные бункеры, в том числе и хранилища ОМУ, находящиеся на глубине до 300 м, будут уничтожены. Для реализации этого требования была принята программа разработки "ударостойкого ядерного земного проникателя" (Robust Nuclear Earth Penetrator - RNEP, далее в русской транскрипции - РНЕП).

Однако широкая дискуссия как в американских СМИ, так и на страницах научной периодики показала полную несостоятельность данной программы.

Во-первых, по самым оптимистическим прогнозам, вряд ли удастся добиться проникания боеголовки в грунт на глубину свыше 30 м. Взрыв 5-килотонной боеголовки на такой глубине будет мало чем отличаться от поверхностного взрыва и, следовательно, приведет к губительному радиоактивному заражению поверхности.

Во-вторых, для поражения сильно защищенных бункеров на глубинах порядка 300 м необходима мощность боеголовки не менее 100 кт. И даже при этом совершенно не гарантируется уничтожение химических и биологических агентов ОМУ, которые могут прорваться на поверхность, усугубив эффект заражения. Тем не менее администрация Буша продолжает настаивать на продолжении программы РНЕП, определив в качестве носителя "ядерного проникателя" стратегический бомбардировщик В-2А.

По решению Конгресса в 2000 году в структуре Министерства энергетики было создано ведомство, названное "Администрация национальной ядерной безопасности" (Nation Nuclear Security Administration - NNSA, далее в русской транскрипции ННСА), которая, в тесном взаимодействии с Пентагоном и по его заданиям, осуществляет руководство всеми военными ядерными программами, В ее ведении находятся и все три национальные ядерные оружейные лаборатории - Лос-Аламосская, Ливерморская и Сандийская. На 2006 финансовый год, учитывая неясность концепции РНЕП даже для Минобороны, Конгресс урезал ассигнования на программу до 4 млн. долларов. Однако администрация Буша планирует запросить на нее в 2007 финансовом году 14 млн. долларов. В целом же для обеспечения деятельности ННСА непосредственно в области ЯО в 2006 финансовом году Белый дом требует 6,63 млрд. долларов.

Следует обратить внимание на такой факт. Поначалу в ННСА имелся Консультативный комитет независимых ученых и экспертов в области ЯО. Однако он был распущен перед проведением секретного совещания якобы по ЯО малой мощности - "мини-ньюкам" - разрушителям бункеров на базе Стратегического командования Оффут (штат Небраска) в августе 2003 года. Тем самым ННСА де-факто потеряла свой полунезависимый статус и стала строго засекреченной руководящей структурой ядерного оборонного комплекса США. Нужно также отметить, что на указанное секретное совещание не были допущены даже представители Конгресса.

Между тем, по мнению ряда специалистов, работы по программе РНЕП вовсе не заслуживают столь высокого уровня секретности. Как отмечал физик-ядерщик Сидней Дрелл из Ливерморской национальной лаборатории: "Это вопрос не испытания или развития новых образцов оружия, а принятия решения о возможности скомпоновать конструкцию таким образом, чтобы она могла глубоко проникнуть без разрушения самой себя преждевременным взрывом".

Таким образом, "под сурдинку" мини-ньюков может проводиться разработка принципиально нового поколения ядерного оружия. Программа РНЕП также позволила администрации США оказать давление на Конгресс и добиться отмены в мае 2004 года поправки Спратта-Фурсе (принята в 1994 году), запрещавшей финансирование исследований и разработок по ЯО мощностью до 5 кт.

Об акценте на снижение порога использования ядерного оружия, прежде всего на ТВД, свидетельствуют и разрабатываемые концептуальные документы по условиям применения ЯО в возможных боевых операциях Объединенных вооруженных сил США.

ЧИСТО ТЕРМОЯДЕРНОЕ

Стремление администрации Буша снизить порог применения ядерного оружия и тем самым нивелировать различие между ЯО малой мощности и оружием общего назначения, по мнению многих американских ученых и экспертов, может воплотиться (если уже не воплотилось) в решение о разработке принципиально новых ядерных боеприпасов четвертого поколения - чисто термоядерных.

Напомню, что первое поколение ЯО - атомное, использующее только деление тяжелых ядер урана-235 и плутония-239.

Второе поколение - термоядерное ЯО, в котором предусмотрена как реакция деления тяжелых ядер в качестве детонатора, так и реакция термоядерного синтеза изотопов водорода - дейтерия и трития. При этом повышению удельной мощности способствует реакция деления урана-238 под действием высокоэнергетических нейтронов, возникающих при реакции термоядерного синтеза.

Третье поколение - это рентгеновский лазер. Его действие основано на накачке энергией ядерного взрыва рабочего тела с последующим излучением им рентгеновских лучей. Данное оружие не нашло военного применения и использовалось в качестве блефа администрацией президента Рейгана в рамках "Стратегической оборонной инициативы" (СОИ) как оружие противоракетной обороны.

Таким образом, во всех трех поколениях ЯО непременно присутствует реакция деления тяжелых ядер, сопровождающаяся долговременным радиоактивным заражением окружающей среды. Это обстоятельство и является до сих пор гарантом высокого порога для применения ядерного оружия даже малой и сверхмалой мощности.

Когда же идет речь о ЯО четвертого поколения, то имеется в виду чисто термоядерное оружие, реакция синтеза в котором инициируется альтернативным реакции деления источником энергии. Он должен быть вполне пригоден для осуществления реакции термоядерного синтеза и достаточно компактен для размещения в соответствующей боеголовке.

В американских специализированных научных изданиях и некоторых печатных источниках неправительственных организаций, занимающихся вопросами контроля над вооружениями, проблеме ЯО четвертого поколения придается значительное внимание. В то же время официальные представители администрации категорически отрицают как наличие решения о создании ЯО четвертого поколения, так и то, что национальные ядерные лаборатории занимаются его разработкой.

Однако некоторые независимые эксперты (правда, без каких-либо конкретных ссылок), определенно утверждают, что такие работы ядерными лабораториями ведутся. Так, например, директор "Ядерных наблюдений из Нью-Мексико" (Nucewatch of New Mexico) Джей Коуглин утверждает: "Существует три ядерные лаборатории, и все три имеют программы по термоядерному синтезу - одинаковые или разные. Такой интерес само собой разумеющийся┘".

Кратко, но по основным моментам полно, вопрос о чисто термоядерном оружии освещается в статье Джеймса Петокоукиса (James M. Pethokoukis. H-bomb Baby boom? The US News and World Report, October 13, 2003.): "┘активисты и исследователи говорят, что на длительный период зеленый свет для исследования могла также дать поддержка полностью нового мини-ньюка, так называемая чисто термоядерная бомба". Ему вторит Джей Коуглан, эксперт из Нью-Мексико: "Потворствуя мини-ньюкам, вы... открываете дверь к созданию даже более продвинутых мини-ньюков, таких, как чисто термоядерное оружие".

Чисто термоядерные бомбы могли бы быть более компактными и мощными, чем сегодняшние мини-ньюки, без выпадения радиоактивных осадков. Существующие конструкции получают основную мощность от синтеза водородных атомов, но для этого требуется могучая спичка - атомный взрыв, - чтобы зажечь процесс. А реакция деления означает осадки. Чистое термоядерное оружие испустило бы изрядное количество мгновенной убийственной радиации, но в виде короткоживущих нейтронов. "Вы могли бы вводить ваши воинские части через 48 часов, потому что не будет никаких радиоактивных осадков", - говорит Арджун Махиджани из Института исследований энергии и окружающей среды в Парке Такома, Mериленд. Это - военное преимущество, но это могло бы снизить порог использования этого оружия.

По словам Андрэ Гаспонера из Независимого научно-исследовательского института в Женеве, реакция деления требует критической массы плутония или урана; для чисто термоядерного оружия не существует критической массы, и потому "оно может быть, сколь угодно малым по вашему желанию, виртуально - атомными пулями". Однако будет дебютировать это ЯО, полагает эксперт, как ультрамощные боеголовки крылатых ракет.

ТЕХНИЧЕСКИЕ ПРЕГРАДЫ

Наибольшая техническая преграда - "поджог" реакции синтеза без реакции деления. Размером со стадион и стоимостью в 3,3 млрд. долларов Национальная лазерная установка (NIF - National Ignition Facility) в Ливерморской национальной лаборатории им. Лоуренса в Калифорнии исследует один из подходов. Начиная с 2008 года NIF будет обстреливать 192 лазерными лучами капсулы изотопов водорода размером с горошину, сжимая и нагревая их до 100 млн. градусов, чтобы зажечь реакцию синтеза. Официальные лица NIF указывают, что они не разрабатывают инициируемые лазером бомбы. "Нет ни одного такого аспекта, на который вы могли бы указать, - говорит руководитель NIF Джордж Миллер. - Это невыполнимо, и мы не планируем делать это".

Роль NIF состоит в том, чтобы изучить возможность создания гражданских электростанций на основе синтеза и проводить базовые исследование, способствующие оценке готовности существующего ядерного арсенала. Но то, что NIF открывает возможность осуществления реакции синтеза без реакции деления, может оказаться полезным для разработчиков оружия, заявляют некоторые эксперты. Например, Глен Вурден, физик - специалист по синтезу Лос-Аламосской национальной лаборатории: "Лазерный синтез работает очень похоже, как и в оружии".

Ключи к разгадке проблемы способна также добыть Национальная лаборатория Сандия в Нью-Мехико, где "Z-машина" управляет огромным импульсом электрического тока через связку очень тонких проводов. Результат - плазменный взрыв, испускающий пучок рентгеновских лучей, которые могут катализировать реакцию термоядерного синтеза. Некоторые теоретики даже предполагают, что частицы антиматерии послужат в качестве спускового механизма, хотя пока физики создали лишь несколько антиатомов.

Препятствия могли бы растягивать календарный график на десятилетия. Но даже в 1997 году чисто термоядерное оружие казалось достаточно вероятным для Ганса Бете, нобелевского лауреата по физике и ветерана усилий по созданию атомной бомбы. Он настоятельно советовал президенту Клинтону не финансировать подобные исследования. "В наши дни маленькие бомбы начинают вырисовываться в огромные", - говорил Бете.

Принципиально новой установкой для исследований термоядерного синтеза является Magnetized Target Fusion (MTF). Она совместно используется Лос-Аламосской национальной лабораторией и Научно-исследовательской лабораторией ВВС (база ВВС Киртланд, Нью-Мексико). В отличие от обычного токомака и лазерного возбуждения синтеза MTF имеет преимущество в менее дорогостоящей возможности получения термоядерной энергии в промышленных масштабах. В последние годы фокус усилий в исследованиях синтеза, особенно в США, перемещается от научной возможности к экономической практичности. Установка предназначена также для проведения исследований по военным программам.

Таким образом, в США создана мощная материальная основа для успешных исследований проблем термоядерного синтеза по трем разным направлениям, разумеется, не только для промышленного освоения термоядерной энергии, но и для военного применения.

Эта основа закладывалась в период второго срока президентства Клинтона в рамках подготовки к заключению Договора о всеобъемлющем запрещении ядерных испытаний (ДВЗЯИ) для обеспечения надежного функционирования ядерного арсенала США в условиях запрещения ядерных испытаний - Программы сопровождения ядерного арсенала.

Уже тогда эксперты Института исследований энергии и окружающей среды отмечали, что официальные планирующие документы по этой программе свидетельствовали: Министерство обороны США намерено поддерживать разработку нового ЯО. С точки зрения рационализма, Пентагону необходимо не только иметь передовые установки, чтобы заинтересовать и удержать ученых, но также предоставить им благоприятные возможности для практической реализации их знаний как творцов средств поражения будущего. Министерство обороны отрицает стремление разрабатывать чисто термоядерное оружие. Но проводимая Пентагоном научно-техническая деятельность может привести к его созданию, несмотря на все опровержения, потому что она на практике именно этому и способствует.

На проведение в США работ по чисто термоядерному оружию указывал в 1999 году академик Михайлов ("Перспективы новых технологий разработки ядерного оружия". "НВО", # 15, 1999). В частности, Михайлов отмечал, что в рамках Программы сопровождения ядерного арсенала "также будут проводиться работы по созданию принципиально новых видов оружия и оценке физических принципов, существенных для проектирования ядерного оружия. Надо полагать, речь идет, по сути, о практически "чистом" термоядерном заряде, резко понижающем психологический барьер применения ядерного оружия, и без долговременного заражения продуктами взрыва".

Характерно, что Министерство обороны США оперативно реагирует на даже, казалось бы, экзотические источники ядерной энергии для их использования в военных целях. Так, например, научные эксперименты по накачке гафния низкоэнергетическим рентгеновским излучением, приведшие к образованию метастабильного атомного изомера - hafnium-178m2, показавшие 60-кратное увеличение энергии последующего гамма-излучения, сразу же были включены в пентагоновский "Перечень военно-критических технологий": "Такая экстраординарная плотность энергии имеет потенциал революционизировать все аспекты ведения военных действий".

ПОНИЖЕНИЕ ПОРОГА

Следует также отметить, что помимо трех ядерных оружейных лабораторий Министерства энергетики, работы в области атомной изомерии в военно-прикладном плане, наряду с термоядерным синтезом, проводит упомянутая Исследовательская лаборатория ВВС в Киртланде.

Как уже подчеркивалось выше, с приходом в Белый дом Джорджа Буша-младшего наметился четкий акцент на снижение порога использования ЯО малой мощности, прежде всего на ТВД. Чисто термоядерное оружие в наибольшей степени соответствует такому стремлению.

Принципиальное преимущество чисто термоядерного боеприпаса перед нынешним поколением термоядерных БП с атомным детонатором - отсутствие долговременного заражения радиоактивными продуктами взрыва последнего. При чисто термоядерном взрыве образуются только инертный газ гелий и поток быстрых нейтронов, вызывающих незначительную наведенную радиацию. К тому же путем использования соответствующих материалов для конструкции корпуса боеприпаса можно снизить выход потока нейтронов в окружающую среду. Основными поражающими факторами такого боеприпаса будут только ударная волна и световое излучение. Что же касается механического поражающего фактора - ударной волны, то он может варьироваться в широчайших пределах от единиц до тысяч и более килограммов тротилового эквивалента, что не грозит человечеству "ядерной зимой" при применении такого термоядерного боеприпаса на высокоточных носителях для нанесения "хирургических ударов" по стратегически значимым целям.

Какие имеются стимулы создания такого термоядерного заряда для США? Это прежде всего интересы повышения эффективности противоракетной обороны - как на ТВД, так и национальной. Особенно теперь, когда выход США из Договора по ПРО более не ограничивает совершенствование систем противоракетной обороны и выбор средств для повышения ее эффективности. Использование чисто термоядерного боеприпаса для поражения вражеских боеголовок даже на малой высоте над своей территорией не приведет к выпадению радиоактивных осадков. Вдобавок такой боеприпас, в зависимости от его тротилового эквивалента, может обладать достаточно широким дистанционным поражающим эффектом.

В случае применения боеголовок с чисто термоядерным зарядом для поражения находящихся примерно в 300 м от поверхности земли и сильно укрепленных бункеров при внедрении боеголовки даже на небольшую глубину нейтронное излучение практически полностью будет поглощено прилегающими к месту взрыва слоями грунта. Но надо иметь в виду, что для уничтожения особо важных и защищенных объектов при реально достижимой глубине проникания боеприпаса требуется мощность взрыва порядка 100 кт и более.

При подводном взрыве чисто термоядерного боеприпаса нейтронное излучение также будет поглощено водными массами - следовательно, такое оружие будет эффективным противолодочным и противокорабельным оружием.

Исключительно адекватно чисто термоядерное оружие вписывается в американскую концепцию "контрраспространения" ОМУ, допускающую физическое разрушение инфраструктуры его производства (имеется в виду прежде всего ЯО враждебных, по мнению США, государств).

Поэтому есть высокая степень вероятности, что в условиях строжайшей секретности работы по созданию чисто термоядерного оружия ведутся в Соединенных Штатах полным ходом. На проведение таких работ указывают и некоторые американские эксперты. Единственной, но критической проблемой здесь является разработка такого компактного импульсного источника энергии, который был бы способен инициировать взрывную термоядерную реакцию синтеза и мог бы быть размещен в соответствующей боеголовке. Однако некоторые предпосылки решения этой проблемы в настоящее время имеются. Особо можно выделить три направления:

Первое - исследования процессов катализа термоядерного синтеза на субатомном уровне с целью возможности снижения его энергетики.

Второе - разработка компактных сверхмощных импульсных источников электромагнитной энергии.

Третье - разработка на базе последних достижений нанотехнологий накопителей электрической энергии, достаточной для "поджога" взрывного термоядерного синтеза.

В частности, относительно первого направления есть информация, что международный коллектив физиков в канадской "Национальной лаборатории физики ядра и элементарных частиц" выполнил эксперимент, который привел к интенсивному синтезу необычных молекул. Они состоят из ядер тяжелых изотопов водорода дейтерия и трития и связанного с ними мю-мезона. Теоретические расчеты показывают, что такие мезомолекулы могут катализировать управляемые термоядерные реакции, протекающие при относительно низких температурах.

Но, возможно, более перспективным окажется второе направление в связи с тем, что уже сконструированы компактные мощные генераторы импульсного электромагнитного излучения (FC-генераторы), способные путем сжатия магнитного потока взрывом обычной взрывчатки производить электрический ток, в 10-1000 раз превышающий ток в разряде типичной молнии. Не исключено, что подобный генератор был использован в американской электромагнитной бомбе (Е-бомбе), взрыв которой 26 марта 2003 года вывел из строя все электронное оборудовании телевизионного центра в Багдаде.

Также возможно, что в связи с бурным развитием нанотехнологий перспективным может оказаться и третье направление разработки компактных источников энергии, достаточной для инициирования взрывной термоядерной реакции. В настоящее время есть данные, что уже имеются конденсаторы с удельной емкостью в 30 киловатт электрической энергии на один килограмм веса. Такие конденсаторы могут быть использованы для накачки лазеров, расположенных в боеголовке, и тем самым инициировать взрывную реакцию синтеза. По имеющейся информации, известная американская фирма "Интел" разрабатывает кремниевые микролазеры для использования при создании принципиально нового поколения микропроцессоров для ЭВМ. Эти кремниевые микролазеры способны усиливать на три порядка выход энергии излучения по сравнению с энергией, затрачиваемой на их накачку. Вполне вероятно, подобные эффекты могут быть получены и на соответствующих макролазерах.

В общем, миллиарды долларов, затрачиваемые самой передовой в технологическом отношении страной на деятельность ядерных оружейных лабораторий, не исключено, рано или поздно приведут к появлению четвертого поколения ЯО - чисто термоядерного. Многие эксперты полагают, что есть определенная степень вероятности появления чисто термоядерного оружия раньше, чем будет освоено промышленное использование термоядерной энергии на экономически приемлемом уровне. История может повториться, как это было с атомным оружием - сначала бомба, а потом энергетика.