От чего зависит сила грозы. Гроза — опасное природное явление

Гроза всегда вызывает у меня восхищение и чувство уважения к природе. В ней есть что-то таинственное, но самое приятное - сидеть дома и смотреть в окно, любуясь стихией .

Почему происходит гроза

Гроза - яркое природное явление в атмосфере. В одно время на нашей планете происходит до 2000 гроз. Возникают в атмосферных фронтах , когда холодные массы воздуха вытесняют теплые. В течение года в умеренных широтах происходит около 20 гроз, а на участках близких к экватору , почти половина года приходится на это явление. Реже всего грозы встречаются над океанами.


Зарождается гроза из высокого белого облака, которое стремительно увеличивается. Эти облака - исполины, толщина их может превышать 10 километров . Нижняя часть всегда плоская , а когда верхняя часть доходит до стратосферы , оно сплющивается, принимая форму наковальни . Ураганный ветер - постоянный спутник грозы, часто формирующий грозовой шквал - резкий порыв ветра. Бывали случаи, когда шквалы причиняли сильные разрушения. Перед возникновением грозы, как правило, очень душно и жарко . Прогретый воздух устремляется вверх, все выше и выше, порой достигая высоты в несколько километров. Там он охлаждается и уже не может сдерживать влагу. Так образуются облака, однако поступление теплого воздуха не прекращается, облака сгущаютс я , тем самым формируя грозовые тучи .


Еще один спутник грозы - молния , распространяющаяся в атмосфере со скоростью света . Поэтому ее вспышку мы наблюдаем в то самое время, когда происходит сам разряд. В облаке молекулы при движении трутся, что способствует появлению напряжения . Температура разряда свыше 25000 градусов, и она настолько прогревает воздух, что он расширяется со сверхзвуковой скоростью . Так мы слышим гром. Иногда можно наблюдать шаровые молнии - огненные шары, чья природа до сих пор остается загадкой. Нередки случаи, когда такой шар, плывя над земной поверхностью, попадает в помещение вместе со сквозняком.


Меры безопасности

Во время разгула этой стихии, необходимо придерживаться следующих мер безопасности:

  • находиться как можно дальше от окон ;
  • не приближаться к металлическим конструкциям;
  • не оставаться на открытых участках;
  • противопоказано купаться в водоемах.

Самое богатое грозами место

С появлением спутников стало возможным наблюдать атмосферные явления по всему земному шару. Так было установлено место, которое по праву можно считать чемпионом по количеству гроз - город Тороро в Уганде . Здесь в году насчитывается 260 грозовых дней .

В легендах и мифологических сказаниях всех народов мира присутствует такое таинственное и величественное природное явления как гроза. Неистовство природы всегда пугало и восхищало человека своей колоссальной силой и дикой неконтролируемой красотой.

Воспевалось это смешение влаги, силы ветра и электричества также в литературных произведениях гениальных поэтов, писателей и художников. Но что же представляется собой это восхитительное событие?

Научное обоснование грозовых явлений

Современными метеорологами под грозой понимается природная активность, при которой возникают электрические разряды, именуемые молниями, а также наблюдаются звуковые раскаты.

Ненастье сопровождается значительной силы ветром, чаще всего выпадают осадки.

Ученые выяснили, что более всего распространены такие явления над континентами, а вот мировой океан подвергается этому погодному чуду в десять раз реже.

Грозы образуются в кучевых облаках, имеющих сравнительно небольшую высоту. Основание таких облаков выглядит темным свинцовым полотном. Иногда облако может сочетать в себе различные оттенки, вплоть до желтоватых, что объясняется учеными как проявление различной плотности облачного слоя. По краям такие тучи имеют ярко белое, даже блестяще отсвечивание.

Причинами грозовых явлений, по данным метеорологов, становится различное атмосферное давление и уровень абсолютной и относительной влажности, а также воздушные вихревые потоки. Нисходящие потоки могут проявляться на земле порывами шквального ветра, который может быть различной силы.

Повышенная опасность грозы заключается в частом проявлении электрических разрядов, нередко соединяющихся с поверхностью земли и высокими предметами. Сила таких разрядов способна воспламенить или оплавить даже самые негорючие материалы, а также вывести из строя оборудование.

Молния может быть представлена обычной формой и шаровой ее разновидностью. Менее всего изучены шаровые молнии, образование которых сложно воспроизвести, а за развитием ситуации практически невозможно следить. Поведение такой молнии непредсказуемо, а период ее существования в пространстве намного превышает время существования линейного разряда.

Мифологическое отображение гроз

Древние народы всего мира обожествляли такое величественное и пугающее явление как . Во всех стадиях язычества встречаются у народностей свои боги-громовержцы и покровители ветров и раскатов грома. Как правило, это свирепые и сильные боги, отражающие характер стихийного явления.

Например, славяне, предпочитавшие бояться, нежели как греки восхищаться своими богами, имели сразу несколько покровителей: Перуна, Стрибога, Сварожича и прочих. Их изображения были поистине пугающими и характеризовали панический страх людей прошлого перед силами природы.

Греческим воплощением грозы, стал великий Зевс, оружием которого были молнии. Признание громовержца самым великим среди олимпийских обитателей указывает на тот факт, что грозы были самым опасным и непредсказуемым явлением для Древней Греции. Грозу греки считали выражением божьим и поклонялись ее красоте и силе. Приобщен к неистовству стихии был и бог-кузнец Гефест.

Высшим почтением пользовался и громовержец Юпитер у древних римлян. Они также благоговели и трепетали пред лицом ужасающей грозы, отдавая ей место самого мощного и страшного среди необъяснимых явлений.

Скандинавские народы также питали особое уважение к Тору, управлявшему громом и молниями.

Народы всего мира наделяли своих могущественных покровителей силой управлять грозами, так как считали данное природное явление самым опасным. Не понимая его истинных причин, люди испытывали панический страх перед непредсказуемой, карающей стихией. Ацтеки приносили жертвы, чтобы задобрить разбушевавшихся богов. Впрочем, жертвоприношением «грешили» не только жители Южной Америки, этот обряд в той или иной степени присутствовал у всех народов мира.

Гроза в искусстве

Нашла свое отражение необузданная стихия и в произведениях искусства.

Художники не просто поклонялись мощи и силе грозы, но и воспевали ее дикую красоту. Разгул бушующей природы отобразили на своих полотнах Н. Крымов, С. Сухово-Кобылина, Васильев и прочие.

Описания неистовства стихии есть в таких известных литературных произведениях как , одноименном творении Набокова. Тематика грозовых явлений затронута в стихах Тютчева, Фета, Лермонтова и Пушкина.

Не менее, эффектным и мощным стало отображение непередаваемого трепета перед величественной стихией в музыке. Покоряет и завораживает своим звучанием опера Б. Асафьева. Не уступают в искусности звуковых сочетаний и глубине тематики одноименные оперы Дзержинского, Кашперова и, конечно, Трамбицкого.

Современное искусство отражает грозу в экранизациях классических творений известных писателей и поэтов. Кроме того, сегодня режиссеры одаривают своих зрителей фантастическими фильмами, в которых красочно описывается природное негодование. Детские супергерои наделяются умением отражать или управлять молниями и громовыми раскатами, а также вызывать смерчи и ураганы.

Таким образом, сегодня люди также восхищаются силой и величием погодных явлений, несмотря на то, что давно изучили их природу.

Опасность грозы

Разразившееся ненастье уже давно никого не удивляет, мы воспринимаем случившееся как факт и стараемся укрыться от непогоды. К большому сожалению, удается это не всем, поэтому ежегодно статистика приводит печальные сведения о жертвах грозы.

Бешеная и неуправляемая сила природной стихии является одним из самых опасных факторов для человека, поэтому, любуясь завораживающей красотой и воспевая могущество, не стоит забывать и о жестокости грома, молнии и ветра.

Удивительное явление опасно, прежде всего, тем, что оно непредсказуемо. Если синоптики с некоей долей вероятности и могут дать прогноз о возникновении грозового фронта, то определить даже приблизительно, в какое место придется удар молнии на современном этапе невозможно. Не могут также защитить нас ученые и от шаровых молний.

Единственным спасением для человека остаются громоотводы и заземленные предметы, а также нехитрые правила поведения при непогоде.

Энергия, заключенная в обыкновенном грозовом облаке, равна силе термоядерной мегатонной бомбы.

Гроза - атмосферное явление, при котором в кучевых облаках, находящихся на высоте 7 - 15 км и состоящих из смеси капель и кристаллов, возникают многократные искровые электрические разряды - молнии, сопровождающиеся громом, ливнями, градом и усилением ветра.
Объем грозового облака достигает от сотен до нескольких тысяч км3. Масса водно-ледяных частиц при этом объеме - 106 - 107 т. Потенциальная энергия грозового облака составляет от 1013 до 1014 Дж и равна энергии термоядерной мегатонной бомбы. Электрические заряды, питающие молнии, содержат в себе от 10 до 100 К, а электрические токи, создающие эти заряды, от 10 до 100 А. Напряженность электрического поля внутри облака - 105 В/м.
Молнии, обычно линейные, длиной несколько километров, диаметром десятки сантиметров, относятся к безэлектродным разрядам, так как зарождаются в скоплении заряженных частиц, преобразуя электрическую энергию в тепловую. Особый вид молнии - шаровая. Это светящийся шар диаметром от 10 - 20 см и более, состоящий из неравновесной плазмы, появляющийся после удара линейной.
Гром - звуковое явление, вызванное колебаниями воздуха при повышении давления на пути молнии.
Град - вид осадков, состоящий из сферических частиц льда размером от 5 до 55 мм. В 1 мин. на 1 м2 земной поверхности падает от 500 до 1 000 градин плотностью 0,5 - 0,9 г/см2. Продолжительность выпадания чаще составляет 5 - 10 мин., реже - 60.

На просторах воздушного океана очень часто разыгрываются бурные и грозные явления, порождающие у людей страх еще с самых древних времен. Одно из таких явлений недаром носит название "гроза" . Человек потратил много веков, чтобы разгадать тайну этого грозного явления природы.

Гроза - атмосферное явление, при котором в мощных кучево-дождевых облаках и между облаками и землёй возникают сильные электрические разряды - молнии, сопровождающиеся громом. Как правило, при грозе выпадают интенсивные ливневые осадки, нередко град и наблюдается усиление ветра, часто до шквала.

Средняя продолжительность ливневого дождя - 25 мин., в основном, сильный дождь продолжается от 5-15 мин., затем его интенсивность ослабевает, причем гораздо медленнее, чем нарастает в начале его выпадения.

По условиям развития грозы разделяются: на внутримассовые и фронтальные. Внутримассовые грозы над материком возникают в результате местного прогревания воздуха от земной поверхности, что приводит к развитию в нём восходящих токов местной конвекции и к образованию мощных кучево-дождевых облаков. Поэтому внутримассовые грозы над сушей развиваются преимущественно в послеполуденные часы. Над морями наиболее благоприятные условия для развития конвекции наблюдаются в ночные часы, и максимум в суточном ходе приходится на 4-5 часов утра.

Фронтальные грозы возникают на фронтальных разделах, т. е. на границах между тёплыми и холодными воздушными массами и не имеют регулярного суточного хода. Над материками умеренного пояса они наиболее часты и интенсивны летом, в засушливых районах - весной и осенью. Зимние грозы возникают в исключительных случаях - при прохождении особенно резких холодных фронтов. Вообще зимняя гроза- явление очень редкое, но все же бывает. Жители г.Владивостока могли наблюдать грозу 1 января 1999 г.

Грозы на Земле распределены весьма неравномерно: в Арктике они возникают раз в несколько лет, в умеренном поясе в каждом отдельном пункте бывает несколько десятков дней с грозами. Тропики и экваториальная область являются самыми грозоопасными районами Земли, и получили название "пояс вечных гроз". Есть у них свой "полюс" - район Бютензорга на острове Ява: здесь грозы буйствуют 322 дня в году. В пустыне Сахара гроз вообще почти не бывает.

В Приморском крае сезон гроз начинается со второй половины мая и продолжается до октября. Распределение количества гроз в течение сезона по территории края неравномерно, так максимум грозовой деятельности в континентальных районах приходится на первую половину лета, а для прибрежных районов - июнь, сентябрь, что объясняется максимальным числом вторжений холодных воздушных масс с Охотского моря. Во Владивостока в июне и в сентябре отмечается 6-7 дней с грозами, а в остальные месяцы грозового сезона 1-2 дня.

Самые продолжительные грозы (июнь - июль) наблюдаются в западных районах края 7-11 часов, горных районах - 3-4 часа. В августе в континентальных районах грозовая деятельность ослабевает (1-3 раз в месяц).

В континентальных районах Приморья отмечается обычный суточный ход гроз. Максимум их наступает между 15-18 часами, минимум - между 6-12 часами. Суточный ход гроз в прибрежных районах более сложный, т.к. он определяется взаимоотношением суши и моря, так максимум наблюдается между 18-21 часами, минимум - между 6-12 часами. Во Владивостоке отмечается наличие двух максимумов: один между 15-17 часами, другой - в 23-24 часа.

    Грозовой заряд образуется в кучевых облаках - грозовых очагах, которые возникают из-за вертикальной неустойчивости. Т.е. вертикальный градиент температуры становится больше одного градуса на 100м высоты и возникает вертикальное движение - в одних местах резкий подъем вверх, а в других опускание вниз. Поднимаясь, воздух попадает в условия более низкого давления, расширяется, температура падает и воздух насыщается водяным паром. Так возникают кучевые облака, в которых образуются кристаллы, а следовательно и накапливаются заряды. А т.к. потенциал Земли нулевой, то возникает разность потенциалов между облаком и Землей - электрическая энергия - грозовой заряд.

    Гроза - это атмосферное явление. Оно ещ не так сильно изучено, как того хотелось бы. Однако известно, что гроза возникает, в нескольких случаях:

    Первый случай. При вытеснении тплого слоя воздуха холодным.

    Второй случай. При неравномерном нагреве поверхности. Например, моря и суши.

    Третий случай. При резком подъме облака из-за гор.

    Физика процесса образования грозы такова - облака состоят из воды. Вода находится в трех состояниях - жидком, газообразном и тврдом. В обычных условиях вс нормально, но когда происходит один из трех случаев, происходит резкое изменение состава облаков. Образуется льдинки. Они начинают тереться и электризуют облако. В результате этого образуется огромная энергия, которая и высвобождается. Это и есть гром, молния.

    Гроза - атмосферное явление, при котором возникают разряды молний внутри облаков или между поверхностью земли и облаком (это сопровождается звуковым явлением - громом).

    Заряды образуются в темных кучево-дождевых облаках, которые образуются в результате накопления испарений влаги. Слои поднимающегося вверх воздуха с влагой неравномерно прогреваются.

    Часть влаги остается в виде капель, а другая часть замерзает в маленькие льдинки.

    В результате сильных ветров капельки и льдинки трутся друг о друга, накапливая электрический заряд.

    Накопление влаги в грозовом облаке проходит три стадии: кучевое облако, зрелое облако и последняя стадия - распад облака и ливень.

    Гроза начинается с возникновения обычного кучевого облака. При благоприятных для его образования условиях оно растт и в высоту, и в ширину. Внутри облака снизу вверх идут восходящие потоки тплого воздуха. При этом мельчайшие водяные капельки сливаются в более крупные. В верхней части облака, где температура ниже нуля, капли превращаются в кристаллы льда, которые постепенно растут в размере и начинают падать. При этом в образовавшейся туче происходит разделение зарядов. Предполагается, что при трении ледяных кристаллов более крупные и тяжлые заряжаются отрицательно, а более мелкие и лгкие несут положительный заряд. Крупные падают с большей скоростью, чем мелкие. Так в туче возникает пространственное разделение зарядов. В нижней части облака, где температуры выше нуля, ледяные кристаллы тают. Но заряд на образовавшихся каплях воды никуда не исчезает. Когда электрический заряд становится достаточно большим, между нижней и верхней частью тучи происходит разряд молния. Разряд может произойти также между облаком и землй но таких молний обычно не больше трети. Ещ М.В. Ломоносов установил, что и при сухой погоде воздух наэлектризован. Сейчас известно, что в воздухе есть положительно и отрицательно заряженные ионы, которые создаются космическими лучами.

    По нашим представлниям, шгроза - это когда гром и молния, поэтому нетрудно догадаться, что гроза возникает когда в атмосфере накапливается электричество. Главный вопрос - откуда это электричество в атмосфере берется? Этот интересный вопрос изучается в школе на факультативных уроках по физике. Вот здесь можно подробно и понятно прочитать о возникновении грозовых облаков и атмосферного электричества в них, а также, как и почему это электричество превращается в молнию и гром. Материал изложен доступно, научно-публицистически, текст урока разрабатывался специально для учеников средней школы, а значит, и простому обывателю, далекому от физики, должен быть понятен.

    С точки зрения науки гроза возникает от разности потенциалов(плюс, минус) в самих облаках, внутри облаков и между облаками и поверхностью Земли. Но мне больше нравиться славянское поверье о Святом Илье, который едет в повозке по небу, его повозка запряжена огненными конями, а в руке карающий посох. Этим посохом он ударяет по нечистой силе. Именно поэтому есть такое поверье, что нельзя в грозу сидеть под деревом и в воде, так как черти так прятались от гнева Святого. Но это не касается дерева Орех, так как именно орехоаыми веточками отпугивали чертей.

    Гроза - это атмосферное явление, возникающее при столкновении грозовых или кучевых облаков друг с другом или с поверхностью земли и вызывающие электрические разряды (молнии). Основным фактором для возникновения является механизм воздущной конвекции или, проще говоря, возникновение тепловых потоков, при которых теплый возлух вытесняется холодным.

    Грозой называется явление при которой имеет место молнии с громом. Дождь при этом не обязателен, но чаще всего бывает. Гром и молния это одно и тоже явление электрического разряда. Молния это свет, который приходит к нам из области этого разряда, а гром это звук, который приходит к нам из области этого разряда

    Электрический разряд возникает из-за разницы электрических потенциалов либо между землей и облаками, либо между двумя разными облаками. Другими словами одни облака электрически заряжены как плюс, а другие как минус. Ну а земля имеет нулевой электрический потенциал, поэтому молнии в землю идут и от тех облаков и от других.

    Электрически заряженные облака возникают из-за скопления там сконденсированных капелек воды во взвешенном состоянии. При трении этих капелек о воздух возникают заряженные ионы азота и кислорода. Эти ионы могут быть в основном положительно заряженными или отрицательно заряженными. Это определяется случайным образом на первоначальном этапе. Если преобладали в начале положительно заряженные ионы, то и дальше образуются только положительно заряженные ионы в этой области атмосферы.

    Через некоторое время облака очень сильно заряжаются и начинают чувствовать электрические поля друг друга. А если поблизости нет облаков с противоположным зарядом, то электрическое поле этого облака начинает чувствовать незаряженную землю. Но воздух между облаками и между облаком и землей не является проводником электрического тока. Поэтому электрические заряды не могут сразу равномерно перетечь с одного облака на другое или в землю. Поэтому сухой воздух между облаками (или облаком и землей) начинает находиться в огромном электрическом поле, которое создается между двумя облаками (или облаком и землей) . Напряжение этого поля нарастает так сильно, что начинает срывать электроны со внешних оболочек атомов сухого воздуха. Эти сорванные электроны разгоняются в электрическом поле так сильно, что бомбят собою соседние атомы и срывают у них тоже электроны. И этих электронов становится все больше и больше. Образуется в воздухе канал, где как лавина нарастает ток. Этот канал роется в воздухе случайным образом, может случайно разделиться на несколько каналов. Но он все равно, в конце-концов, свяжет между собой два разнозаряженных облака или заряженное облако и землю. Заряды по этому каналу перетекают с облака на облако или уходят в землю и облака снова становятся нейтральными.

    После чего процесс их зарядки может возобновиться, если в этих облаках продолжают оставаться капельки воды, диаметр которых свыше некоторого критического. Поэтому после дождя грозы не бывает. Ведь все крупные капельки воды продолжают укрупняться еще больше, и уже не могут удерживаться на лету в воздухе и падают вниз. Облако очищается от капелек определенного размера.

    Понятно, что в основном молнии бьют между двумя облаками. Удары молнии в землю это большая редкость.

    Почему от молнии идет свет?

    Электрон, попадая в положительно заряженный ион остается там и такой ион снова делается нейтральным атомом. При этом энергия электрона излучается в виде одного или нескольких фотонов со случайной длиной электромагнитной волны. В основном эти излучаемые электромагнитные волны (фотоны) находятся в ультрафиолетовом диапазоне. Но некоторая часть и в видимом диапазоне. Мы их и видим, как белый свет, т. е. смесь разных длин волн видимого диапазона.

    Почему при грозе гремит гром?

    Заряженные ионы разгоняются в электрическом поле до сверхзвуковых скоростей. Получается обычная звуковая ударная волна.

    Мы все изучали это атмосферное явление в школе и знаем, что она возникает при вытеснении и поднятии теплого воздуха холодными фронтами. Этот вопрос часто задают маленькие дети и ответить его малышу, который не изучал физику сложно.

    Так более понятно, чем в Википедии.

    Думаю все мы, видели на занятиях по физике в школе, электростатическую машину, и те разряды между шариками электродов. Так вот гроза, это тоже самое, только в миллионы раз больше и мощнее.

    Гроза это совокупность двух явления - молнии и грома. Ну гром это понятно - треск от произошедшего разряда. А молния и есть визуальное наблюдение этого разряда. Происходит этот разряд из-за разности потенциалов поверхности Земли и накопленного в облаках электричества.

Распределение грозовых разрядов по поверхности Земли.

Одновременно на Земле действует около полутора тысяч гроз, средняя интенсивность разрядов оценивается как 46 молний в секунду. По поверхности планеты грозы распределяются неравномерно. Над океаном гроз наблюдается приблизительно в десять раз меньше, чем над континентами. В тропической и субтропической зоне (от 30° северной широты до 30° южной широты) сосредоточено около 78 % всех молниевых разрядов. Максимум грозовой активности приходится на Центральную Африку . В полярных районах Арктики и Антарктики и над полюсами гроз практически не бывает. Интенсивность гроз следует за солнцем: максимум гроз приходится на лето (в средних широтах) и дневные послеполуденные часы. Минимум зарегистрированных гроз приходится на время перед восходом солнца. На грозы влияют также географические особенности местности: сильные грозовые центры находятся в горных районах Гималаев и Кордильер .

Среднегодовое число дней с грозой в некоторых городах России: Архангельск - 16, Мурманск - 5, Санкт-Петербург - 18, Москва - 27, Воронеж - 32, Ростов-на-Дону - 27, Астрахань - 15, Самара - 26, Казань - 23, Екатеринбург - 26, Сыктывкар - 21, Оренбург - 22, Уфа - 29, Омск - 26, Ханты-Мансийск - 17, Томск - 23, Иркутск - 15, Якутск - 14, Петропавловск-Камчатский - 0, Хабаровск - 20, Владивосток - 9.

Стадии развития грозового облака


Стадии развития грозового облака.

Необходимыми условиями для возникновения грозового облака является наличие условий для развития конвекции или иного механизма, создающего восходящие потоки, запаса влаги, достаточного для образования осадков, и наличия структуры, в которой часть облачных частиц находится в жидком состоянии, а часть - в ледяном. Конвекция, приводящая к развитию гроз, возникает в следующих случаях:

  • при неравномерном нагревании приземного слоя воздуха над различной подстилающей поверхностью. Например, над водной поверхностью и сушей из-за различий в температуре воды и почвы. Над крупными городами интенсивность конвекции значительно выше, чем в окрестностях города.
  • при подъёме или вытеснении тёплого воздуха холодным на атмосферных фронтах. Атмосферная конвекция на атмосферных фронтах значительно интенсивнее и чаще, чем при внутримассовой конвекции. Часто фронтальная конвекция развивается одновременно со слоисто-дождевыми облаками и обложными осадками, что маскирует образующиеся кучево-дождевые облака.
  • при подъёме воздуха в районах горных массивов. Даже небольшие возвышенности на местности приводят к усилению образования облаков (за счёт вынужденной конвекции). Высокие горы создают особенно сложные условия для развития конвекции и почти всегда увеличивают ее повторяемость и интенсивность.

Все грозовые облака, независимо от их типа, последовательно проходят стадии кучевого облака, стадию зрелого грозового облака и стадию распада.

Классификация грозовых облаков

Одно время грозы классифицировались в соответствии с тем, где они наблюдались, - например, локальные, фронтальные или орографические . В настоящее время более принято классифицировать грозы в соответствии с характеристиками самих гроз и эти характеристики в основном зависят от метеорологического окружения, в котором развивается гроза.
Основным необходимым условием для образования грозовых облаков является состояние неустойчивости атмосферы, формирующее восходящие потоки. В зависимости от величины и мощности таких потоков формируются грозовые облака различных типов.

Одноячейковое облако


Цикл жизни одноячейкового облака.

Одноячейковые кучево-дождевые (Cumulonimbus, Cb) облака развиваются в дни со слабым ветром в малоградиентном барическом поле. Их называют ещё внутримассовыми или локальными грозами. Они состоят из конвективной ячейки с восходящим потоком в центральной своей части. Они могут достигать грозовой и градовой интенсивности и быстро разрушаться с выпадением осадков. Размеры такого облака: поперечный 5-20 км, вертикальный - 8-12 км, продолжительность жизни около 30 минут, иногда до 1 часа. Серьёзных изменений погоды после грозы не происходит.
Гроза начинается с возникновения кучевого облака хорошей погоды (Cumulus humilis). При благоприятных условиях возникшие кучевые облака быстро растут как в вертикальном, так и в горизонтальном направлении, при этом восходящие потоки находятся почти по всему объёму облака и увеличиваются от 5 м/с до 15-20 м/с. Нисходящие потоки очень слабы. Окружающий воздух активно проникает внутрь облака за счёт смешения на границе и вершине облака. Облако переходит в стадию Cumulus mediocris. Образующиеся в результате конденсации мельчайшие водяные капли в таком облаке сливаются в более крупные, которые уносятся мощными восходящими потоками вверх. Облако ещё однородное, состоит из капель воды, удерживаемых восходящим потоком - осадки не выпадают. В верхней части облака при попадании частиц воды в зону отрицательных температур капли постепенно начинают превращаться в кристаллы льда. Облако переходит в стадию мощно-кучевого облака (Cumulus congestus). Смешанный состав облака приводит к укрупнению облачных элементов и созданию условий для выпадения осадков. Такое облако называют кучево-дождевым (Cumulonimbus) или кучево-дождевым лысым (Cumulonimbus calvus). Вертикальные потоки в нем достигают 25 м/с, а уровень вершины достигает высоты 7-8 км
Испаряющиеся частицы осадков охлаждают окружающий воздух, что приводит к дальнейшему усилению нисходящих потоков. На стадии зрелости в облаке одновременно присутствуют и восходящие, и нисходящие воздушные потоки.
На стадии распада в облаке преобладают нисходящие потоки, которые постепенно охватывают все облако.

Многоячейковые кластерные грозы


Схема многоячейковой грозовой структуры.

Это наиболее распространённый тип гроз, связанный с мезомасштабными (имеющими масштаб от 10 до 1000 км) возмущениями. Многоячейковый кластер состоит из группы грозовых ячеек, двигающихся как единое целое, хотя каждая ячейка в кластере находится на разных стадиях развития грозового облака. Грозовые ячейки, находящиеся в стадии зрелости, обычно располагаются в центральной части кластера, а распадающиеся ячейки с подветренной стороны кластера. Они имеют поперечные размеры 20-40 км, их вершины нередко поднимаются до тропопаузы и проникают в стратосферу. Многоячейковые кластерные грозы могут давать град, ливневые дожди и относительно слабые шквальные порывы ветра. Каждая отдельная ячейка в многоячейковом кластере находится в зрелом состоянии около 20 минут; сам многоячейковый кластер может существовать в течение нескольких часов. Данный тип грозы обычно более интенсивен, чем одноячейковая гроза, но много слабее суперячейковой грозы.

Многоячейковые линейные грозы (линии шквалов)

Многоячейковые линейные грозы представляют собой линию гроз с продолжительным, хорошо развитым фронтом порывов ветра на передней линии фронта. Линия шквалов может быть сплошной или содержать бреши. Приближающаяся многоячейковая линия выглядит как тёмная стена облаков, обычно покрывающая горизонт с западной стороны (в северном полушарии). Большое число близко расположенных восходящих/нисходящих потоков воздуха позволяет квалифицировать данный комплекс гроз как многоячеечный, хотя его грозовая структура резко отличается от многоячейковой кластерной грозы. Линии шквалов могут давать крупный град и интенсивные ливни, но больше они известны как системы, создающие сильные нисходящие потоки. Линия шквалов близка по свойствам к холодному фронту, но является локальным результатом грозовой деятельности. Часто линия шквалов возникает впереди холодного фронта. На радарных снимках эта система напоминает изогнутый лук (bow echo). Данное явление характерно для Северной Америки, на территории Европы и Европейской территории России наблюдается реже.

Суперъячейковые грозы


Вертикальная и горизонтальная структура суперъячейкового облака.

Суперъячейка - наиболее высокоорганизованное грозовое облако. Суперъячейковые облака относительно редки, но представляют наибольшую угрозу для здоровья и жизни человека и его имущества. Суперъячейковое облако схоже с одноячейковым тем, что оба имеют одну зону восходящего потока. Различие состоит в том, что размер ячейки огромен: диаметр порядка 50 км, высота 10-15 км (нередко верхняя граница проникает в стратосферу) с единой полукруглой наковальней. Скорость восходящего потока в суперъячейковом облаке значительно выше, чем в других типах грозовых облаков: до 40 - 60 м/с. Основной особенностью, отличающей суперъячейковое облако от облаков других типов, является наличие вращения. Вращающийся восходящий поток в суперъячейковом облаке (в радарной терминологии называемый мезоциклоном), создаёт экстремальные по силе погодные явления, такие как гигантский град (более 5 см в диаметре), шквальный ветер до 40 м/с и сильные разрушительные смерчи . Окружающие условия являются основным фактором в образовании суперъячейкового облака. Необходима очень сильная конвективная неустойчивость воздуха. Температура воздуха у земли (до грозы) должна быть +27…+30 и выше, но главным необходимым условием является ветер переменного направления, вызывающий вращение. Такие условия достигаются при сдвиге ветра в средней тропосфере. Осадки, образующиеся в восходящем потоке, переносятся по верхнему уровню облака сильным потоком в зону нисходящего потока. Таким образом, зоны восходящего и нисходящего потоков оказываются разделёнными в пространстве, что обеспечивает жизнь облака в течение длительного периода времени. Обычно на передней кромке суперъячейкового облака наблюдается слабый дождь. Ливневые осадки выпадают вблизи зоны восходящего потока, а наиболее сильные осадки и крупный град выпадают к северо-востоку от зоны основного восходящего потока. Наиболее опасные условия наблюдаются неподалёку от зоны основного восходящего потока (обычно смещённые к задней части грозы).

Физические характеристики грозовых облаков

Самолётные и радарные исследования показывают, что единичная грозовая ячейка обычно достигает высоты порядка 8-10 км и живёт порядка 30 минут. Изолированная гроза обычно состоит из нескольких ячеек, находящихся в различных стадиях развития, и длится порядка часа. Крупные грозы могут достигать в диаметре десятков километров, их вершина может достигать высоты свыше 18 км, и они могут длиться много часов.

Восходящие и нисходящие потоки

Восходящие и нисходящие потоки в изолированных грозах обычно имеют диаметр от 0.5 до 2.5 км и высоту от 3 до 8 км. Иногда диаметр восходящего потока может достигать 4 км. Вблизи поверхности земли потоки обычно увеличиваются в диаметре, а скорость в них падает по сравнению с выше расположенными потоками. Характерная скорость восходящего потока лежит в диапазоне от 5 до 10 м/с, и доходит до 20 м/с в верхней части крупных гроз. Исследовательские самолёты, пролетающие сквозь грозовое облако на высоте 10 000 м, регистрируют скорость восходящих потоков свыше 30 м/с. Наиболее сильные восходящие потоки наблюдаются в организованных грозах.

Шквалы

Перед августовским шквалом 2010 года в Гатчине

В некоторых грозах возникают интенсивные нисходящие воздушные потоки, создающие на поверхности земли ветер разрушительной силы. В зависимости от размера такие нисходящие потоки называются шквалами или микрошквалами. Шквал диаметром более 4 км может создавать ветер до 60 м/с. Микрошквалы имеют меньшие размеры, но создают ветер скоростью до 75 м/с. Если порождающая шквал гроза образуется из достаточно тёплого и влажного воздуха, то микрошквал будет сопровождаться интенсивным ливневым дождём. Однако, если гроза формируется из сухого воздуха, осадки во время выпадения могут испариться (испаряющиеся в воздухе полосы осадков или virga) и микрошквал будет сухим. Нисходящие воздушные потоки являются серьёзной опасностью для самолётов, особенно во время взлёта или посадки, так как они создают вблизи земли ветер с сильными внезапными изменениями скорости и направления.

Вертикальное развитие

В общем случае, активное конвективное облако будет подниматься до тех пор, пока оно не утратит плавучесть. Потеря плавучести связана с нагрузкой, создаваемой образовавшимися в облачной среде осадками, или смешением с окружающим сухим холодным воздухом, или комбинацией этих двух процессов. Рост облака также может быть остановлен слоем блокирующей инверсии, то есть слоем, где температура воздуха растёт с высотой. Обычно грозовые облака достигают высоты порядка 10 км, но иногда достигают высот более 20 км. Когда влагосодержание и нестабильность атмосферы высоки, то при благоприятном ветре облако может вырасти до тропопаузы, слоя, отделяющего тропосферу от стратосферы. Тропопауза характеризуется температурой, остающейся приблизительно постоянной с ростом высоты и известной как область высокой стабильности. Как только восходящий поток начинает приближаться к стратосфере, то довольно скоро воздух в вершине облака становится холоднее и тяжелее окружающего воздуха и рост вершины останавливается. Высота тропопаузы зависит от широты местности и от сезона года. Она варьируется от 8 км в полярных регионах до 18 км и выше вблизи экватора.

Когда кучевое конвективное облако достигает блокирующего слоя инверсии тропопаузы, оно начинает растекаться в стороны и образует характерную для грозовых облаков «наковальню». Ветер, дующий на высоте наковальни, обычно сносит облачный материал по направлению ветра.

Турбулентность

Самолёт, пролетающий сквозь грозовое облако (залетать в кучеводождевые облака запрещается), обычно попадает в болтанку, бросающую самолёт вверх, вниз и в стороны под действием турбулентных потоков облака. Атмосферная турбулентность создаёт ощущение дискомфорта для экипажа самолёта и пассажиров и вызывает нежелательные нагрузки на самолёт. Турбулентность измеряется разными единицами, но чаще её определяют в единицах g - ускорения свободного падения (1g = 9,8 м/с 2). Шквал в один g создаёт опасную для самолётов турбулентность. В верхней части интенсивных гроз зарегистрированы вертикальные ускорения до трёх g.

Движение гроз

Скорость и движение грозового облака зависит от направления земли, прежде всего, взаимодействием восходящего и нисходящего потоков облака с несущими воздушными потоками в средних слоях атмосферы, в которых развивается гроза. Скорость перемещения изолированной грозы обычно порядка 20 км/час, но некоторые грозы двигаются гораздо быстрее. В экстремальных ситуациях грозовое облако может двигаться со скоростями 65 - 80 км/час - во время прохождения активных холодных фронтов. В большинстве гроз по мере рассеивания старых грозовых ячеек последовательно возникают новые грозовые ячейки. При слабом ветре отдельная ячейка за время своей жизни может пройти совсем небольшой путь, меньше двух километров; однако в более крупных грозах новые ячейки запускаются нисходящим потоком, вытекающим из зрелой ячейки, что создаёт впечатление быстрого движения, не всегда совпадающего с направлением ветра. В больших многоячейковых грозах существует закономерность, когда новая ячейка формируется справа по направлению несущего воздушного потока в северном полушарии и слева от направления несущего потока в Южном полушарии.

Энергия

Энергия, которая приводит в действие грозу, заключена в скрытой теплоте, высвобождающейся, когда водяной пар конденсируется и образует облачные капли. На каждый грамм конденсирующейся в атмосфере воды высвобождается приблизительно 600 калорий тепла. Когда водяные капли замерзают в верхней части облака, дополнительно высвобождается ещё около 80 калорий на грамм. Высвобождающаяся скрытая тепловая энергия частично преобразуется в кинетическую энергию восходящего потока. Грубая оценка общей энергии грозы может быть сделана на основе общего количества воды, выпавшей в виде осадков из облака. Типичной является энергия порядка 100 миллионов киловатт-часов, что по приблизительной оценке эквивалентно ядерному заряду в 20 килотонн (правда, эта энергия выделяется в гораздо большем объёме пространства и за гораздо большее время). Большие многоячейковые грозы могут обладать энергией и в 10 и в 100 раз большей.

Погодные явления под грозами

Нисходящие потоки и шквальные фронты


Шквальный фронт мощной грозы.

Нисходящие потоки в грозах возникают на высотах, где температура воздуха ниже, чем температура в окружающем пространстве и этот поток становится ещё холоднее, когда в нем начинают таять ледяные частицы осадков и испарятся облачные капли. Воздух в нисходящем потоке не только более плотный, чем окружающий воздух, но он несёт ещё и горизонтальный момент количества движения, отличающийся от окружающего воздуха. Если нисходящий поток возникает, например, на высоте 10 км, то он достигнет поверхности земли с горизонтальной скоростью заметно большей, чем скорость ветра у земли. У земли этот воздух выносится вперёд перед грозой со скоростью большей, чем скорость движения всего облака. Именно поэтому наблюдатель на земле ощутит приближение грозы по потоку холодного воздуха ещё до того как грозовое облако окажется у него над головой. Распространяющийся по земле нисходящий поток образует зону глубиной от 500 метров до 2 км с отчётливым различием между холодным воздухом потока и тёплым влажным воздухом, из которого формируется гроза. Прохождение такого шквального фронта легко определяется по усилению ветра и внезапному падению температуры. За пять минут температура воздуха может понизиться на 5 °C или больше. Шквал образует характерный шквальный ворот с горизонтальной осью, резким падением температуры и изменением направления ветра.

В экстремальных случаях фронт шквала, созданный нисходящим потоком, может достичь скорости, превышающей 50 м/с, и приносит разрушения домам и посевам. Более часто сильные шквалы возникают, когда организованная линия гроз развивается в условиях сильного ветра на средних высотах. При этом люди могут подумать, что эти разрушения вызваны смерчем. Если нет свидетелей, видевших характерное воронкообразное облако смерча, то причину разрушения можно определить по характеру разрушений, вызванных ветром. В смерчах разрушения имеют круговую картину, а грозовой шквал, вызванный нисходящим потоком, несёт разрушения преимущественно в одном направлении. Следом за холодным воздухом обычно начинается дождь. В некоторых случаях дождевые капли полностью испаряются во время падения, что приводит к сухой грозе. В противоположной ситуации, характерной для сильных многоячейковых и суперячейковых гроз, идёт проливной дождь с градом, вызывающий внезапные наводнения.

Смерчи

Смерч - это сильный маломасштабный вихрь под грозовыми облаками с приблизительно вертикальной, но часто изогнутой осью. От периферии к центру смерча наблюдается перепад давления в 100-200 гПа. Скорость ветра в смерчах может превышать 100 м/с, теоретически может доходить до скорости звука. В России смерчи возникают сравнительно редко, но приносят колоссальный ущерб. Наибольшая повторяемость смерчей приходится на юг европейской части России.

Ливни

В небольших грозах пятиминутный пик интенсивных осадков может превосходить 120 мм/час, но весь остальной дождь имеет на порядок меньшую интенсивность. Средняя гроза даёт порядка 2,000 кубометров осадков, но крупная гроза может дать в десять раз больше. Большие организованные грозы, связанные с мезомасштабными конвективными системами, могут создать от 10 до 1000 миллионов кубометров осадков.

Электрическая структура грозового облака


Структура зарядов в грозовых облаках в различных регионах.

Распределение и движение электрических зарядов внутри и вокруг грозового облака является сложным непрерывно меняющимся процессом. Тем не менее, можно представить обобщённую картину распределения электрических зарядов на стадии зрелости облака. Доминирует положительная дипольная структура, в которой положительный заряд находится в верхней части облака, а отрицательный заряд находится под ним внутри облака. В основании облака и под ним наблюдается нижний положительный заряд. Атмосферные ионы, двигаясь под действием электрического поля, формируют на границах облака экранирующие слои, маскирующие электрическую структуру облака от внешнего наблюдателя. Измерения показывают, что в различных географических условиях основной отрицательный заряд грозового облака расположен на высотах с температурой окружающего воздуха от −5 до −17 °C. Чем больше скорость восходящего потока в облаке, тем на большей высоте находится центр отрицательного заряда. Плотность объёмного заряда лежит в диапазоне 1-10 Кл/км³. Существует заметная доля гроз с инверсной структурой зарядов: - отрицательным зарядом в верхней части облака и положительным зарядом во внутренней части облака, а также со сложной структурой с четырьмя и более зонами объёмных зарядов разной полярности.

Механизм электризации

Для объяснения формирования электрической структуры грозового облака предлагалось много механизмов, и до сих пор эта область науки является областью активных исследований. Основная гипотеза основана на том, что если более крупные и тяжёлые облачные частицы заряжаются преимущественно отрицательно, а более лёгкие мелкие частицы несут положительный заряд, то пространственное разделение объёмных зарядов возникает за счёт того, что крупные частицы падают с большей скоростью, чем мелкие облачные компоненты. Этот механизм, в целом, согласуется с лабораторными экспериментами, которые показывают сильную передачу заряда при взаимодействии частиц ледяной крупы (крупа - пористые частицы из замёрзших водяных капелек) или града с ледяными кристаллами в присутствии переохлаждённых водяных капель. Знак и величина передаваемого при контактах заряда зависят от температуры окружающего воздуха и водности облака, но также и от размеров ледяных кристаллов, скорости столкновения и других факторов. Возможно также действие и других механизмов электризации. Когда величина накопившегося в облаке объёмного электрического заряда становится достаточно большой, между областями, заряженными противоположным знаком, происходит молниевый разряд. Разряд может произойти также между облаком и землёй, облаком и нейтральной атмосферой, облаком и ионосферой. В типичной грозе от двух третей до 100 процентов разрядов приходятся на внутриоблачные разряды, межоблачные разряды или разряды облако - воздух. Оставшаяся часть - это разряды облако-земля. В последние годы стало понятно, что молния может быть искусственно инициирована в облаке, которое в обычных условиях не переходит в грозовую стадию. В облаках, имеющих зоны электризации и создающих электрические поля, молнии могут быть инициированы горами, высотными сооружениями, самолётами или ракетами оказавшимися в зоне сильных электрических полей.

Примечания

См. также