Международная электротехническая комиссия МЭК. Организационная структура МЭК

Основные объекты стандартизации МЭК:

  • * материалы для электротехнической промышленности (жидкие, твердые, газообразные диэлектрики, медь, алюминий, их сплавы, магнитные материалы);
  • * электротехническое оборудование производственного назначения (сварочные аппараты, двигатели, светотехническое оборудование, реле, низковольтные аппараты, кабель и др.);
  • * электроэнергетическое оборудование (паровые и гидравлические турбины, линии электропередач, генераторы, трансформаторы);
  • * изделия электронной промышленности (интегральные схемы, микропроцессоры, печатные платы и т.д.);
  • * электронное оборудование бытового и производственного назначения;
  • * электроинструменты;
  • * оборудование для спутников связи;
  • * терминология.

МЭК принято более 2 тыс. международных стандартов. По содержанию они отличаются от стандартов ИСО большей конкретикой: в них изложены технические требования к продукции и методам ее испытаний, а также требования по безопасности, что актуально не только для объектов стандартизации МЭК, но и для важнейшего аспекта подтверждения соответствия -- сертификации на соответствие требованиям стандартов по безопасности. Для обеспечения этой области, имеющей актуальное значение в международной торговле, МЭК разрабатывает специальные международные стандарты на безопасность конкретных товаров. В силу сказанного, как показывает практика, международные стандарты МЭК более пригодны для прямого применения в странах-членах, чем стандарты ИСО.

Придавая большое значение разработке международных стандартов на безопасность, ИСО совместно с МЭК приняли Руководство ИСО/МЭК 51 "Общие требования к изложению вопросов безопасности при подготовке стандартов". В нем отмечается, что безопасность представляет собой такой объект стандартизации, который проявляет себя при разработке стандартов во многих различных формах, на разных уровнях, во всех областях техники и для абсолютного большинства изделий. Сущность понятия "безопасность" трактуется как обеспечение равновесия между предотвращением опасности нанесения физического ущерба и другими требованиями, которым должна удовлетворять продукция. При этом следует учитывать, что абсолютной безопасности практически не существует, поэтому, даже находясь на самом высоком уровне безопасности, продукция может быть лишь относительно безопасной.

При производстве продукции принятие решений, связанных с обеспечением безопасности, основывается обычно на расчетах рисков и оценке степени безопасности. Оценка риска (или установление вероятности причинения вреда) базируется на накопленных эмпирических данных и научных исследованиях. Оценка степени безопасности сопряжена с вероятным уровнем риска, и нормы безопасности почти всегда устанавливаются на государственном уровне (в ЕС -- посредством Директив и технических регламентов; в РФ -- пока обязательными требованиями государственных стандартов). Обычно на сами нормы безопасности влияет уровень социально-экономического развития и образованности общества. Риски зависят от качества проекта и производственного процесса, а также, в не меньшей степени, от условий использования (потребления) продукта.

Процедура разработки стандарта МЭК аналогична процедуре, используемой в ИСО. В среднем над стандартом работают 3-4 года, и нередко он отстает от темпов обновления продукции и появления на рынке новых товаров. С целью сокращения сроков в МЭК практикуется издание принятого по короткой процедуре Технического ориентирующего документа (ТОД), содержащего лишь идею будущего стандарта. Он действует не более трех лет и после публикации созданного на его основе стандарта аннулируется.

Применяется также ускоренная процедура разработки, касающаяся, в частности, сокращения цикла голосования, и, что более действенно -- расширения переоформления в международные стандарты МЭК нормативных документов, принятых другими международными организациями, либо национальных стандартов стран-членов. Ускорению работы по созданию стандарта содействуют и технические средства: автоматизированная система контроля за ходом работы, информационная система "Телетекст", организованная на базе Центрального бюро. Пользователем этой системы стали более 10 национальных комитетов.

Наибольшее практическое применение имеют международные стандарты, в которых установлены технические требования и предельные уровни радиопомех для различных источников: автотранспортных средств, прогулочных судов, двигателей внутреннего сгорания, люминесцентных ламп, телевизоров и т.п.

МЭК сотрудничает с ИСО, совместно разрабатывая Руководства ИСО/МЭК и Директивы ИСО/МЭК по актуальным вопросам стандартизации, сертификации, аккредитации испытательных лабораторий и методическим аспектам. Объединенный программный комитет ИСО/МЭК занимается распределением ответственности двух организаций по вопросам, касающимся смежных областей техники, а также планирует работу.

Бывший Советский Союз участвовал в работе МЭК с 1921 г., возобновив прерванное войной участие в 1946 г. Правопреемником его стала Россия, представленная в МЭК Госстандартом РФ. Порядок участия, цели и задачи определяются руководящими документами Госстандарта с учетом соответствующих положений Законов "О стандартизации" и "О сертификации продукции и услуг". Эти документы едины для работы в ИСО и МЭК. Российская сторона принимает участие более чем в 190 технических комитетах и подкомитетах. В России внедрено более половины принятых МЭК международных стандартов в области электроники и электротехники.

Кроме стандартизации МЭК занимается сертификацией изделий по своему профилю деятельности.

С развитием цифровых технологий в стороне не остались и производители электротехнического оборудования. Несмотря на наличие международной классификации ISO, в России был использован европейский стандарт МЭК 61850, отвечающий за системы и сети подстанций.

Немного истории

Развитие компьютерных технологий не обошло стороной системы управления электрическими сетями. Общепринятый сегодня стандарт МЭК 61850 изначально был представлен в 2003 году, хотя попытки внедрения систем на этой основе велись еще в 60-х годах прошлого столетия.

Суть его сводится к использованию специальных протоколов управления электрическими сетями. На их основе сейчас и производится отслеживание функционирования всех сетей такого типа.

Если раньше основное внимание уделялось исключительно модернизации компьютерных систем, контролирующих электроэнергетику, то с внедрением правил, стандартов, протоколов в виде МЭК 61850 ситуация изменилась. Главной задачей этого ГОСТа стало обеспечение мониторинга с целью своевременного выявления неполадок в работе соответствующего оборудования.

Протокол МЭК 61850 и его аналоги

Сам же протокол наиболее активно начал применяться в середине 80-х годов. Тогда в качестве первых тестируемых версий использовались модификации МЭК 61850-1, IEC 60870-5 версий 101, 103 и 104, DNP3 и Modbus, которая оказалсь совершенно несостоятельной.

И именно начальная разработка легла в основу современного протокола UCA2, который в середине 90-х годов был успешно применен в Западной Европе.

Как это работает

Останавливаясь на вопросе функционирования, стоит объяснить, что такое протокол МЭК 61850, для «чайников» (людей, которые только постигают основы работы и понимания принципов общения с компьютерной техникой).

Суть состоит в том, что на подстанции или энергостанции устанавливается микропроцессорный чип, позволяющий передавать данные о состоянии всей системы непосредственно на центральный терминал, осуществляющий основное управление.

Но, как показывает практика, и эти системы оказываются достаточно уязвимыми. Смотрели американские фильмы, когда в одном из эпизодов отключается энергоснабжение целого квартала? Вот оно! Управление электрическими сетями на основе протокола МЭК 61850 может быть скоординировано из любого внешнего источника (далее будет понятно, почему). А пока рассмотрим основные системные требования.

Стандарт Р МЭК 61850: требования к системам связи

Если ранее подразумевалось, что сигнал должен предаваться с использованием телефонной линии, сегодня средства связи шагнули далеко вперед. Встроенные чипы способны обеспечивать передачу на уровне 64 Мбит, являясь абсолютно независимыми от провайдеров, предоставляющих стандартные услуги подключения.

Если рассматривать стандарт МЭК 61850 для «чайников», объяснение выглядит достаточно просто: чип энергоблока использует собственный протокол передачи данных, а не общепринятый стандарт TCP/IP. Но и это еще не все.

Сам стандарт и есть протокол МЭК 61850 передачи данных с защищенным соединением. Иными словами, подключение к тому же интернету, беспроводной сети и т. д. осуществляется очень специфичным способом. В настройках, как правило, задействуются параметры прокси-серверов, поскольку именно таковые (пусть даже виртуальные) являются наиболее безопасными.

Общая область применения

Понятно, что согласно тем требованиям, которые выставляет ГОСТ МЭК 61850, установить оборудование такого типа в обычную трансформаторную будку не получится (компьютерному чипу там просто места нет).

Работать такое устройство при всем желании тоже не будет. Ему нужна как минимум начальная система ввода/вывода сродни BIOS, а также соответствующая коммуникативная модель передачи данных (беспроводная сеть, проводное защищенное подключение и т. д.).

Зато в центре управления общей или локальной энергосетью можно получить доступ практически ко всем функциям электростанций. В качестве примера, хоть и не самого лучшего, можно привести фильм «Земное ядро» (The Core), когда хакер предотвращает гибель нашей планеты путем дестабилизации энергического источника, питающего «запасной» вариант раскрутки

Но это чистая фантастика, скорее даже виртуальное подтверждение требований МЭК 61850 (хотя об этом прямо и не говорится). Тем не менее даже самая примитивная эмуляция МЭК 61850 выглядит именно таким образом. А ведь скольких катастроф можно было избежать?

Тот же 4-ый энергоблок Чернобыльской АЭС, если бы на нем были установлены средства диагностики, соответствующие стандарту хотя бы МЭК 61850-1, может быть, и не взорвался бы. А с 1986 года остается только пожинать плоды произошедшего.

Радиация - она такая, что действует скрытно. В первые дни, месяцы или годы могут и не проявляться, не говоря уже о периодах полураспада урана и плутония, на что сегодня мало кто обращает внимание. А вот интегрирование тех же в энергостанцию могло бы существенно снизить риск пребывания в этой зоне. Кстати, и сам протокол позволяет передавать такие данные на программно-аппаратном уровне задействованного комплекса.

Методика моделирования и преобразование в реальные протоколы

Для самого простого понимания того, как работает, например, стандарт МЭК 61850-9-2, стоит сказать, что ни один железный провод не может определить направление передаваемых данных. То есть нужен соответствующий ретранслятор, способный передавать данные о состоянии системы, причем в зашифрованном виде.

Принять сигнал, как оказывается, достаточно просто. Но вот чтобы он был прочитан и расшифрован принимающим устройством, придется попотеть. На самом-то деле, чтобы расшифровать поступающий сигнал, например, на основе МЭК 61850-2 на начальном уровне нужно использовать системы визуализации вроде SCADA и P3A.

Но исходя из того что эта система использует проводные средства связи, основными протоколами считаются GOOSE и MMS (не путать с мобильными сообщениями). Такое преобразование стандарт МЭК 61850-8 производит последовательным использованием сначала MMS, а затем GOOSE, что в конечном итоге позволяет добиться отображения информации по технологиям P3A.

Основные типы конфигурирования подстанций

Любая подстанция, использующая данный протокол, должна обладать хотя бы минимальным набором средств для передачи данных. Во-первых, это касается самого физического устройства, подключенного к сети. Во-вторых, в каждом таком агрегате должен иметься один или несколько логических модулей.

В этом случае сам девайс способен выполнять функцию концентратора, шлюза или даже своеобразного посредника для передачи информации. Сами же логические узлы имеют узкую направленность и разделяются на следующие классы:

  • «А» - автоматизированные системы управления;
  • «М» - системы измерений;
  • «С» - телеметрическое управление;
  • «G» - модули общих функций и параметров настройки;
  • «I» - средства установки связи и применяемые методы архивации данных;
  • «L» - логические модули и системные узлы;
  • «P» - защита;
  • «R» - связанные защитные компоненты;
  • «S» - датчики;
  • «T» - трансформаторы-измерители;
  • «X» - блок-контактная коммутационная аппаратура;
  • «Y» - трансформаторы силового типа;
  • «Z» - все остальное, что не входит в вышеперечисленные категории.

Считается, что протокол МЭК 61850-8-1, например, способен обеспечить меньшее использование проводов или кабелей, что, конечно же, только положительным образом влияет на простоту конфигурации оборудования. Но основная проблема, как оказывается, состоит в том, что не все администраторы способны обрабатывать принимаемые данные даже при наличии соответствующих программных пакетов. Хочется надеяться, что это временная проблема.

Прикладное ПО

Тем не менее даже в ситуации непонимания физических принципов действия программ такого типа эмуляция МЭК 61850 может производиться в любой операционной системе (даже в мобильной).

Считается, что управляющий персонал или интеграторы тратят намного меньше времени на обработку данных, поступающих с подстанций. Архитектура таких приложений интуитивно понятна, интерфейс прост, а вся обработка заключается только в введении локализованных данных с последующей автоматической выдачей результата.

К недостаткам таких систем можно отнести разве что завышенную стоимость оборудования P3A (микропроцессорные системы). Отсюда и невозможность его массового применения.

Практическое применение

До этого все изложенное в отношении протокола МЭК 61850 касалось только теоретических сведений. Как это работает на практике?

Допустим, у нас имеется силовая установка (подстанция) с трехфазным питанием и двумя измерительными входами. При определении стандартного логического узла используется имя MMXU. Для стандарта МЭК 61850 их может быть два: MMXU1 и MMXU2. Каждый такой узел для упрощения идентификации может содержать еще и дополнительный префикс.

В качестве примера можно привести смоделированный узел на основе XCBR. Он отождествляется с применением некоторых основных операторов:

  • Loc - определение локального или удаленного местоположения;
  • OpCnt - методика подсчета выполненных (выполняемых) операций;
  • Pos - оператор, отвечающий за локацию и схожий с параметрами Loc;
  • BlkOpn - команда отключения блокировки включателя;
  • BlkCls - включение блокировки;
  • CBOpCap - выбор режима срабатывания переключателя.

Такая классификация для описания классов данных CDC в основном применяется в системах модификации 7-3. Однако даже в этом случае конфигурирование построено на использовании нескольких признаков (FC - функциональные ограничения, SPS - состояние единичной контрольной точки, SV и ST - свойства подстановочных систем, DC и EX - описание и расширенное определение параметров).

Что касается определения и описания класса SPS, логическая цепочка включает в себя свойства stVal, качество - q, и параметры текущего времени - t.

Таким образом производится трансформирование данных по технологиям подключения Ethernet и протоколам TCP/IP непосредственно в объектную переменную MMS, которая уже потом идентифицируется с присвоенным именем, что и приводит к получению истинного значения любого задействованного на данный момент показателя.

Кроме того, сам протокол МЭК 61850 является всего лишь обобщенной и даже абстрактной моделью. Но на его основе производится описание структуры любого элемента энергосистемы, что позволяет микропроцессорным чипам совершенно точно идентифицировать каждое устройство, задействованное в этой области, включая те, которые используют технологии энергосбережения.

Теоретически формат протокола можно преобразовать в любой тип данных, основываясь на стандартах MMS и ISO 9506. Но почему же тогда был выбран именно управляющий стандарт МЭК 61850?

Его связывают исключительно с достоверностью получаемых параметров и легким процессом работы с присваиванием сложных имен или моделей самого сервиса.

Такой процесс без задействования протокола MMS оказывается очень трудоемким даже при формировании запросов вроде «чтение-запись-отчет». Нет, конечно, можно произвести преобразование такого типа даже для архитектуры UCA. Но, как показывает практика, именно применение стандарта МЭК 61850 позволяет сделать это без особых усилий и затрат по времени.

Вопросы верификации данных

Однако же данная система не ограничивается только приемом-передачей. На самом деле встраиваемые микропроцессорные системы позволяют производить обмен данными не только на уровне подстанций и центральных управляющих систем. Они могут при наличии соответствующего оборудования обрабатывать данные между собой.

Пример прост: электронный чип передает данные о силе тока или напряжении в ответственном участке. Соответственно, любая другая подсистема на основе падения напряжения может задействовать или отключить дополнительную систему питания. Все это основано на стандартных законах физики и электротехники, правда, зависит от тока. Например, у нас стандартом является напряжение 220 В. В Европе - 230 В.

Если взглянуть на критерии отклонений, в бывшем СССР это +/- 15%, в то время как в развитых европейских странах он составляет не более 5%. Неудивительно, что фирменная западная техника просто выходит из строя только по причине перепадов напряжения в электросети.

И наверное, не нужно говорить, что многие из нас наблюдают во дворе строение в виде трансформаторной будки, построенной еще во времена Советского Союза. Как вы думаете, можно туда установить компьютерный чип или подключить специальные кабели для получения информации о состоянии трансформатора? Вот то-то и оно, что нет!

Новые системы на основе стандарта МЭК 61850 позволяют произвести полный контроль всех параметров, однако очевидная невозможность его повсеместного внедрения отталкивает соответствующие службы вроде «Энергосбытов» в плане задействования протоколов этого уровня.

Ничего удивительного в этом нет. Компании, распределяющие электроэнергию между потребителями, могут просто лишиться прибыли или даже привилегий на рынке.

Вместо итога

В целом же протокол, с одной стороны, является простым, а с другой - очень сложным. Проблема состоит даже не в том, что на сегодняшний день нет соответствующего ПО, а в том, что вся система контроля за электроэнергетикой, доставшаяся нам от СССР, для этого просто не подготовлена. А если взять в расчет низкую квалификацию обслуживающего персонала, тут и речи не может быть о том, что кто-то способен контролировать или устранять проблемы своевременно. У нас ведь как принято? Проблема? Обесточиваем микрорайон. Только и всего.

Зато применение этого стандарта позволяет избежать подобного рода ситуаций, не говоря уже о всяких веерных отключениях.

Таким образом, остается только подвести некий итог. Что конечному пользователю несет использование протокола МЭК 61850? В самом простом понимании - это бесперебойное электроснабжение с отсутствием перепадов напряжения в сети. Заметьте, если для компьютерного терминала или ноутбука не предусмотрено использование блока бесперебойного питания или стабилизатора напряжения, перепад или скачок могут спровоцировать моментальное отключение системы. Ладно, если потребуется восстановление на программном уровне. А если сгорят планки оперативной памяти или выйдет из строя винчестер, что тогда делать?

Это, конечно, является отдельным предметом для исследования, однако сами стандарты, ныне применяемые в энергостанциях с соответствующими «железными» и программными средствами диагностики способны контролировать абсолютно все параметры сетей, предотвращая ситуации с появлением критических сбоев, которые могут привести не только к поломке бытовой техники, но и к выходу из строя всей домашней проводки (она, как известно, рассчитана не более чем на 2 кВт при стандартном напряжении в сети 220 В). Поэтому, включая одновременно холодильник, стиральную машину или бойлер для подогрева воды, сто раз подумайте, насколько это оправдано.

Если же данные версии протоколов задействованы, настройки подсистемы будут применены автоматически. И в самой большей степени это касается срабатывания тех же 16-амперных предохранителей, которые жители 9-этажек иногда устанавливают самостоятельно, минуя службы, за это отвечающие. Но цена вопроса, как оказывается, намного выше, ибо позволяет обойти некоторые ограничения, связанные с выше указанным стандартом и его сопутствующими правилами.

Международная электротехническая комиссия (МЭК)

Работы по международному сотрудничеству в области электротехники были начаты в 1881 г., когда был созван первый Международный конгресс по электричеству. В 1904 г. на заседании правительственных делегатов Международного конгресса по электричеству в Сент-Луисе (США) было принято решение о необходимости создания специального органа, занимающегося вопросами стандартизации терминологии и параметров электрических машин.

Формальное создание такого органа - Международной электротехнической комиссии (МЭК) - состоялось в 1906 г. в Лондоне на конференции представителей 13 стран.

Сферы деятельности ИСО и МЭК четко разграничены - МЭК занимается стандартизацией в области электротехники, электроники, радиосвязи, приборостроения, ИСО - во всех остальных отраслях.

Официальные языки МЭК - английский, французский и русский.

Целями МЭК, согласно ее Уставу, является содействие международному сотрудничеству в решении вопросов стандартизации и смежных с ним проблем в области электротехники и радиоэлектроники.

Основной задачей комиссии является разработка международных стандартов в названной области.

Высшим руководящим органом МЭК является Совет, в котором представлены все национальные комитеты стран (рис. 4.2). Выборными должностными лицами являются президент (избираемый на трехлетний период), вице-президент, казначей и генеральный секретарь. Совет собирается ежегодно на свои заседания поочередно в различных странах и рассматривает все вопросы деятельности МЭК как технического, гак и административного и финансового характера. При Совете действует финансовый комитет и комитет по вопросам стандартизации потребительских товаров.

При Совете МЭК создан Комитет действия, который по поручению Совета рассматривает все вопросы. Комитет действия подотчетен в своей работе Совету и представляет ему свои решения на утверждение. В его функции входят: контроль и координация работы технических комитетов (ТК), определение новых направлений работ, решение вопросов, связанных с применением стандартов МЭК, разработка методических документов по технической работе, сотрудничество с другими организациями.

Бюджет МЭК, как и бюджет ИСО, складывается из взносов стран и поступлений от продажи международных стандартов.

Структура технических органов МЭК такая же, как и ИСО: технические комитеты (ТК), подкомитеты (ПК) и рабочие группы (РГ). В целом в МЭК создано более 80 ТК, часть которых разрабатывает международные стандарты общетехнического и межотраслевого характера (например, комитеты по терминологии, графическим изображениям, стандартным напряжениям и частотам, климатическим испытаниям и др.), а другая - стандарты на конкретные виды продукции (трансформаторы, изделия электронной техники, бытовая радиоэлектронная аппаратура и др.).

Процедура разработки стандартов МЭК регламентируется ее Уставом, Правилами процедуры и Общими директивами по технической работе.

В настоящее время разработано более двух тысяч международных стандартов МЭК. Стандарты МЭК являются более полными, чем стандарты ИСО, с точки зрения наличия в них технических требований к продукции, методам ее испытаний. Это объясняется тем, что требования по безопасности являются ведущими в требованиях на продукцию, входящую в сферу деятельности МЭК, а опыт работы, накопленный в течение многих десятилетий, позволяет более полно решать вопросы стандартизации.

Международные стандарты МЭК являются более приемлемыми для применения в странах-членах без их переработки.

Стандарты МЭК разрабатываются в технических комитетах или подкомитетах. Правила процедуры МЭК устанавливают порядок разработки стандартов МЭК, который идентичен порядку разработки стандартов ИСО.

Стандарты МЭК носят рекомендательный характер, и страны имеют полную независимость в вопросах их применения на национальном уровне (кроме стран, входящих в ГАТТ), однако они приобретают обязательный характер в случае выхода продукции на мировой рынок.

Основными объектами стандартизации МЭК являются материалы, применяемые в электротехнике (жидкие, твердые и газообразные диэлектрики, магнитные материалы, медь, алюминий и его сплавы), электротехническое оборудование общепромышленного назначения (двигатели, сварочные аппараты, светотехническое оборудование, реле, низковольтные аппараты, распределительные устройства, приводы, кабель и т. д.), электроэнергетическое оборудование (паровые и гидравлические турбины, ЛЭП, генераторы, трансформаторы), изделия электронной промышленности (дискретные полупроводниковые приборы, интегральные схемы, микропроцессоры, печатные платы и схемы), электронное оборудование бытового и производственного назначения, электроинструмент, электротехническое и электронное оборудование, применяемое в отдельных отраслях промышленности и в медицине.

Одно из ведущих направлений стандартизации в МЭК - разработка терминологических стандартов.

В 1881 г. состоялся первый Международный конгресс по электричеству, а в 1904 г. правительственными делегациями конгресса было решено создать специальную организацию по стандартизации в этой области. Как Международная электротехническая комиссия она начала работать в

Советский Союз являлся членом МЭК с 1922 г. Россия стала правопреемником СССР и представлена в МЭК Госстандартом РФ. Российская сторона принимает участие более чем в 190 технических комитетах и подкомитетах. Штаб-квартира находится в Женеве, рабочие языки – английский, французский, русский.

Основными объектами стандартизации являются: материалы для электротехнической промышленности (жидкие, твердые, газообразные диэлектрики, медь, алюминий, их сплавы, магнитные материалы); электротехническое оборудование производственного назначения (сварочные аппараты, двигатели, светотехническое оборудование, реле, низковольтные аппараты, кабель и др.); электроэнергетическое оборудование (паровые и гидравлические турбины, линии электропередач, генераторы, трансформаторы); изделия электронной промышленности (интегральные схемы, микропроцессоры, печатные платы и т.д.); электронное оборудование бытового и производствен­ного назначения; электроинструменты; оборудование для спутников связи; терминология.

Организационная структура МЭК представлена на рис. 1.6. Высшим руководящим органом МЭК является Совет. Основным координационным органом является Комитет действий, в подчинении которого работают комитеты по направления и консультативные группы: АКОС - консультативный комитет по вопросам электробезопасности электробытовых приборов, радиоэлектронной аппаратуры, высоковольтного оборудования и др.; АСЕТ - консультативный комитет по вопросам электроники и связи занимается, так же, как и АКОС, вопросами электробезопасности; КГЭМС – координационная группа по электромагнитной совместимости; КГИТ - координационная группа по технике информации; рабочая групп по координации размеров.



Рис. 1.6. Организационная структура МЭК ]


Группы могут быть постоянно действующими или создаваться по необходимости.

Структура технических органов МЭК, непосредственно разрабаты-вающих международные стандарты, аналогична структуре ИСО: это тех-нические комитеты (ТК), подкомитеты (ПК) и рабочие группы (РГ).

МЭК сотрудничает с ИСО, совместно разрабатывая руководства ИСО/МЭК и директивы ИСО/МЭК по актуальным вопросам стандартизации, сертификации, аккредитации испытательных лабораторий и методическим аспектам.

Самостоятельный статус в МЭК имеет Международный специальный комитет по радиопомехам (СИСПР), так как является совместным комитетом участвующих в нем заинтересованных международных организаций (создан в 1934 г.).

Стандартизация измерения радиопомех, излучаемых от электрической и электронной аппаратуры, имеет большое значение в связи с тем, что почти во всех развитых странах на уровне законодательств регламентируются допустимые уровни радиопомех и методы их измерения. Поэтому любая аппаратура, которая может излучать радиопомехи, до пуска в эксплуатацию подвергается обязательным испытаниям на соответствие международным стандартам СИСПР.

Так как СИСПР является комитетом МЭК, то в его работе принимают участие все национальные комитеты, а также ряд заинтересованных международных организаций. В качестве наблюдателей в работе СИСПР принимают участие Международный консультативный комитет по радиосвязи и Международная организация гражданской авиации. Высшим органом СИСПР является Пленарная ассамблея, собираемая раз в 3 года.

Международная электротехническая комиссия - IEC (МЭК) разрабатывает стандарты в области электротехники, радиоэлектроники, связи. Она была создана в 1906 г., т.е. задолго до образования ИСО. Разновременность образования и разная направленность МЭК и ИСО определили факт параллельного существования двух крупных международных организаций. С учетом общности задач ИСО и МЭК, а также возможности дублирования деятельности отдельных технических органов между этими организациями заключено соглашение, которое направлено, с одной стороны, на разграничение сферы деятельности, а с другой - на координацию технической деятельности.

Число членов МЭК (62 страны по состоянию на 2006 год) меньше, чем членов ИСО. Это обусловлено тем, что многие развивающиеся страны практически не имеют или имеют слаборазвитую электротехнику, электронику и связь. Россия является членом МЭК с 1911 года. Высший руководящий орган МЭК - Совет, в котором представлены все национальные комитеты. Бюджет МЭК, как и бюджет ИСО, складывается из взносов стран - членов этой организации и поступлений от продажи международных стандартов. Структура технических органов МЭК такая же, как и ИСО: технические комитеты, подкомитеты и рабочие группы. В МЭК функционируют 174 комитета и подкомитета, часть которых (как и в ИСО) разрабатывает международные стандарты (МС) общетехнического и межотраслевого характера, а другая - МС на конкретные виды продукции (бытовая радиоэлектронная аппаратура, трансформаторы, изделия электронной техники).

В настоящее время разработано свыше 5200 стандартов, техничеcких отчетов, рекомендаций. Следует отметить важность проводимых МЭК работ по установлению требований безопасности для бытовых электроприборов и машин. В связи с различным подходом к обеспечению безопасности в разных странах ТК 61 «Безопасность бытовых электроприборов» выпущено более 40 МС, устанавливающих требования практически ко всем электробытовым приборам и машинам. Разработка МС в этой области имеет особенно важное значение в связи с созданием в МЭК системы сертификации электробытовых приборов и машин на соответствие их МС МЭК.


В перспективе, по прогнозу отдельных специалистов, деятельность МЭК и ИСО будет постепенно сближаться: на первом этапе - это разработка единых правил подготовки МС, создание совместных ТК (такой опыт имеется по вопросам информационной технологии), а на втором этапе - возможное слияние, тем более что большинство стран представлено в ИСО и МЭК одними и теми же органами - национальными организациями по стандартизации.

Актуальной задачей является сокращение сроков подготовки МС ИСО и МЭК, так как в настоящее время разработка их занимает в среднем четыре-пять лет. Тенденция к сокращению сроков морального старения продукции, необходимость оперативного реагирования на запросы международной торговли в стандартах ставят задачу резкого сокращения сроков разработки МС. Все чаще начинает практиковаться процедура обсуждения проектов МС в рамках телеконференций. В отличие от традиционных заседаний рабочих органов по стандартизации, на которые командируются специалисты из разных стран, телеконференции могут проводиться чаще, организованнее и оперативнее. По оценкам специалистов, проведение телеконференций экономит 80% средств и 60% времени, затрачиваемых на разработку МС в рамках традиционных процедур.

Глобализация мирового рынка, характеризующаяся стиранием границ на пути свободного перемещения людей, товаров, капитала и информации, требует перехода стран на единые стандарты. Пока средний показатель использования странами - членами ИСО международных стандартов в общем числе национальных - 22%, в странах с более высоким уровнем развития - 40%. Как идеал выдвинут принцип единого стандарта; единых испытаний; сертификатов, признанных повсюду. Этот принцип реализовался в проекте ИСО, предложенного в 2001 г. как «Мечта 1/1/1» (1/1/1 «Dream»). Смысл проекта - в устранении разнообразия в стандартах, в исключении повторов в испытаниях и процедурах подтверждения. Имеются примеры воплощения «Мечты»: на мировом рынке такие объекты стандартизации, как контейнерные перевозки, кредитные карточки, кораблестроение, отвечают стандартам и оцениваются по единым процедурам соответствия.