Как защититься от электромагнитного импульса. Электромагнитный импульс как оружие

При ядерном взрыве образуется сильное электромагнитное излучение в широком диапазоне волн с максимумом плотности в области 15-30 кГц.

Ввиду кратковременности действия - десятки микросекунд, - это излучение называют электромагнитным импульсом (ЭМИ).

Причиной возникновения ЭМИ является ассиметричное электромагнитное поле, возникающее в результате взаимодействия гамма-квантов с окружающей средой.

Основными параметрами ЭМИ, как поражающего фактора, являются напряженности электрического и магнитного полей. При воздушном и наземном взрывах плотная атмосфера ограничивает область распространения гамма-квантов, и размеры источника ЭМИ примерно совпадают с районом действия проникающей радиации. В космосе ЭМИ может приобретать качество одного из основных поражающих факторов.

На человека ЭМИ не оказывает непосредственного влияния.

Действие ЭМИ проявляется прежде всего на проводящих электрический ток телах: воздушных и подземных линиях связи и электроснабжения, системах сигнализации и управления, металлических опорах, трубопроводах и т.п. В момент взрыва в них возникает импульс тока и наводится высокий электрический потенциал относительно земли.

В результате этого может произойти пробой изоляции кабелей, повреждение входных устройств радио- и электроаппаратуры, сгорание разрядников и плавких вставок, повреждение трансформаторов, выход из строя полупроводниковых приборов.

Сильные электромагнитные поля могут вывести из строя аппаратуру на пунктах управления, узлах связи и создать опасность поражения обслуживающего персонала.

Защита от ЭМИ достигается экранированием отдельных блоков и узлов радио- и электроаппаратуры.

Химическое оружие.

Химическим оружием называют отравляющие вещества и средства их применения. К средствам применения относятся авиационные бомбы, кассеты, боевые части ракет, артиллерийские снаряды, химические мины, выливные авиационные приборы, генераторы аэрозолей и т.п.

Основу химического оружия составляют отравляющие вещества (ОВ) - токсичные химические соединения, поражающие людей и животных, заражающие воздух, местность, водоемы, продовольствие и различные предметы на местности. Некоторые ОВ предназначены для поражения растений.

В химических боеприпасах и приборах ОВ находятся в жидком или твердом состоянии. В момент применения химического оружия ОВ переходят в боевое состояние - пар, аэрозоль или капли и поражают людей через органы дыхания или - при попадании на тело человека - через кожу.

Характеристикой заражения воздуха парами и тонкодисперсными аэрозолями является концентрация С=m/v, г/м3 - количество «m» ОВ в единице объема «v» зараженного воздуха.

Количественной характеристикой степени заражения различных поверхностей является плотность заражения: d=m/s, г/м2 - т.е. количество «m» ОВ, находящееся на единице площади «s» зараженной поверхности.

ОВ классифицируется по физиологическому воздействию на человека, тактическому назначению, быстроте наступления и длительности поражающего действия, токсикологическим свойствам и пр.

По физиологическому воздействию на организм человека ОВ делятся на следующие группы:

1) ОВ нервно-паралитического действия - зарин, зоман,Vx (ВИ-икс). Они вызывают расстройства функций нервной системы, мышечные судороги, паралич и смерть.

2) ОВ кожно-нарывного действия - иприт. Поражает кожу, глаза, органы дыхания и пищеварения - при попадании внутрь.

3) ОВ общеядовитого действия - синильная кислота и хлорциан. При отравлении появляется тяжелая отдышка, чувство страха, судороги, паралич.

4) ОВ удушающего действия - фосген. Поражает легкие, вызывает их отек, удушье.

5) ОВ психо-химического действия - BZ (Би-зет). Поражает через органы дыхания. Нарушает координацию движений, вызывает галлюцинации и психические расстройства.

6) ОВ раздражающего действия - хлорацетофенон, адамсит, CS (Cи-Эс) и CR (Си-Эр). Эти ОВ вызывают раздражение органов дыхания и зрения.

Нервно-паралитические, кожно-нарывные, общеядовитые и удушающие ОВ являются ОВ смертельного действия. ОВ психо-химического и раздражающего действия - временно выводят из строя людей.

По быстроте наступления поражающего действия различают быстродействующие ОВ (зарин, зоман, синильная кислота, Си-Эс, Си-Эр) и медленнодействующие (Ви-икс, иприт, фосген, Би-зет).

По длительности ОВ делятся на стойкие и нестойкие. Стойкие сохраняют поражающее действие несколько часов или суток. Нестойкие - несколько десятков минут.

Токсодоза - количество ОВ, необходимое для получения определенного эффекта поражения: T=c*t (г*мин)/м3 , где: с - концентрация ОВ в воздухе, г/м3; t - время пребывания человека в зараженном воздухе, мин.

При применении химического боеприпаса образуется первичное облако ОВ. Под действием движущихся масс воздуха ОВ распространяется в некотором пространстве, образуя зону химического заражения.

Зоной химического заражения называют район, подвергшийся непосредственному воздействию химического оружия, и территорию, над которой распространилось облако, зараженное ОВ с поражающими концентрациями.

В зоне химического заражения могут возникать очаги химического поражения.

Очаг химического поражения - это территория, в пределах котрой в результате воздействия химического оружия произошли массовые поражения людей, сельскохозяйственных животных и растений.

Защита от отравляющих веществ достигается использованием индивидуальных средств защиты органов дыхания и кожи, а также коллективные средства.

К особым группам химического оружия можно отнести бинарные химические боеприпасы, представляющие собой две емкости с различными газами - не ядовитыми в чистом виде, но при их смещении во время взрыва получается ядовитая смесь.

Электромагнитный импульс (ЭМИ) -- поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия, короткого замыкания в электрооборудовании высокой мощности, или близкой вспышки сверхновой и т. д.). Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведённых напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях.

Природа электромагнитного импульса

Ядерный взрыв производит огромное количество ионизированных частиц, сильнейшие токи и электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). На человека оно не оказывает никакого влияния (по крайней мере в пределах изученного), зато повреждает электронную аппаратуру. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов. Зарождение ЭМИ начинается с чрезвычайно короткого, но мощного выброса гамма-лучей из зоны реакции. На протяжении ~10 наносекунд в виде гамма-лучей выделяется 0.3% энергии взрыва. Гамма-квант, сталкиваясь с атомом какого-либо газа воздуха выбивает из него электрон, ионизируя атом. В свою очередь этот электрон сам способен выбить своего собрата из другого атома. Возникает каскадная реакция, сопровождающаяся образованием до 30 000 электронов на каждый гамма-квант. На низких высотах, гамма-лучи, испущенные по направлению к земле, поглощаются ею, не производя большого количества ионов. Свободные электроны, будучи гораздо легче и проворнее атомов, быстро покидают область, в которой они зародились. Образуется очень сильное электромагнитное поле. Это создает очень сильный горизонтальный ток, искру, рождающую широкополосное электромагнитное излучение. В то же время, на земле, под местом взрыва, собираются электроны "заинтересовавшиеся" скоплением положительно заряженных ионов непосредственно вокруг эпицентра. Поэтому сильное поле создается и вдоль Земли.

И хотя в виде ЭМИ излучается очень незначительная часть энергии - 1/3x10-10, это происходит за очень короткий промежуток времени. Так что мощность, развиваемая им огромна: 100 000 МВт. На больших высотах происходит ионизация расположенных ниже плотных слоев атмосферы. На космических высотах (500 км) область такой ионизации достигает 2500 км. Максимальная ее толщина - до 80 км. Магнитное поле Земли закручивает траектории электронов в спираль, образуя мощный электромагнитный импульс на несколько микросекунд. В течении нескольких минут между поверхностью Земли и ионизированным слоем возникает сильное электростатическое поле (20-50 кВ/м), пока большая часть электронов не будет поглощена вследствие процессов рекомбинации. Хотя пиковая напряженность поля при высотном взрыве составляет всего 1-10% от наземного, на образование ЭМИ уходит в 100 000 больше энергии - 1/3x10-5 всей выделившейся, напряженность остается примерно постоянной под всем ионизированным районом.

Воздействие ЭМИ на технику. Сверхсильное электромагнитное поле индуцирует высокое напряжение во всех проводниках. ЛЭП будут фактически являться гигантскими антеннами, наведенное в них напряжение вызовет пробой изоляции и выход из строя трансформаторные подстанции. Выйдет из строя большинство специально не защищенных полупроводниковых приборов. В этом плане большую фору микросхемам даст старая добрая ламповая техника, которой нипочем ни сильная радиация, ни сильные электрические поля.

Дата публикации 28.01.2013 14:06

В глобальной сети сейчас можно найти огромное количество информации о том, что такое электромагнитный импульс. Многие его боятся, иногда не полностью понимая, о чем идет речь. Масла в огонь подливают научные телевизионные передачи и статьи в желтой прессе. Не пора ли разобраться в этом вопросе?

Итак, электромагнитный импульс (ЭМИ ) – это возмущение электромагнитного поля, оказывающее влияние на любой материальный объект, находящийся в зоне его действия. Он воздействует не только на проводящие ток объекты, но и на диэлектрики, только немного в другой форме. Обычно понятие «электромагнитный импульс» соседствует с термином «ядерное оружие». Почему? Ответ прост: именно при ядерном взрыве ЭМИ достигает своего наибольшего значения из всех возможных. Вероятно, в некоторых экспериментальных установках также удается создать мощные возмущения поля, но они носят локальный характер, а вот при ядерном взрыве затрагиваются большие площади.

Своим появлением электромагнитный импульс обязан нескольким законам, с которыми в повседневной работе сталкивается каждый электрик. Как известно, направленное движение элементарных частиц, обладающее электрическим зарядом, неразрывно связано с магнитным полем. Если есть проводник, по которому протекает ток, то вокруг него всегда регистрируется поле. Верно и обратное: воздействие электромагнитного поля на проводящий материал генерирует в нем ЭДС и, как следствие, ток. Обычно уточняют, что проводник формирует цепь, хотя это верно только отчасти, так как вихревые токи создают собственные контуры в объеме проводящего вещества. Ядерный взрыв создает движение электронов, следовательно, возникает поле. Далее все просто: линии напряженности, в свою очередь, создают наведенные токи в окружающих проводниках.

Механизм данного явления следующий: благодаря мгновенному высвобождению энергии возникают потоки элементарных частиц (гамма, альфа, рентгеновское излучение и пр.). Во время их прохождения сквозь воздух из молекул «выбиваются» электроны, которые ориентируются вдоль магнитных линий Земли. Возникает направленное движение (ток), генерирующее электромагнитное поле. А так как эти процессы протекают молниеносно, можно говорить об импульсе. Далее во всех проводниках, находящихся в зоне действия поля (сотни километров) индуцируется ток, а так как напряженность поля огромна, значение тока также велико. Это вызывает срабатывание систем защит, перегорание предохранителей – вплоть до возгорания и неустранимых повреждений. Действию ЭМИ подвержено все: от интегральных схем до ЛЭП, правда, в различной степени.

Защита от ЭМИ заключается в предотвращении индуцирующего действия поля. Этого можно добиться несколькими способами:

– удалиться от эпицентра, так как поле слабеет с увеличением расстояния;

– экранировать (с заземлением) электронное оборудование;

– «разобрать» схемы, предусмотрев зазоры с учетом большого тока.

Часто можно встретить вопрос о том, как создать электромагнитный импульс своими руками. На самом деле каждый человек сталкивается с ним ежедневно, щелкая выключателем лампочки. В момент коммутации ток кратковременно превышает номинальный в десятки раз, вокруг проводов генерируется электромагнитное поле, которое наводит в окружающих проводниках электродвижущую силу. Просто сила этого явления недостаточна, чтобы вызвать повреждение, сопоставимое с ЭМИ ядерного взрыва. Более выраженное его проявление можно получить, замеряя уровень поля вблизи дуги электросварки. В любом случае задача проста: необходимо организовать возможность мгновенного возникновения электрического тока большого действующего значения.

что такое ЭЛЕКТРОМАГНИТНЫЙ ИМПУЛЬС?

  1. Ну чего так вс усложнять то?
    Электро-магнитным он называется потому, что электрическая составляющая неразрывно связана с магнитной. Это как радио-волна. Только в последнем случае - это последовательность электромагнитных импульсов в виде гармонических колебаний.
    А тут - всего один импульс.
    Чтобы его получить, надо в точке пространства создать заряд, положительный или отрицательный. Поскольку мир полей дуален, то нужно создавать 2 разноимнных заряда в разных местах.
    Вряд ли возможно сделать такое в течение времени равном нулю.
    Однако можно например подсоединить конденсатор к антенне. Но в данном случае сработает резонансная природа антенны. И опять таки мы получим не единственный импульс а колебания.
    В бомбе скорее всего тоже не единичный электромагнитный импульс а импульс электромагнитного колебания.
  2. Электромагнитный импульс ядерного взрыва представляет собой мощное кратковременное электромагнитное поле с длинами волн от 1 до 1000м и более, возникающее в момент взрыва, которое наводит сильные электрические напряжения и токи в проводниках различной протяженности в воздухе, земле, на технике и других объектах (металлические опоры, антенны, провода линий связи и электропередач, трубопроводы и т. п.) .
    При наземном и низком воздушном взрывах поражающее воздействие электромагнитного импульса наблюдается на расстоянии нескольких километров от центра взрыва. При высотном ядерном взрыве могут возникнуть электромагнитные поля в зоне взрыва и на высотах 20 - 40км от поверхности земли.
    Электромагнитный импульс характеризуются напряженностью поля. Напряженность электрического и магнитного полей зависит от мощности, высоты взрыва, расстояния от центра взрыва и свойств окружающей среды.
    Поражающее действие электромагнитного импульса проявляется, прежде всего, по отношению к радиоэлектронной и электротехнической аппаратуре, находящейся на вооружении, военной технике и других объектах.
    Под действием электромагнитного импульса в указанной аппаратуре наводятся электрические токи и напряжения, которые могут вызвать пробой изоляции, повреждение трансформаторов, порчу полупроводниковых приборов, перегорание плавких вставок и других элементов радиотехнических устройств.
    Защита от электромагнитного импульса достигается экранированием линий электроснабжения, а также аппаратуры. Все наружные линии должны быть двухпроводными, хорошо изолированными от земли, с плавкими вставками.
    Начало эпохи информационных войн, ознаменовалось появлением новых видов оружия электромагнитного импульса (ЭМИ) и радиочастотного. По принципу поражающего действия оружие ЭМИ имеет много общего с электромагнитным импульсом ядерного взрыва и отличается от него, среди прочего, более короткой длительностью. Разработанные и испытанные в ряде стран неядерные средства генерации мощного ЭМИ способны создавать кратковременные (в несколько наносекунд) потоки электромагнитного излучения, плотность которых достигает предельных значений относительно электрической прочности атмосферы. При этом чем короче ЭМИ, тем выше порог допустимой мощности генератора.
    По мнению аналитиков, наряду с традиционными средствами радиоэлектронной борьбы использование ЭМИ- и радиочастотного оружия для нанесения электронных и комбинированных электронно-огневых ударов с целью вывода из строя радиоэлектронных средств (РЭС) на расстояниях от сотен метров до десятков километров может стать одной из основных форм боевых действий в ближайшем будущем. Кроме временного нарушения функционирования РЭС, допускающего последующее восстановление их работоспособности, ЭМИ-оружие может осуществлять физическое разрушение (функциональное поражение) полупроводниковых элементов РЭС, в том числе находящихся в выключенном состоянии.
    ОтметиМ поражающее действие мощного излучения ЭМИ-оружия на электротехнические и электроэнергетические системы вооружения и военной техники (ВВТ) , электронные системы зажигания двигателей внутреннего сгорания. Токи, возбуждаемые электромагнитным полем в цепях электро- или радиовзрывателей, установленных на боеприпасах, могут достигать уровней, достаточных для их срабатывания. Потоки высокой энергии в состоянии инициировать детонацию взрывчатых веществ (ВВ) боеголовок ракет, бомб и артиллерийских снарядов, а также неконтактный подрыв мин в радиусе 5060 м от точки подрыва ЭМИ-боеприпаса средних калибров (100120 мм) .
    В отношении поражающего действия ЭМИ-оружия на личный состав- эффект временного нарушения адекватной сенсомоторики человека, возникновения ошибочных действий в его поведении и даже потери трудоспособности. Негативные проявления воздействия мощных сверхкоротких СВЧ-импульсов не обязательно связаны с тепловым разрушением живых клеток биологических объектов. Поражающим фактором зачастую является высокая напряженность наведенного на мембранах клеток электрического поля.
  3. Это всплеск электрического и магнитного поля. Т. к. свет - тоже электромагнитная волна, то и вспышка света - тоже электромагнитный импульс.
  4. Всплеск электромагнтных волн - намного превышающий естественный электромагнитный фон Земли
  5. удар током
  6. Один из поражающих факторов ядерного взрыва....
  7. Электромагнитный импульс (ЭМИ) поражающий фактор ядерного оружия, а также любых других источников ЭМИ (например молнии, специального электромагнитного оружия или близкой вспышки сверхновой и т. д.) . Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением наведнных напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. Наиболее уязвимы линии связи, сигнализации и управления. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов, порча компьютеров/ноутбуков и сотовых телефонов и т. п. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры

В глобальной сети сейчас можно найти огромное количество информации о том, что такое электромагнитный импульс. Многие его боятся, иногда не полностью понимая, о чем идет речь. научные телевизионные передачи и статьи в желтой прессе. Не пора ли разобраться в этом вопросе?

Итак, электромагнитный импульс (ЭМИ) - это возмущение оказывающее влияние на любой материальный объект, находящийся в зоне его действия. Он воздействует не только на проводящие ток объекты, но и на диэлектрики, только немного в другой форме. Обычно понятие «электромагнитный импульс» соседствует с термином «ядерное оружие». Почему? Ответ прост: именно при ядерном взрыве ЭМИ достигает своего наибольшего значения из всех возможных. Вероятно, в некоторых экспериментальных установках также удается создать мощные возмущения поля, но они носят локальный характер, а вот при ядерном взрыве затрагиваются большие площади.

Своим появлением электромагнитный импульс обязан нескольким законам, с которыми в повседневной работе сталкивается каждый электрик. Как известно, направленное движение элементарных частиц, обладающее электрическим зарядом, неразрывно связано с Если есть проводник, по которому протекает ток, то вокруг него всегда регистрируется поле. Верно и обратное: воздействие электромагнитного поля на проводящий материал генерирует в нем ЭДС и, как следствие, ток. Обычно уточняют, что проводник формирует цепь, хотя это верно только отчасти, так как создают собственные контуры в объеме проводящего вещества. создает движение электронов, следовательно, возникает поле. Далее все просто: линии напряженности, в свою очередь, создают наведенные токи в окружающих проводниках.

Механизм данного явления следующий: благодаря мгновенному высвобождению энергии возникают потоки элементарных частиц (гамма, альфа, и пр.). Во время их прохождения сквозь воздух из молекул «выбиваются» электроны, которые ориентируются вдоль магнитных линий Земли. Возникает направленное движение (ток), генерирующее электромагнитное поле. А так как эти процессы протекают молниеносно, можно говорить об импульсе. Далее во всех проводниках, находящихся в зоне действия поля (сотни километров) индуцируется ток, а так как напряженность поля огромна, значение тока также велико. Это вызывает срабатывание систем защит, перегорание предохранителей - вплоть до возгорания и неустранимых повреждений. Действию ЭМИ подвержено все: от до ЛЭП, правда, в различной степени.

Защита от ЭМИ заключается в предотвращении индуцирующего действия поля. Этого можно добиться несколькими способами:

Удалиться от эпицентра, так как поле слабеет с увеличением расстояния;

Экранировать (с заземлением) электронное оборудование;

- «разобрать» схемы, предусмотрев зазоры с учетом большого тока.

Часто можно встретить вопрос о том, как создать электромагнитный импульс своими руками. На самом деле каждый человек сталкивается с ним ежедневно, щелкая выключателем лампочки. В момент коммутации ток кратковременно превышает номинальный в десятки раз, вокруг проводов генерируется электромагнитное поле, которое наводит в окружающих проводниках электродвижущую силу. Просто сила этого явления недостаточна, чтобы вызвать повреждение, сопоставимое с ЭМИ ядерного взрыва. Более выраженное его проявление можно получить, замеряя уровень поля вблизи дуги электросварки. В любом случае задача проста: необходимо организовать возможность мгновенного возникновения электрического тока большого действующего значения.