Фосфор в сточной воде. Очистка сточных вод от фосфорных соединений

Сточные воды являются сложной неоднородной системой, содержащей загрязнения различного характера. Вещества представлены в растворимом и нерастворимом, органическом и неорганическом виде. Концентрация соединений бывает различной, в частности, органические загрязнения в бытовых стоках представлены в виде белков, углеводов, жиров и продуктов биологической переработки. Кроме того стоки содержат довольно крупные примеси – отходы растительного происхождения, такие как бумага, тряпки, волосы и синтетические вещества. Неорганические соединения представлены ионами фосфатов, в состав может входить азот, кальций, магний, калий, сера и другие соединения.

В состав бытовых стоков всегда входят биологические вещества в виде плесневых грибков, яйца глист, бактерий, вирусов. Именно из-за присутствия загрязняющих веществ, сточные воды считаются опасными для человека, растений и животных в эпидемиологическом плане.

Для определения состава и количества взвешенных частиц в водах слива, необходимо провести множество анализов химического и санитарно-бактериологического типа. Результаты покажут уровень концентрации загрязняющих элементов в воде, а значит, самый оптимальный вариант очистки. Но проведение полного анализа не всегда возможно, поэтому проще воспользоваться упрощенным вариантом, дающим неполную характеристику воды, однако предоставляющим сведения о прозрачности, наличии взвешенных частиц, концентрации растворенного кислорода и потребности в нем.

Анализ проводится по следующим показателям:

  1. Температура . Показатель указывает на скорость образования осадка из взвесей и интенсивность процессов биологического вида, влияющих на оперативность и качество очистки.
  2. Цветность, окраска . Бытовые сточные воды нечасто имеют выраженный окрас, но если есть подобный фактор, качество стоков весьма плохое и требует усиления работы очистных сооружений или полной замены способа очистки.
  3. Запахи . Как правило, высокая концентрация продуктов распада органики, наличие в стоках фосфатов и входящий в состав азот, калий, сера, придают потокам резкий неприятный запах.
  4. Прозрачность . Это показатель уровня содержащихся загрязнений, определяющийся методом шрифта. Для бытовых вод стандарт составляет 1-5 см, для потоков, прошедших методы очистки биологическими соединениями – от 15 см.
  5. Уровень pH используется для измерения реакции среды. Допустимые показатели 6,5 – 8,5.
  6. Осадок . Измеряется именно плотный осадок, определяемый по фильтрату пробы. По стандартам СНиП допускается не более 10г/л.
  7. Взвешенные вещества составляют в городских водах не более 100-500 сг/л с зольностью до 35%.

Отдельно исследуется фосфор и азот, а также все их формы. Берется 4 формы азота: общий, аммонийный, нитритный и нитратный. В сточных водах чаще встречается общий и аммонийный тип, нитритный и нитратный лишь, если применялись методы очистки посредством аэротенков и биофильтратов. Установление концентрации азота и его форм – важная составляющая анализа, так как азот необходим для питания бактерий как и фосфор.


Как правило, азот в бытовых сточных водах содержится в полном объеме, а вот фосфатов маловато, поэтому зачастую при недостатке фосфаты заменяются известью (хлористым аммонием).

  • Сульфаты и хлориды не подвержены изменениям при очистке, удаление взвешенных веществ возможно только при полной переработке стоков, однако содержание веществ в малой концентрации не влияет на биохимические процессы, поэтому допустимые параметры остаются в пределах 100 мг/л.
  • Токсичные элементы – это тоже взвешенные вещества, однако даже малая концентрация соединений оказывает отрицательное влияние на жизнь и деятельность организмов. Именно поэтому взвешенные вещества токсичного типа относятся к виду особо загрязняющих и выделены в отдельную группу. Сюда относятся: сульфиды, ртуть, кадмий, свинец и многие другие соединения.
  • Синтетические поверхностно-активные взвешенные вещества – одна из самых серьезных угроз. Содержание элементов в сточных водах негативно отражается на состоянии водоемов, а также снижает функциональность очистных сооружений.

Различается всего 4 группы СПАВ:

  1. Анионоактивные – на долю соединений приходится ¾ мирового производства СПАВ;
  2. Неоногенные – занимают второе место по концентрации в городских сточных водах;
  3. Катионоактивные – замедляют процессы очистки, происходящие в отстойниках;
  4. Амфотерные – встречаются редко, но значительно снижают эффективность удаления отходов из воды.

Растворенный кислород содержится в сливных водах не более 1 мг/л, что предельно мало для нормальной работы микроорганизмов, которые отвечают за удаление взвешенных частиц из стоков. Поддержание жизнедеятельности бактерий требует от 2 мг/л, поэтому важен контроль за содержанием растворенного кислорода в бытовых сливных водах, особенно за теми, что сбрасываются в искусственные или естественные водоемы – несоблюдение допустимых стандартов содержания растворенного кислорода приведет к появлению загрязняющих частиц в озерах и нарушению естественного природного баланса. А это уже означает вымирание природных ресурсов.

Что касается биологических соединений, входящих в состав вод слива, то процесс очистки справляется с ними на 90% и выше. Особенно это касается яиц гельминтов, встречающихся в потоках в большом разнообразии. Концентрация яиц достигает до 92% от общего состава загрязняющих веществ, поэтому именно удаление элементов является одной из наиболее важных задач.

Варианты очистки сточных бытовых и промышленных вод


Самым практичным и популярным считается способ, при котором удаление производится биологическим путем. Функционально процесс представляет собой переработку активными биологическими компонентами загрязняющих частиц, попавших в сточные бытовые воды. Различается удаление двумя вариантами:

  1. Анаэробный – процесс разрушения веществ без доступа воздуха/кислорода;
  2. Аэробный – разрушение и удаление взвешенных частиц полезными микроорганизмами с поступлением кислорода.

Кроме того, создаются искусственно условия для лучшей переработки органики, но иногда колоний бактерий достаточно, чтобы очистка бытовых сточных потоков проходила в естественных условиях и важно лишь следить за поступлением достаточного количества органики.

Искусственно создаваемые условия называются полями фильтрации. Это специальные участки с песчаной или суглинистой почвой, подготовленные для протекания естественной биологической очистки загрязнений в сливных водах посредством фильтрации через почвенные слои. Таким образом достигаются допустимые нормы содержания веществ. Процесс протекает с помощью аэробных и анаэробных бактерий, содержащихся в грунте, поэтому удаление загрязняющих частиц считается более полным. Однако метод не всегда может устранить фосфаты и азот в очищаемых водах, к тому же считается неудобным из-за больших площадей, сезонного использования и неприятного запаха.


Применение септиков и аэрационных биологических очистных сооружений также способно справиться с очисткой стоков. Преимущества искусственных очистных в возможности интенсификации процессов очистки, дооснащение оборудованием типа биофильтров, а также способностью использовать конструкции в течение всего года. Огромное значение имеет возможность очистки без неприятного запаха. При поддержании благоприятного климата и поступлении достаточного количества органики, процесс очистки происходит беспрерывно, причем производится удаление самых серьезных загрязняющих соединений, концентрация которых превышена. Но важно помнить, что общий состав поступающих стоков не должен содержать множество элементов, таких как:

  • Химические кислоты;
  • Бензины и растворители;
  • Биологически активные вещества;
  • Антибиотики;
  • Соединения порошков стиральных, моющих;
  • Абразивы.

При всех возможностях удаления, очистка в септиках бытового назначения не справляется с соединениями фосфатов, нитратов и азот тоже не нейтрализует, однако значительно сниженная концентрация позволяет накапливать очищенные потоки в резервуарах, откуда брать воду для полива или технических нужд.

Взвешенные вещества, входящие в состав сливных потоков, удаляются посредством биологического способа очистки, то есть посредством культивирования в водах микроорганизмов, разрушающих соединения загрязняющих частиц. Органика бывает как растительного, так и животного происхождения, причем основным компонентом растительного мусора является углерод, а животного – азот. Именно поэтому общий состав полезных бактерий для очистки сточных потоков должен содержать все виды микроорганизмов для того, чтобы успешно справляться с удалением загрязнений.

Для того чтобы удалить в сточных водах агрессивные химические соединения, фосфаты, токсические вещества, входящие в состав промышленных стоков, применяются централизованные системы очистки, где показано использование сильных реактивов и химикатов. А для того, чтобы справиться с загрязнениями в бытовых водах, откуда берется вода для полива, мытья машины и прочих хозяйственных нужд, достаточно качественных септиков.

ЦЕНТР ИССЛЕДОВАНИЯ И КОНТРОЛЯ ВОДЫ

МЕТОДИКА
выполнения измерений массовой концентрации
общего фосфора и фосфора фосфатов в пробах питьевых, природных
и сточных вод фотометрическим методом

ЦВ 3.04.53-2004

ФР.1.31.2004.01231

Санкт-Петербург

3 Метод измерений

3.1 Метод измерений содержания общего фосфора и фосфора фосфатов заключается во взаимодействии ионов ортофосфатов с ионами молибдата и сурьмы с образованием комплекса фосфорно-молибденовой гетерополикислоты и восстановлении его аскорбиновой кислотой с последующим фотометрическим определением полученного окрашенного соединения при длине волны излучения (690 ± 20) нм. Для определения общего фосфора пробы подвергаются предварительной минерализации всех фосфорсодержащих веществ надсернокислым аммонием в среде серной кислоты.

3.2 Мешающие влияния и способы их устранения.

Сильнокислые или сильнощелочные пробы предварительно нейтрализуют до рН = 4 - 11.

Определению мешают сульфиды и сероводород в концентрациях, превышающих 3 мг/дм 3 . Их мешающее влияние устраняют добавлением нескольких миллиграммов твердого марганцевокислого калия на 100 см 3 пробы. После встряхивания в течение 1 - 2 минут раствор должен оставаться слаборозовым.

На определение оказывает влияние присутствие соединений мышьяка, который образует с молибдатом аналогичную фосфору гетерополикислоту. Если в пробе предполагается или известно присутствие соединений мышьяка, то за 10 минут до добавления смешанного реактива к пробе по добавляют 1 см 3 раствора серноватистокислого натрия массовой концентрации 12 г/дм 3 . Измерение оптической плотности такой пробы по следует провести через 10 - 11 минут, не более.

Определению фосфат-ионов мешают нитриты в концентрации 0,3 мг/дм 3 и более. Их мешающее влияние устраняют прибавлением 1,5 см 3 раствора мочевины с массовой долей 40 % после минерализации по .

Определению мешает железо в концентрации больше 5 мг/дм 3 . Его мешающее влияние устраняют прибавлением в анализируемую пробу эквивалентного количества ЭДТА (трилона "Б").

4 Средства измерений, вспомогательные устройства, реактивы и материалы

4.1 Средства измерений.

4.1.1 Спектрофотометр или фотоэлектроколориметр, обеспечивающий измерение оптической плотности при длине волны λ = 690 ± 20 нм, кюветы с рабочей длиной 2,5; 3 или 5 см.

4.1.2 Весы лабораторные общего назначения по ГОСТ 24104-2001 с ценой деления не более 0,1 мг, погрешностью не более 0,75 мг, наибольшим пределом взвешивания не более 210 г.

4.1.3 Цилиндры мерные или мензурки по ГОСТ 1770-74 .

4.2.4 Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82 .

4.2.5 Воронки лабораторные по ГОСТ 25336-82 .

4.2.6 Стаканы термостойкие по ГОСТ 25336-82 .

4.2.7 Фильтры обеззоленные "синяя лента" по ТУ 6-09-1678-86.

4.3 Реактивы и материалы.

4.3.2 Аммоний надсернокислый по ГОСТ 20478-75 , ч.д.а.

4.3.3 Аммоний молибденовокислый, 4-х водный по ГОСТ 3765-78 , ч.д.а.

4.3.4 Калий антимонилвиннокислый по ТУ 6-09-803-76.

4.3.7 Кислота аскорбиновая (фарм.).

4.3.8 Фенолфталеин (индикатор) по ТУ 6-09-5360-87, спиртовой раствор с массовой долей 0,1 %.

4.3.9 Соль динатриевая этилендиаминтетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652-73 .

4.3.10 Калий марганцовокислый по ГОСТ 20490-75 , ч.д.а.

4.3.11 Натрий серноватистокислый 5-водный по ГОСТ 27068-86 .

4.3.12 Универсальная индикаторная бумага для измерения рН поТУ 6-09-1181-71.

4.3.13 Дистиллированная вода по ГОСТ 6709-72 .

Допускается применять другие средства измерений, вспомогательное оборудование и реактивы с метрологическими и техническими характеристиками не хуже указанных.

5 Требования безопасности

При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75 .

Требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019-79 .

Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83 .

Исполнители должны быть проинструктированы о мерах безопасности при работе с нагревательными приборами в соответствии с инструкциями, прилагаемыми к прибору. Организация обучения работающих безопасности труда должна производиться по ГОСТ 12.0.004-90 .

6 Требования к квалификации операторов

К выполнению измерений допускаются лица со средним специальным образованием, имеющие стаж работы в химической лаборатории не менее 6 месяцев и освоившие методику выполнения измерений.

7 Условия выполнения измерений

При подготовке к выполнению измерений и при их проведении необходимо соблюдать следующие условия:

температура окружающего воздуха,

атмосферное давление,

относительная влажность воздуха,

напряжение питания сети,

частота питающей сети,

При использовании автоклава бутылочки из боросиликатного стекла помещают в автоклав и выдерживают при температуре 132 °С и давлении 0,2 МПа в течение 30 минут.

После охлаждения в пробу прибавляют одну - две капли раствора фенолфталеина и раствор гидроокиси натрия до появления слаборозовой окраски. Затем раствор обесцвечивают прибавлением раствора серной кислоты молярной концентрации 0,5 моль/дм 3 .

11 Контроль качества результатов измерений

11.1 Контроль стабильности результатов измерений

Контроль стабильности результатов измерений в лаборатории осуществляют по ГОСТ Р ИСО 5725-6 , раздел 6, используя методы контроля стабильности стандартного отклонения промежуточной прецизионности и контроля стабильности показателя правильности рутинного анализа. Средство контроля готовят из ГСО состава водных растворов фосфат-ионов, аналогично пункту и анализируют согласно разделу . При построении контрольных карт для расчета пределов действия и предупреждения используют значения стандартного отклонения промежуточной прецизионности при различиях по факторам «время», «оператор», «оборудование» σ I(T,O,E) , приведенные в таблице .

Периодичность проведения контроля стабильности результатов измерений устанавливают индивидуально для каждой лаборатории в соответствии с документами по внутрилабораторному контролю качества результатов анализа.

При неудовлетворительных результатах контроля, например, превышение предела действия или регулярное превышение предела предупреждения, выясняют причины этих отклонений, в том числе повторяют градуировку прибора, проводят смену реактивов, проверяют работу оператора.

11.2. Контроль точности измерений при внедрении МВИ.

При внедрении МВИ в практику работы лаборатории необходимо провести контроль точности результатов измерений массовой концентрации общего фосфора и фосфора фосфатов, используя метод добавок в пробы вод.

Для контроля берут не менее пяти проб разного состава, анализируемых в лаборатории. Каждую пробу делят на две части. Первую часть пробы анализируют в соответствии с разделом , получая результат измерений массовой концентрации общего фосфора или фосфора фосфатов (С ). Во вторую часть пробы вводят добавку. Добавку готовят из ГСО состава водных растворов фосфат-ионов. Численное значение добавки рассчитывается таким образом, чтобы полученное после введения добавки значение массовой концентрации общего фосфора или фосфора фосфатов в пробе воды (С к) удовлетворяло условию:

С к = (1,5 ÷ 2) С,

где С - экспериментально установленное значение массовой концентрации общего фосфора или фосфора фосфатов в пробе до введения добавки.

Результаты контроля признаются удовлетворительными, если выполняется условие:

где µ - действительное значение массовой концентрации общего фосфора или фосфора фосфатов в добавке;

Δ 1 и Δ 2 - абсолютная погрешность определения массовой концентрации общего фосфора или фосфора фосфатов в пробе с добавкой и в пробе без добавки (при Р = 0,95). Значения Δ 1 и Δ 2 рассчитываются по формулам:

Δ 1 = (δ·С к)/100; Δ 2 = (δ·С)/100

где δ - значения границ интервала, в котором относительная погрешность находится с доверительной вероятностью Р = 0,95, % (таблицы и ).

После внедрения МВИ в практику работы лаборатории при необходимости проверки приемлемости результатов измерений, полученных в условиях воспроизводимости, проводят межлабораторные сравнительные испытания с использованием данной методики для оценки стандартного отклонения воспроизводимости. В случае невозможности организации межлабораторных сравнительных испытаний допускается, согласно МИ 2336-2002 , оценить значение стандартного отклонения воспроизводимости, ctr, по формуле: σ R = 1,2·σ I(Т,О,Е) . Проверку приемлемости результатов измерений в условиях воспроизводимости осуществляют по ГОСТ Р ИСО 5725-6-2002 , пункт 5.3.

Сопоставление альтернативных методов измерений проводят по ГОСТ Р ИСО 5725-6-2002 , раздел 8.

ПРИЛОЖЕНИЕ 1

Инструкция для работы на деструкционной установке "TURBOTERM" фирмы "GERHARD" при выполнении измерений массовой концентрации фосфора общего в пробах питьевых, природных и сточных вод.

Внимание! При любых неисправностях Вы можете немедленно остановить работу системы нажатием клавиши Stop.

Чтобы обеспечить нужное разрежение и полное удаление паров штатив должен быть полностью заполнен.

1. Поместите заполненный штатив с пробами в нижнее отделение двухуровневой стойки.

2. Удалите поддон и поместите узел удаления паров на штатив с пробирками TURBOTERM. Отгонка выходящих продуктов сгорания осуществляется через перевернутые стеклянные воронки с фторопластовыми уплотнениями. Убедитесь, что воронки плотно насажены на пробирки TURBOTERM.

3. Включите водоструйный насос (откройте водопроводный кран).

4. Включите прибор в сеть (розетка) и включите сетевой выключатель на панели прибора.

На лицевой панели дисплея должны появиться следующие надписи:

Дисплей режимов показывает номер программы (от 1 до 9).

На дисплее таймера отображено количество стадий нагревания (от Н0 до Н9).

Например: Н0 - означает, что нагрев не используется,

Н3 - введено 3 стадии нагревания и т. д.

Рис. 1 Блок-схема программы

5. Выберете нужную программу термической обработки проб нажатием клавишей "+" или "-".

Запустите работу прибора по выбранной программе нажатием клавиши RUN, после чего должно наблюдаться периодическое изменение яркости дисплея (мигание).

На дисплее режимов будет высвечиваться значение мощности нагревателя проб, на дисплее таймера - время, остающееся до окончания данной стадии нагревания.

Для ввода или корректировки программы необходимо произвести следующие действия:

А) Нажатием клавиши Prog , на дисплее кратковременно должна появиться надпись:

Б) Затем должен высветиться установленный режим первой стадии нагревания:

Параметры режима нагревания проб можно изменить, для этого необходимо нажать клавиши "+" или "-". Мигающая точка на дисплее означает, что прибор готов к изменению мощности нагревателя проб. С помощью клавиш "+" или "-" необходимо установить нужное значение мощности нагревателя проб.

После этого, если необходимо, изменить время нагревания, для этого следует нажать клавишу Time и аналогичным образом изменить число на дисплее таймера.

В) Нажатием клавиши Prog переходим ко второй стадии нагревания.

На дисплее должна появиться надпись:

Затем должен высветиться установленный режим второй стадии нагревания:

На второй стадии нагревания следует понизить мощность нагревателя до 50 % - 70 %, в зависимости от интенсивности кипения. Для изменения мощности и времени нагревания поступают в соответствии с п.4 (Б).

Г) Если изменять установленные параметры не надо, то нажимаем клавишу "+", на дисплее должно высветиться:

Затем высвечивается установленный режим 3-й стадии нагревания

Д) Нажмите клавишу Stop . Должна высветиться первоначальная надпись:

Е) Для запуска откорректированной программы нажмите клавишу Run , при этом высвечивается режим первой стадии нагревания:

Экран дисплея будет мигать.

6. По окончании работы прибора по программе раздастся короткий звуковой сигнал и на дисплее таймера появится надпись End :

Экология/4 Промышленнная экология и медицина труда

к. т. н., Келль Л. С.

ГУП Водоканал СПб

Внедрение технологии биологической дефосфотации UCT K .

Фосфор, содержащийся в сточных водах является основным биогенным элементом, вызывающим антропогеннуюэфтрофикацию природных водных экосистем. В частности, увеличение содержания фосфора в водных экосистемах вызывает бурное развитие (цветение) сине-зеленых водорослей, многие виды которых являются азотфиксирующими организмами и поэтому их развитие лимитируется именно содержанием фосфора в растворе. В свою очередь “цветение” сине-зелёных за счёт выделения токсинов и создания аноксидных зон ведёт к деградации и гибели водных экосистем (Одум, 1975г.).

К настоящему времени разработаны и достаточно широко применяются при очистке сточных вод технологические методы биологической дефосфотации. Принцип биоудаления фосфора основан на жизнедеятельности микроорганизмов, в частности a cine to bacter, которые способны аккумулировать больше фосфора, чем нужно на прирост - так называемое «жадное поглощение». Acine to bacter (фосфатаккумулирующие организмы – ФАО) обычно присутствуют в активном иле, но в незначительных количествах. Чтобы эти микроорганизмы начали играть свою полезную роль, необходимо обеспечить их низкомолекулярными летучими жирными кислотами (ЛЖК), которые служат субстратом для них, и создать условия, при которых они способны использовать ЛЖК эффективнее других микроорганизмов, находящихся в биценозе.

Для увеличения содержания ЛЖК в поступающей на биологическую очитку воде проводят процесс сбраживания (ацидофикации) сырого осадка. Затем сточные воды, обогащенные ЛЖК, подают в процесс биологической очистки, предусматривающий анаэробную зону, где ФАО способны потреблять ЛЖК, используя при этом энергию полифосфатных связей. (Баженов, Денисов 2009 http://www.pump.ru/information/publications/Articles/EPR%202-2009%20Bazhenov.pdf /)

Одним из наиболее распространенных технологических решений биологической дефосфотации сточных вод являетсяпроцесс UCT (University of Cape Town ), а также его модификации.(См. рис.).

Рис. Технологическая схема UCT -процесса.

Данный технологический процесс имеет следующие особенности: возвратный активный ил перекачивается из вторичных отстойников в аноксидную зону, при этом кроме нитратного рецикла осуществляется внутренняя рециркуляция ила из аноксидной зоны в анаэробную зону. Что позволяет избегать попадания свободного и связанного кислорода (нитратов) в анаэробную зону (Данилович и др.).

Однако, применяющиеся способы биологической дефосфотации позволяют удалять общий фосфор при биологической очистке бытовых сточных вод лишь до концентрации 1 мг/л. Более глубокое удаление фосфора достигается применением химических коагулянтов (Дегремон, 2007 г.).

Для более глубокого биологического удаления фосфора и азота из раствора, процесс сбраживания (ацидофикации) осадка на ЛЖК и процессихаккумулирования ФАО ведут совместно в зонах “дозревания” (технология UCT K - University of Cape Town - Kell ).(Келль, 2010; патент)

На Сестрорецкой станции - СКС удаление фосфора из хозбытовых сточных сточных вод производится комбинированным методом – биологическим и химическим. Для биологического удаления используется технология UCT (University of Cape Town ). Также применяется химическое удаление – сульфат железа Ферикс-3, (10% водный раствор). При этом доза реагента составляет в среднем 35г/м. куб.(Беляев и др. 2008 г. ).

В 1У кв. 2010г. проведены работы по внедрению технологии UCT K на СКС. С этой целью в первых числах октября были организованы зоны“дозревания” в каждой из двух работающих секций аэротенка (см. фото 1).


Фото 1. Зона “дозревания” в секции аэротенка.

Среднедекадные показатели работы сооружений за контрольный (июль – сентябрь) и опытный (октябрь-декабрь) периоды приведены в таблице 1.

Таблица 1. Показатели работы Сестрорецкой станции во II полугодии 2010 г.

Фосфор фосфатов

Фосфор общий

Азот нитратов

Азот аммонийный

Азот общий

Ферикс - 3

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

г/ м.куб стоков

Июль

Поступающий ссток

Очищенный сток

Август

Поступающий

сток

Очищенный сток

Сентябрь

Поступающий

сток

Очищенный сток

Октябрь

Поступающий

сток

Очищенный сток

Ноябрь

Поступающий

сток

Очищенный сток

Декабрь

Поступающий

сток

Очищенный сток

Как следует из приведённых в таблице 1 данных (июль – сентябрь) применение технологии UCT (University of Cape Town ) на Сестрорецкой станции позволяет достигать новые нормы ХЕЛКОМ по общему фосфору 0,5 мг/л лишь при применении коагулянта – Ферикс 3 в количестве 30 – 35 мг/л.

Организация зон “дозревания” в начале октября 2010г., т. е. внедрение технологии UCT K (University of Cape Town - Kell ), позволяет после автоселекции биоценоза активного ила, достигать новые нормы ХЕЛКОМ по общему фосфору 0,5 мг/л без применении коагулянта и с достаточно большим запасом.

Определение содержания фосфора фосфатов и ЛЖК в фильтрованных пробах поступающей в аэротенк сточной воды и культуральной жидкости непосредственно в зоне “дозревания” показало, что на входе в аэротенк фосфор фосфатов составлял 1,2 мг/л, в зоне “дозревания” – 155 мг/л; ЛЖК соответственно – 1,6 и 4,6 мг.экв/л (Келль, 2011).

Таким образом, в зоне “дозревания” происходит не только процесс высвобождения фосфора, что указывает на активную жизнедеятельность ФАО, но и процесс ацидофикации, поставляя ЛЖК непосредственно в зону их аккумуляции фосфатаккумулирующими организмами с использованием энергии полифосфатных связей. При этом в отличие от традиционных методов ацидофикации (Козлов и др., 2010г)

С целью более глубокого изучения процесса и его оптимизации продолжены работы по внедрению способа биологической дефосфотации UCT K на Сестрорецкой станции с использованием модульной установки фирмы HACHLanger (см. фото 2).


Фото 2. Установка фирмы HACHLanger .

Данная установка позволяет в режиме реального времени контролировать состав стоков по следующим параметрам: фосфор фосфатов, азот аммонийный, азот нитратов, растворённый кислород, температура, калий, рН, уровень осадка в отстойнике.

В частности на СКС при отработке оптимального режима способа биологической дефосфотации с зонами “дозревания”(UCTK : University of Cape Town – Kell ) - особенно актуальным является круглосуточное определение в очищенной воде, сбрасываемой в водоём,фосфора фосфатов, азота аммонийного каждые 10 минут и азота нитратов каждые 5 минут, производимого установкой фирмы HACHLanger .

За период испытаний (апрель-май 2011г.) установка позволила отработать технологические параметры процесса биологической дефосфотации с зонами “дозревания”(UCTK ) в значительно более короткие сроки и меньшим количеством проведённых лабораторных анализов (см. графики на рис. 1 и 2).


Рисунок 1 .Изменение фосфора фосфатов с 26.04 по 03.05 2011 года (интервал круглосуточного определения 10 минут).


Рисунок 2.Изменение фосфора фосфатов с 09.05 по 16.05 2011 года (интервал круглосуточного определения 10 минут).

Как видно из приведённых на графиках данных, в начальный период испытаний (рис.1) колебания концентраций фосфора фосфатов на выходе с очистных сооружений значительно выше, чем в конечный (рис. 2).

Показатели работы Сестрорецкой станции за май месяц без применения коагулянтов приведены в таблице 2.

Фосфор фосфатов

Фосфор общий

Азот нитратов

Азот аммонийный

Азот общий

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

мг\ л

04.05. 2011г.

Поступающий ссток

Очищенный сток

18. 05. 2011 г.

Поступающий

сток

Очищенный сток

25. 05.

2011 г.

Поступающий

сток

Очищенный сток

Среднее за май

Поступающий

сток

Очищенный сток

В Ы В О Д Ы.

1. Способ UCT K позволяет гарантированно снижать содержание общего фосфора в хозбытовых сточных водах при их биологической очистке до новых норм ХЕЛКОМ без применения коагулянтов.

2. В отличие от традиционных методов ацидофикациине требуется выделение дополнительного оборудования на предварительную ацидофикацию сырого осадка.

3. Способ может быть внедрён на действующих станциях биологической очистки.

4. Использование модульной установки фирмы HACHLanger позволило при внедрении способа биологической дефосфотации с зонами “дозревания”(UCTK ) на Сестрорецкой станции отработать технологические параметры процесса в значительно более короткие сроки и меньшим количеством трудозатрат.

С П И С О КЛ И Т Е Р А Т У РЫ.

1. Баженов В. И., Денисов А. А. Проектирование современных комплексов биологической очистки сточных вод. Экология и промышленность России. 2009, N 2 http://www.pump.ru/information/publications/Articles/EPR%202-2009%20Bazhenov.pdf

2. Беляев А. Н., Васильев Б. В., Маскалёва С. Е., Мишуков Б. Г., Соловьёва В. А. Удаление азота и фосфора на канализационных очистных сооружениях. Водоснабжение и санатарная техника. 2008, N 9, с. 38-43

3. Данилович Д.А., Козлов М.Н., Мойжес О.В., Шотина К.В., Ершов Б.А. Результаты работы крупномасштабных сооружений биологической очистки от соединений азота и фосфора: Сб. статей и публикаций / МГУП Мосводоканал. - М., 2008. - с. 101-119.

4. Degremont . Технический справочник по обработкеводы, Санкт-Петербург, Новый журнал, т.1, 2007 г., с. 427

5. Келль Л. С. Экологические аспекты развития ноосистем в свете парадигмы самоорганизации материи. Санкт-Петербург. Астерион. 2010. 83 с.

6. Келль Л. С. Внедрение технологии биологической дефосфотации UCTK .Экология производства. 2011, N 5, с. 75-77

7. Козлов М. Н., Пахомов А. Н., Стрельцов С. А., Харькина О. В., Хамидов М. Г., Ершов Б. А., Белов Н. А.,Опыт эксплуатации сооружений биологической очистки сточных вод от соединений азота и фосфора; Водоснабжение и санитарная техника N 10, 2010г, с. 35 – 41

8. Одум Ю.Основы экологии.Москва. Мир, 1975. 740 с.http://www.twirpx.com/file/91230/

9. Патент N 2424199, Келль Л. С. Способ биологической очистки сточных вод активным илом. Дата публикации: 20 Июля, 2011г. Бюл. N 20

Под общим фосфором понимают сумму минерального и органического фосфора. Так же, как и для азота, обмен фосфором между его минеральными и органическими формами, с одной стороны, и живыми организмами – с другой – является основным фактором, определяющим его концентрацию. В природных и сточных водах фосфор может присутство­вать в разных видах. В растворенном состоянии (иногда говорят – в жидкой фазе анализируемой воды) он может находиться в виде ортофосфорной кислоты (Н 3 РО 4) и ее анионов (Н 2 РО 4 - , НРО 4 2- , РО 4 3-), в виде мета- , пиро - и полифосфатов (эти вещества используют для предупреждения образования накипи, они входят также в состав моющих средств). Кроме того, существуют разно­ образные фосфор­органические соединения – нуклеиновые кис­ лоты, нуклеопротеиды, фосфолипиды и др., которые также могут присутствовать в воде, являясь продуктами жизнедеятельности или разложения организмов. К фосфор­органическим соединени­ям относятся также некоторые пестициды.

Фосфор может содержаться и в нерастворенном состоянии (в твердой фазе воды), присутствуя в виде взвешенных в воде труднорастворимых фосфатов, включая природные минералы, белковые, органические фосфорсодержащие соединения, остат­ ки умерших организмов и др. Фосфор в твердой фазе в природных водоемах обычно находится в донных отложениях, однако может встречаться, и в больших количествах, в сточных и загрязненных природных водах.

Концентрация общего растворенного фосфора (минерального и органического) в незагрязненных природных водах изменяется от 5 до 200 мкг/дм 3 .

Формы фосфора в природных водах представлены в таблице ниже.

Таблица. Формы фосфора в природных водах

Химические формы Р

Общий

Фильтруемый
(растворенный)

Частицы

Общий растворенный фосфор

Общий фосфор в частицах

Ортофосфаты

Общий растворенный и взвешенный фосфор

Растворенные ортофосфаты

Ортофосфаты в частицах

Гидролизируемые кислотой фосфаты

Общие растворенные и взвешенные гидролизируемые кислотой фосфаты

Растворенные гидролизируемые кислотой фосфаты

Гидролизируемые кислотой фосфаты в частицах

Органический фосфор

Общий растворенный и взвешенный органический фосфор

Растворенный органический фосфор

Органический фосфор в частицах

Фосфор – важнейший биогенный элемент, чаще всего лимитирующий развитие продуктивности водоемов. Поэтому поступление избытка соединений фосфора с водосбора в виде минеральных удобрений с поверхностным стоком с полей (с гектара орошаемых земель выносится 0,4- 0,6 кг фосфора), со стоками с ферм (0,01-0,05 кг/сут на одно животное), с недоочищенными или неочищенными бытовыми сточными водами (0,003-0,006 кг/сут . на одного жителя), а также с некоторыми производственными отходами приводит к резкому неконтролируемому приросту растительной биомассы водного объекта (это особенно характерно для непроточных и малопроточных водоемов). Происходит так называемое изменение трофического статуса водоема, сопровождающееся перестройкой всего водного сообщества и ведущее к преобладанию гнилостных процессов (и, соответственно, возрастанию мутности, солености, концентрации бактерий).

Один из вероятных аспектов процесса эвтрофикации – рост сине-зеленых водорослей (цианобактерий ), многие из которых токсичны. Выделяемые этими организмами вещества относятся к группе фосфор- и серосодержащих органических соединений (нервно-паралитических ядов). Действие токсинов сине-зеленых водорослей может проявляться в возникновении дерматозов, желудочно-кишечных заболеваний; в особенно тяжелых случаях – при попадании большой массы водорослей внутрь организма – может развиваться паралич.

В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) в программы обязательных наблюдений за составом природных вод включено определение содержания общего фосфора (растворенного и взвешенного, в виде органических и минеральных соединений). Фосфор является важнейшим показателем трофического статуса природных водоемов. Основной формой неорганического фосфора при значениях pH водоема больше 6,5 является ион HPO 4 2- (около 90 %). В кислых водах неорганический фосфор присутствует преимущественно в виде H 2 PO 4 - .

Концентрация фосфатов в природных водах обычно очень мала – сотые, редко десятые доли миллиграммов фосфора в 1 дм 3 , в загрязненных водах она может достигать нескольких миллиграммов в 1 дм 3 . Подземные воды содержат обычно не более 100 мкг/дм 3 фосфатов; исключение составляют воды в районах залегания фосфорсодержащих пород.

Содержание соединений фосфора подвержено значительным сезонным колебаниям, поскольку оно зависит от соотношения интенсивности процессов фотосинтеза и биохимического окисления органических веществ. Минимальные концентрации фосфатов в поверхностных водах наблюдаются обычно весной и летом, максимальные – осенью и зимой, в морских водах – соответственно весной и осенью, летом и зимой.

Общее токсическое действие солей фосфорной кислоты возможно лишь при весьма высоких дозах и чаще всего обусловлено примесями фтора.

Без предварительной подготовки проб колориметрически определяются неорганические растворенные и взвешенные фосфаты.

Изобретение относится к реагентным способам обработки бытовых и промышленных сточных вод, а именно к очистке стоков от фосфатов, и может быть использовано на станциях очистки и водоподготовки, в частности на биологических очистных сооружениях. Обработку фосфорсодержащих сточных вод ведут полученным в промышленных условиях алюмохлоридным раствором - отходом (сточными водами) производства этилбензола, который характеризуется следующими показателями, г/дм 3: хлорид алюминия 1,5-8,2; свободная соляная кислота 1,1-48,0; рН 0,9-2,9. Алюмохлоридный раствор перед употреблением обрабатывают раствором щелочи, доводя величину рН до 3,8-4,3, а затем его добавляют в воду в количестве 1,0-3,2 дм 3 /м 3 (в пересчете на А1 +3 - 1,6-5,0 мг/дм 3). Обработку стоков и осаждение ведут при рН 6,5-7,4. Использование такого алюмохлоридного раствора для осаждения фосфатов позволяет получить осветленную воду хорошего качества, утилизировать отход производства, а также упростить и повысить стабильность процесса осаждения и последующего процесса биологической очистки.

Изобретение относится к реагентной обработке бытовых и промышленных сточных вод, а именно к очистке стоков от фосфатов, и может быть использовано на станциях очистки и водоподготовки, в частности на биологических очистных сооружениях (БОС).

Фосфор относится к числу биогенных элементов, имеющих особое значение в биологическом цикле как в водных объектах, так и в активном иле станций биологической очистки. При недостатке соединений фосфора в воде тормозится рост и развитие водной флоры и фауны, однако их избыток также приводит к негативным последствиям, вызывая развитие процессов эфтрофикации и ухудшение качества воды. Поэтому в технологии биологической очистки бытовых и производственных сточных вод на БОС существует настоятельная потребность снижения концентрации фосфатов в очищенных стоках до нормативов, предусмотренных санитарными нормами.

Соединения фосфора в природных и сточных водах представлены в виде ортофосфатов, полифосфатов и органических фосфорсодержащих соединений, причем преобладающей формой являются ортофосфаты.

Ортофосфорная кислота (средней силы), будучи трехосновной, способна образовывать три вида солей, например:

Кислые соли:

NaН 2 РO 4 первичный фосфорнокислый натрий;

Na 2 HPO 4 вторичный фосфорнокислый натрий;

Средняя соль:

Nа 3 РO 4 третичный фосфорнокислый натрий.

Все первичные фосфаты хорошо растворимы в воде, из вторичных и третичных растворимы лишь очень немногие, в частности соли натрия (Б.Н.Некрасов. Основы общей химии,. Т.1, изд. 3-е испр. и доп., М.: Химия, 1973, с.440).

В водах соединения фосфора как минеральные, так и органические могут присутствовать в растворенном, коллоидном и взвешенном состоянии. Переход из одной формы в другую осуществляется сравнительно легко.

Обработку сточных вод осуществляют на очистных сооружениях как с использованием, так и без применения химических реагентов. Обработка воды коагулянтами позволяет перевести минеральные примеси в нерастворимую форму. К таким реагентам относятся соли кальция, железа и алюминия.

Способ очистки сточных вод, характеризующийся улучшенными характеристиками отделения твердых частиц, сниженной биологической потребностью в кислороде (БХПК) в очищенных сточных водах и повышенным удалением азота и фосфата, описан в пат. RU 2148033, 7 С 02 F 3/30. Из пат. RU 2145942, 7 С 02 F 1/52, 1/54, опубл. 27.02.2000, №6, известно, что очистку сточных вод ведут с использованием извести и гидролизующейся соли железа или алюминия при оптимальных значениях рН. Способ очистки сточных вод, включающий смешивание стоков с сернокислым алюминием (12-20 мг/л) при заданной величине рН (6,5-7,6), изложен в пат. RU 2145575, 7 С 02 F 1/52, опубл. 20.02.2000, №5.

Для очистки многотоннажных промышленных стоков с использованием химических реагентов является характерным большой расход дефицитных и дорогостоящих коагулянтов, производство которых сопряжено не только со значительными материальными затратами, но и с экологическими проблемами. На станциях очистки при этом возникает настоятельная потребность в сооружении реагентных хозяйств и их оснащении специальным технологическим оборудованием, что обуславливает высокую себестоимость очистки за счет больших материальных и энергетических затрат.

Наиболее близок по техническому решению к предлагаемому изобретению способ, изложенный в пат. RU 2151172, 7 С 12 F 3/10, опубл. 20.06.2000. №17. Сущность данного технического решения заключается в удалении взвешенных, коллоидных и растворенных органических и минеральных примесей методом коагуляции на стадии осаждения гидроксидом алюминия.

Общим признаком с предлагаемым изобретением является использование для агломерации частиц на стадии осаждения гидролизующейся соли алюминия. Данному способу присущи вышеперечисленные недостатки.

Наиболее близким к заявляемому способу очистки воды от фосфатов (прототипом) является способ извлечения из сточных вод (СВ) фосфатов, описанный в (В.А.Проскуряков, Л.И.Шмидт. Очистка сточных вод в химической промышленности. Изд. Химия, Ленинградское отделение, 1977, с.138). Сущность данного технического решения заключается в осаждении фосфатов сульфатом алюминия в щелочной среде. Эффективность очистки составляет 90-95%.

Кроме перечисленных выше недостатков, в данном случае имеет место вторичное загрязнение осветленной воды солями и ионами, т.к. характерной особенностью технических реагентов являются высокое содержание в них балласта и небольшое количество основного вещества (активное начало).

Задачей предлагаемого изобретения является:

Расширение ассортимента высокоэффективных, доступных и недорогих реагентов для извлечения фосфатов из сточных вод с сохранением высокой степени очистки воды;

Предотвращение вторичного загрязнения очищаемых стоков солями и ионами, содержащимися в используемых растворах реагентов;

Уменьшение себестоимости очистки за счет сокращения материальных и энергетических затрат;

Упрощение и повышение стабильности проведения технологического процесса;

Квалифицированное использование отхода производства.

Исключение указанных недостатков в способе очистки сточных вод от фосфатов, включающем обработку воды гидролизующейся солью алюминия, и достижение технического результата возможно за счет того, что в качестве гидролизующейся соли алюминия используют алюмохлоридный раствор - отход производства этилбензола, который характеризуется следующими показателями, г/дм 3: хлорид алюминия 1,5-8,2, свободная соляная кислота 1,1-48,0, величина рН 0,9-2,9, причем перед употреблением его обрабатывают раствором щелочи, доводя величину рН до 3,8-4,3, реагент вводят в воду в количестве 1,0-3,2 дм 3 /м 3 (в пересчете на А1 +3 1,6-5,0 мг/дм 3), а величина рН очищаемой воды изменяется в пределах 6,5-7,4.

Сопоставительный анализ прототипа и предлагаемого изобретения показывает, что общим признаком является использование в качестве осадителя фосфатов гидролизующейся соли алюминия.

Отличие заявляемого способа от прототипа заключается в том, что в качестве алюминийсодержащего реагента для осаждения фосфатов используют отход производства этилбензола - алюмохлоридный раствор, который перед добавлением в очищаемую воду обрабатывают щелочью до рН 3,8-4,3, доза реагента составляет 1,0-3,2 дм 3 /м 3 (в пересчете на Аl +3 1,6-5,0 мг/дм 3), а величина рН очищаемой воды изменяется в пределах 6,5-7,4.

Отличительной особенностью данного реагента является то, что он получен в промышленных условиях в результате производства этилбензола с использованием в качестве катализатора безводного хлорида алюминия и представляет собой сточные воды. Перед сбросом в общезаводские канализационные сооружения эти стоки обрабатывают щелочью для соблюдения санитарных норм по величине рН. Практика показала, что имеют место большие затраты материальных средств на защелачивание отхода и его дальнейшее обезвреживание.

Предложено подщелачивать алюмохлоридный раствор до рН 3,8-4,3, что позволяет получать раствор гидроксохлоридов алюминия общей формулы Al(OH) n Cl m , где n=1-5, m=6-n. Расход щелочи при этом значительно сокращается.

Предлагаемый способ испытан в лабораторных условиях. Обработанный щелочью раствор алюмохлорида добавляют в смесь хозбытовых и химзагрязненных фосфорсодержащих стоков, поступающих на первичные отстойники биологических очистных сооружений (БОС) в количестве 1,0-3,2 дм 3 /м 3 (в пересчете на Аl +3 1,6-5,0 мг/дм 3).

Для сравнения фосфорсодержащую воду обрабатывают раствором сульфата алюминия, количество добавленного реагента в пересчете на А1 +3 составляет 2,0 мг/дм 3 (24,7 мг/дм 3 по Al 2 (SO 4) 3 18 Н 2 О).

Опыты моделируют процесс отстаивания сточных вод в отстойниках БОС и их проводят следующим образом. Сточную воду перемешивают и разливают в мерные цилиндры, затем добавляют расчетную аликвоту того или иного реагента. Все пробы тщательно и однообразно перемешивают в течение 1-3 мин и отстаивают в течение 2-х часов при 18-22 С. В процессе отстаивания контролируют кинетику осаждения образующегося осадка, а по истечении 2-х часов осветленную воду декантируют от последнего и анализируют.

Экспериментальные данные показывают, что при добавлении в очищаемую воду названных выше реагентов наблюдается интенсивное хлопьеобразование, агломерация мелких частиц и осаждение образующихся продуктов гидролиза с адсорбированными на их поверхности загрязняющими веществами (фосфаты в т.ч.).

Эффективность выделения фосфатов из обработанной алюмохлоридом (2,0 мг/дм 3 по Аl +3) воды составляет не менее 90 мас.%. При использовании алюмохлорида в количестве 2,0 мг/дм 3 (по А1 +3) величина рН изменяется в пределах санитарных норм и составляет 6,9-7,4. Увеличение в сточных водах концентрации этого реагента до 5 мг/дм 3 (по Аl +3) не требует корректировки их величины рН, которая колеблется в пределах 6,5-7,2. Положительным моментом при использовании в качестве реагента алюмохлоридного раствора является более стабильное проведение процесса очистки воды. Достигнутая степень очистки стоков от фосфатов при использовании отхода производства представляется вполне допустимой, т.к. их остаточная концентрация в осветленной воде является необходимой и достаточной для нормального проведения в дальнейшем процесса биологической очистки названных выше стоков. Успешное проведение биохимической очистки сточных вод, а также эффективная денитрификация и дефосфатизация обусловлены тем, что в обработанной предложенным реагентом воде отношение концентрации БПК к концентрации соединений азота и фосфора соответствует требованиям санитарных норм.

Глубина очистки воды от фосфатов сульфатом алюминия (2,0 мг/дм 3 по Аl +3) составляет не менее 97 мас.%. Однако при использовании сульфата алюминия существенным недостатком является двухкратное увеличение в осветленной воде концентрации сульфат-ионов и общего солесодержания, снижение величины рН осветленной воды до 4,4-6,4, возможность передозировки названного реагента и дестабилизации процесса очистки воды. Добавление сульфата алюминия в осветляемую воду в количестве более 2,0 мг/дм 3 (по Аl +3) без корректировки величины рН также не представляется возможным, т.к. рН воды снижается до 4,3-5,7. Последнее, кроме того, не является оптимальным для осаждения фосфатов.

Предлагаемый способ очистки сточных вод от фосфатов позволяет:

Расширить ассортимент реагентов для извлечения фосфатов и получить при этом высокий эффект очистки;

Исключить необходимость проведения сложной, трудоемкой и дорогостоящей обработки (например, центрифугирования и нагревания) отхода производства перед его использованием;

Сократить материальные затраты на обработку отхода производства и очищаемой воды;

Исключить недостатки, характерные для традиционно используемых в процессах обработки воды реагентов, а именно: уменьшить влияние используемых реагентов на параметры санитарных норм очищаемой воды; исключить необходимость дополнительной обработки (корректировки величины рН) очищаемой воды как на стадии осаждения фосфатов, так и на стадии биологической очистки; уменьшить вторичное загрязнение очищаемой воды ингредиентами, содержащимися в используемых реагентах;

Упростить и повысить стабильность процесса осаждения фосфатов и проводимого затем процесса биологической очистки этой воды;

Утилизировать отход производства, ценный компонент которого находит применение на том же предприятии.

Формула изобретения

Способ очистки сточных вод от фосфатов, включающий обработку воды гидролизующейся солью алюминия, отличающийся тем, что в качестве алюминийсодержащего реагента используют алюмохлоридный раствор - отход производства этилбензола, который характеризуется следующими показателями, г/дм 3: хлорид алюминия 1,5-8,2; свободная соляная кислота 1,1-48,0; величина рН 0,9-2,9, причем перед употреблением его обрабатывают раствором щелочи, доводя величину рН до 3,8-4,3, а затем добавляют в воду в количестве 1,0-3,2 дм 3 /м 3 (в пересчете на А1 +3 - 1,6-5,0 мг/дм 3), величина рН очищаемой воды при этом изменяется в пределах 6,5-7,4.

Похожие патенты:

Изобретение относится к области биохимической очистки бытовых и промышленных сточных вод и может быть использовано в химической, азотной и нефтеперерабатывающей промышленности для повторного использования стоков при водоснабжении предприятий

Изобретение относится к способу удаления патогенов нано-размера из жидкости, предусматривающему контактирование жидкости с фильтром, содержащим частицы активированного угля, при этом указанный фильтр имеет показатель удаления патогенов (PRI), определенный методом тестирования, описанным ниже, равный, по меньшей мере, около 99,99%

Изобретение относится к реагентным способам очистки сточных и природных вод от сульфат-ионов и может быть использовано для очистки в различных отраслях промышленности, в том числе горнорудной, химической и для очистки гальваностоков машиностроительных заводов

Изобретение относится к области очистки природных вод, а именно к устройствам для удаления из воды взвешенных и коллоидных веществ, удаления ионов жесткости; устройство может быть использовано для предварительной очистки воды на теплоэлектроцентралях и котельных, на станциях, очищающих воду для промышленных и питьевых целей

Изобретение относится к устройствам электрохимической очистки питьевой воды и может быть использовано в бытовых условиях, а также в общественных учреждениях (предприятиях общественного питания, лечебных и детских учреждениях, офисах и пр.) и в качестве групповых средств очистки воды