Для чего нужен идеальный газ. Идеальный газ

Основной объект молекулярно-кинетической теории газов – так называемый «идеальный газ». Под идеальным газом понимается разреженная среда из многих (очень большого числа) частиц, не взаимодействующих друг с другом иначе, как посредством редких столкновений. Каждая из частиц среды движется хаотически и независимо от других. Каждая из частиц обладает обычным для классической механики набором физических параметров, как то: массой и скоростью. А также производными от этих величин – энергией и импульсом. Размеры частиц считаются пренебрежимо малыми, по отношению к остальным характерным размерам рассматриваемой физической системы. Более точно идеальный газ характеризуется следующими свойствами, непосредственно вытекающими из данного определения:

  • Коль скоро частицы практически не взаимодействуют друг с другом, то их потенциальная энергия пренебрежимо мала по сравнению с их кинетической энергией. Это относится и к фундаментальным силам, наподобие сил гравитации, которые не включаются в рассмотрение.
  • Соударения частиц считаются упругими, т.е. такими же, как столкновения абсолютно твердых сфер, наподобие биллиардных шаров. При столкновении друг с другом частицы не «липнут» друг к другу. А это значит, что промежутком времени, занимаемым процессом столкновения, можно пренебречь.
  • Идеальный газ рассматривается вкупе с некоторым объемом им занимаемым. Совокупный объем частиц принимается пренебрежимо малым по сравнению с объемом ими занимаемым.

Итог: речь идет об очень разреженной среде без сопротивления и любых других внешних взаимодействий, состоящей из упругих частиц пренебрежимо малого размера (молекул, атомов).

Макроскопические характеристики идеального газа

Идеальный газ в сосуде, рассматриваемый в целом (то есть как макроскопический объект), обладает определенным набором макроскопических характеристик, не зависящих от поведения отдельных его частиц. Данные характеристики – производные от средних значений энергий отдельных частиц идеального газа. К числу таких показателей можно отнести температуру и давление идеального газа.

  • Температура идеального газа – есть мера средней кинетической энергии молекул идеального газа.
  • Давление идеального газа — есть мера средней кинетической энергии ударов по небольшой, абсолютно упругой площадке, помещенной в газ.

Уже из определения температуры и давления должно быть понятно, что эти параметры зависят друг от друга. Действительно, в случае, если стенкам сосуда дают возможность свободно расширяться, то имеет место закон пропорциональности: p~ T, где p – давление и T – температура.

Законы поведения идеального газа

В зависимости от условий, налагаемых на объем сосуда, величину давления или величину температуры – можно получить различные частные закономерности поведения идеального газа:

  • Закон Бойля-Мариотта (постоянной считается температура).
  • Закон Гей-Люссака (постоянным считается давление).
  • Закон Шарля (постоянен объем).

Имеются и другие соотношения. Соответствующие формулы можно посмотреть на картинке ниже:

В первой части издания представлены шесть лекций, посвященных раскрытию физического смысла основных законов и понятий механики.

Вторая часть продолжает курс лекций по физике и содержит девять лекций по молекулярной физике и термодинамике.

Предметом изучения молекулярной физики является движение больших совокупностей молекул. При изучении используются статистиче­ский и термодинамический методы.

Молекулярная физика исходит из представлений о молекулярном строении вещества. Поскольку число частиц в макросистеме велико, зако­номерности вней имеют статистический, т.е. вероятностный, характер. На основе определенных моделей молекулярная физика позволяет объяс­нить наблюдаемые свойства макросистем (систем, состоящих из очень большого числа частиц) как суммарный эффект действий отдельных мо­лекул. При этом используется статистический метод, в котором нас инте­ресуют не действия отдельных молекул, а средние значения определенных величин.

В термодинамике используют понятия и физические величины, от­носящиеся к системе в целом, например, объем, давление и температура. Термодинамика основана на общих принципах, или началах, которые представляют собой обобщение опытных фактов.

Термодинамический и статистический методы изучения макросис­тем дополняют друг друга. Термодинамический метод позволяет изучать явления без знания их внутренних механизмов. Статистический метод по­зволяет понять суть явлений, установить связь поведения системы в целом с поведением и свойствами отдельных частиц.

Цель автора, как и в первой части представленного издания, - сде­лать для начинающего студента фактически доступными основные поня­тия и закономерности молекулярной физики, порой весьма непростые. Студенту нужно не «зазубривать» материал, а постараться понять, раз­мышлять, проверить себя по вопросам для самоконтроля после каждой лекции, а также прорешать соответствующие задачи, например из пособия . Максимальное внимание должно быть уделено физическому смыслу изучаемого материала.

ВНИМАНИЕ! ПРЕДЛАГАЕМОЕ ИЗДАНИЕ ОБЛЕГЧАЕТ РАБОТУ СТУДЕНТА, НО НЕ ЗАМЕНЯЕТ САМИ ЛЕКЦИИ В АУДИТОРИИ!

Молекуляная физика

Лекция №7

Молекулярно-кинетическая теория (мкт) идеального газа

    Понятие идеального газа. Молекулярно-кинетическое толкование температуры. Макроскопические параметры системы.

    Число степеней свободы. Закон равнораспределение энергии. Внутренняя энергия идеального газа.

    Давление газа с точки зрения молекулярно-кинетической теории идеального газа (основное уравнение молекулярно-кинетической теории).

    Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева).

1. Понятие идеального газа.

Идеальным называется газ, взаимодействие, между молекулами которого пренебрежимо мало и состояние которого описывается уравнением Клапейрона-Менделеева.

Модель идеального газа .

1. Собственный объём молекул газа пренебрежимо мал по сравнению с объёмом сосуда.

2. Между молекулами газа отсутствует силы взаимодействия .

3. Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие .

Взаимодействие между молекулами всякого газа становится пренебрежимо слабым при малых плотностях газа , при большом разрежении. Такие газы как воздух, азот, кислород, даже при обычных условиях, т.е. при комнатной температуре и атмосферном давлении мало отличаются от идеального газа. Особенно близки к идеальному газу гелий и водород.

Не следует думать, что взаимодействие между молекулами идеального газа вовсе отсутствует . Напротив, его молекулы сталкиваются друг с другом и эти столкновения существенны для установления определённых тепловых свойств газа . Но столкновения проходят настолько редко , что большую часть времени молекулы движутся как свободные частицы .

Именно столкновения между молекулами позволяют ввести такой параметр как температура. Температура тела характеризует энергию, с которой движутся его молекулы. Для идеального газа в равновесных условиях абсолютная температура пропорциональна средней энергии поступательного движения молекул .

Определение . Макроскопической называется система, образованная огромным числом частиц (молекул, атомов). Параметры, характеризующие поведение системы (например, газа), как целого, называется макропараметрами . Например, давление Р , объём V и температура Т газа – макропараметры.

Параметры, характеризующие поведение отдельных молекул (скорость, масса и т.п.) называется микропараметрами .

Наука физика играет значимую роль в изучении окружающего мира. Поэтому ее понятия и законы начинают проходить еще в школе. Свойства вещества измеряются в разных аспектах. Если рассматривать его агрегатное состояние, то здесь существует особая методика. Идеальный газ - это физическая концепция, которая позволяет оценить свойства и характеристики материала, из которого состоит весь наш мир.

Общее определение

Идеальным газом названа модель, в которой взаимодействием между молекулами принято пренебрегать. Процесс взаимодействия частиц любого вещества друг с другом довольно сложный.

Когда они подлетают друг к другу вплотную и находятся на очень малом расстоянии, они сильно взаимоотталкиваются. Но на большой удаленности между молекулами действуют относительно небольшие силы притяжения. Если же среднее расстояние, на котором они находятся друг от друга, большое, это положение вещества называют разреженным газом. Взаимодействие таких частиц проявляется как редкие удары молекул. Это происходит, лишь когда они подлетают вплотную друг к другу. В идеальном же газе взаимодействие молекул не учитывается вообще. В идеальном газе количество молекул очень большое. Поэтому вычисления происходят только при помощи статистического метода. Причем следует отметить, что частички вещества в таком случае распределяются в пространстве равномерно. Это самое часто встречающееся состояние идеального газа.

Когда газ можно считать идеальным

Существует несколько факторов, благодаря которым газ называется идеальным. Первым признаком является поведение молекул как абсолютно упругих тел, между ними отсутствуют силы притяжения. При этом газ будет очень разряжен. Расстояние между мельчайшими составляющими вещества будет гораздо больше размеров их самих. В таком случае тепловое равновесие будет достигаться мгновенно по всему объему. Чтобы достичь положения идеального газа в лабораторных условиях, реальный его тип разрежается соответствующим образом. Некоторые вещества в газообразном состоянии даже при комнатной температуре и нормальном атмосферном давлении практически не отличаются от идеального состояния.

Границы применения модели

Иеальный газ рассматривается в зависимости от поставленных задач. Если перед исследователем поставлена задача определить зависимость между температурой, объемом и давлением, то идеальным можно считать такое состояние вещества, при котором у газа наблюдается высокая точность до давлений, измеряемых несколькими десятками атмосфер. Но в случае изучения фазового перехода, например, испарения и конденсации, процесса достижения равновесия в газе, рассматриваемую модель нельзя применять даже при очень маленьком давлении. Давление газа на стенку пробирки происходит при хаотическом ударении молекул о стекло. Когда такие удары часты, организм человека может уловить эти изменения как непрерывное воздействие.

Уравнение идеального газа

Основываясь на главных принципах молекулярно-кинетической теории, было выведено главное уравнение идеального газа.

Работа идеального газа имеет следующее выражение: p = 1 / 3 m 0 nv 2 , где p - давление газа идеального, m 0 - молекулярная масса, v 2 - среднее значение концентрации частиц, квадрат скорости молекул. Если обозначить средний показатель кинетического движения частиц вещества, как Ек = m 0 n/ 2 , то уравнение будет иметь такой вид: p = 2 / 3 nEk. Молекулы газа, ударяясь о стенки сосуда, вступают с ними во взаимодействие как упругие тела по законам механики. Импульс от таких ударов передается стенкам сосуда.

Температура

Вычислив только давление газа на стенки сосуда, нельзя определить средний показатель кинетической энергии его частиц.

Причем этого нельзя сделать ни для отдельной молекулы, ни для их концентрации. Поэтому для измерения параметров газа необходимо определять еще одну величину. Ею выступает температура, которая также связана с кинетической энергией молекул. Такой показатель выступает скалярной физической величиной. Температура описывает термодинамическое равновесие. В таком состоянии не происходит изменение параметров на микроуровне. Температура измеряется как отклонение от нулевого значения. Она характеризует насыщенность хаотического движения наименьших частиц газа. Она измеряется средним значением их кинетической энергии. Определяется этот показатель при помощи термометров в градусах различных отметок. Существует термодинамическая абсолютная шкала (Кельвина) и эмпирические ее разновидности. Они отличаются начальными точками.

Уравнение положения идеального газа с учетом температуры

Физик Больцман утверждает, что средний показатель кинетической энергии частицы пропорционален абсолютному показателю температуры. Ек = 3 / 2 кТ, где к = 1,38∙10-23, Т - температура. Работа идеального газа будет равна: Р = NkT/V, где N - количество молекул, V - объем сосуда. Если к этому показателю добавить концентрацию n = N/V, то вышеприведенная формула будет иметь такой вид: p = nkT. Эти два уравнения имеют различные формы записи, но они связывают для идеального газа давление, объем и температуру. Эти вычисления можно применять как к чистым газам, так и к их смесям. В последнем варианте под n нужно понимать все число молекул веществ, их суммарную концентрацию или полное количество молей в веществе.

Три газовых закона

Идеальный газ и его частные законы были открыты экспериментально и лишь потом подтверждены теоретически.

Первый частный закон гласит, что идеальный газ при постоянной массе и температуре будет иметь обратно пропорциональное давление его объему. Процесс, при котором показатель температуры постоянный, был назван изотермическим. Если же при исследовании постоянным является давление, то объем пропорционален значению абсолютной температуры. Этот закон носит имя Гей-Люссака. Изохорный же процесс происходит при постоянном объеме. При этом давление будет пропорционально абсолютным температуре. Его название - закон Шарля. Это три частных закона поведения идеального газа. Их удалось подтвердить лишь при овладении знаниями о молекулах.

Абсолютная шкала измерения

В абсолютной шкале измерения принято единицей называть Кельвин. Она выбрана исходя из популярной шкалы Цельсия. Один Кельвин соответствует одному градусу по Цельсию. Но в шкале абсолютной за ноль принято значение, при котором давление идеального газа при постоянном объеме будет равно нулю.

Это общепринятая система. Такое значение температуры названо абсолютным нулем. Произведя соответствующие вычисления, можно получить ответ, что значение этого показателя будет составлять -273 градуса по Цельсию. Это подтверждает, что между абсолютной и шкалой Цельсия существует связь. Ее можно выразить в таком уравнении: Т = t + 237. Следует отметить, что достичь абсолютного нуля невозможно. Любой охладительный процесс основан на испарении с поверхности вещества молекул. Приближаясь к абсолютному нулю, поступательное движение частиц так сильно замедляется, что испарение прекращается практически совсем. Но чисто с теоретической точки зрения если бы было реально достичь точки абсолютного нуля, то скорость движения молекул уменьшилась бы настолько, что ее можно было бы назвать отсутствующей вовсе. Тепловое движение молекул прекратилось бы.

Изучив такое понятие, как идеальный газ, можно понять принцип работы любого вещества. Расширив знания в этой области, можно понять свойства и поведение любого газообразного вещества.

Аннотация: традиционное изложение темы, дополненное демонстрацией на компьютерной модели.

Из трех агрегатных состояний вещества наиболее простым является газообразное состояние. В газах силы, действующие между молекулами, малы и при определенных условиях ими можно пренебречь.

Газ называется идеальным , если:

Можно пренебречь размерами молекул, т.е. можно считать молекулы материальными точками;

Можно пренебречь силами взаимодействия между молекулами (потенциальная энергия взаимодействия молекул много меньше их кинетической энергии);

Удары молекул друг с другом и со стенками сосуда можно считать абсолютно упругими.

Реальные газы близки по свойствам к идеальному при:

Условиях, близких к нормальным условиям (t = 0 0 C, p = 1.03·10 5 Па);

При высоких температурах.

Законы, которым подчиняется поведение идеальных газов, были открыты опытным путем достаточно давно. Так, закон Бойля - Мариотта установлен еще в 17 веке. Дадим формулировки этих законов.

Закон Бойля - Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими ).Тогда для данной массы газа произведение давления на объем есть величина постоянная:

Эту формулу называют уравнением изотермы . Графически зависимость p от V для различных температур изображена на рисунке.

Свойство тела изменять давление при изменении объема называется сжимаемостью . Если изменение объема происходит при T=const, то сжимаемость характеризуется изотермическим коэффициентом сжимаемости который определяется как относительное изменение объема, вызывающее изменение давления на единицу.

Для идеального газа легко вычислить его значение. Из уравнения изотермы получаем:

Знак минус указывает на то, что при увеличении объема давление уменьшается. Т.о., изотермический коэффициент сжимаемости идеального газа равен обратной величине его давления. С ростом давления он уменьшается, т.к. чем больше давление, тем меньше у газа возможностей для дальнейшего сжатия.

Закон Гей - Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими ). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:

где V 0 - объем при температуре t = 0 0 C, - коэффициент объемного расширения газов. Его можно представить в виде, аналогичном коэффициенту сжимаемости:

Графически зависимость V от T для различных давлений изображена на рисунке.

Перейдя от температуры в шкале Цельсия к абсолютной температуре , закон Гей - Люссака можно записать в виде:

Закон Шарля. Если газ находится в условиях, когда постоянным остается его объем (изохорические условия), то для данной массы газа давление будет пропорционально температуре:

где р 0 - давление при температуре t = 0 0 C, - коэффициент давления . Он показывает относительное увеличение давления газа при нагревании его на 1 0:

Закон Шарля также можно записать в виде:

Закон Авогадро: один моль любого идеального газа при одинаковых температуре и давлении занимает одинаковый объем. При нормальных условиях (t = 0 0 C, p = 1.03·10 5 Па) этот объем равен м -3 /моль.

Число частиц, содержащихся в 1 моле различных веществ, наз. постоянная Авогадро :

Легко вычислить и число n 0 частиц в 1 м 3 при нормальных условиях:

Это число называется числом Лошмидта .

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов, т.е.

где - парциальные давления - давления, которые бы оказывали компоненты смеси, если бы каждый из них занимал объем, равный объему смеси при той же температуре.

Уравнение Клапейрона - Менделеева. Из законов идеального газа можно получить уравнение состояния , связывающее Т, р и V идеального газа в состоянии равновесия. Это уравнение впервые было получено французским физиком и инженером Б. Клапейроном и российским учеными Д.И. Менделеевым, поэтому носит их имя.

Пусть некоторая масса газа занимает объем V 1 , имеет давление p 1 и находится при температуре Т 1 . Эта же масса газа в другом состоянии характеризуется параметрами V 2 , p 2 , Т 2 (см. рисунок). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: изотермического (1 - 1") и изохорического (1" - 2).

Для данных процессов можно записать законы Бойля - Мариотта и Гей - Люссака:

Исключив из уравнений p 1 " , получим

Так как состояния 1 и 2 были выбраны произвольно, то последнее уравнение можно записать в виде:

Это уравнение называется уравнением Клапейрона , в котором В - постоянная, различная для различных масс газов.

Менделеев объединил уравнение Клапейрона с законом Авогадро. Согласно закону Авогадро, 1 моль любого идеального газа при одинаковых p и T занимает один и тот же объем V m , поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется универсальной газовой постоянной . Тогда

Это уравнение и является уравнением состояния идеального газа , которое также носит название уравнение Клапейрона - Менделеева .

Числовое значение универсальной газовой постоянной можно определить, подставив в уравнение Клапейрона - Менделеева значения p, T и V m при нормальных условиях:

Уравнение Клапейрона - Менделеева можно записать для любой массы газа. Для этого вспомним, что объем газа массы m связан с объемом одного моля формулой V=(m/M)V m , где М - молярная масса газа . Тогда уравнение Клапейрона - Менделеева для газа массой m будет иметь вид:

где - число молей.

Часто уравнение состояния идеального газа записывают через постоянную Больцмана:

Исходя из этого, уравнение состояния можно представить как

где - концентрация молекул. Из последнего уравнения видно, что давление идеального газа прямо пропорционально его температуре и концентрации молекул.

Небольшая демонстрация законов идеального газа. После нажатие кнопки "Начнем" Вы увидите комментарии ведущего к происходящему на экране (черный цвет) и описание действий компьютера после нажатия Вами кнопки "Далее" (коричневый цвет). Когда компьютер "занят" (т.е. идет опыт) эта кнопка не активна. Переходите к следующему кадру, лишь осмыслив результат, полученный в текущем опыте. (Если Ваше восприятие не совпадает с комментариями ведущего, напишите!)

Вы можете убедиться в справедливости законов идеального газа на имеющейся

Какие погрешности возникают при измерениях в Лабораторной работе № 4 «Определение удельной теплоты кристаллизации (плавления) и изменения энтропии при кристаллизации олова»? Объясните их причины.

В нашей лабораторной работе № 4 возникают такие погрешности, как состав олова, комнатная температура, а так же на результат может повлиять долгое нагревание олова. Причины: состав олова может содержать какие-либо примеси, вследствие чего это может повлиять на результат измерений. Так же погрешностью можно назвать комнатную температуру, т.к. каждый раз делая данную лабораторную работу, мы используем разную температуру окружающей среды в лаборатории.

Какой газ называется идеальным? Запишите уравнение состояния идеального газа и объясните его.

Идеальный газ- это газ, молекулы которого рассматриваются как материальные точки взаимодействия между собой по законам соударения упругих шаров. Т.е. модели идеального газа пренебрегают собственным объемом молекул и силами взаимодействия между ними. Формула: или PV= . Эта формула дает связь между макропараметрами вещества. f(P,V,T)=0 общий вид уравнения состояния.

Процесс –переход системы из одного состояния в другое.

Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном, в форме (PV=RT) оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.

Газ может участвовать в различных тепловых процессах, при которых могут изменяться все параметры, описывающие его состояние (P, V и T). Если процесс протекает достаточно медленно, то в любой момент система близка к своему равновесному состоянию. Такие процессы называются квазистатическими. В привычном для нас масштабе времени эти процессы могут протекать и не очень медленно. Например, разрежения и сжатия газа в звуковой волне, происходящие сотни раз в секунду, можно рассматривать как квазистатический процесс. Квазистатические процессы могут быть изображены на диаграмме состояний (например, в координатах P, V) в виде некоторой траектории, каждая точка которой представляет равновесное состояние.



В случае постоянной массы газа уравнение можно записать в виде: Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака.

29. Сформулируйте первое начало термодинамики в общем, виде и для каждого изопроцесса. Начертите графики изопроцессов в координатах ( pV) , ( pT) , ( VT) .

Первое начало термодинамики- это применение закона сохранение и превращение энергии к явлениям, изучаемым термодинамикой.Первое начало термодинамики - один из трёх основных законов термодинамики, представляет собой закон сохранения энергии для термодинамических систем.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ немецкого учёного Ю. Р. Майера, английского физика Дж. П. Джоуля и немецкого физика Г. Гельмгольца. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Энергия – это общая количественная мера всех процессов и видов взаимодействия в природе, подчиняющаяся закону сохранения. Энергия имеет определенное значение в любом состоянии системы, поэтому dU явл-ся функцией состояния.Функция состояния- это функция, которая в заданном состоянии системы имеет вполне определенное значение, не зависящее от того, каким путем или способом система в это состояние приведена. Характеризуется полным дифференциалом. Ф-я процесса- функции, значение которой определяется видом процесса, в результате которого система изменила свое состояние. К функциям процесса относятся Работа, Кол-во теплоты.



Первое начало термодинамики:

1) при изобарном процессе (p=const)-Закон Гей-Люссака. При P=const- Диаграмма этого процесса (изобара) в координатах р, V изображается прямой, параллельной оси V. При изобарном процессе работа газа при расширении объема от до равна и определяется площадью прямоугольника.

2)При изотермическом процессе - процесс изменения состояния термодинамической системы при постоянной температуре (T=const) PV=const-уравнение Бойля-Мариотта. При T=const - dU=0; Диаграмма этого процесса (изотерма)в координатах р, V представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходил процесс.

3)При изохорном процессе(V=const)-процесс изменения состояния термодинамической системы при постоянном объёме (V=const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объёме, давление прямо пропорционально температуре:

При V=const-