Что влияет на равновесие. Химическое равновесие.смещение равновесия

Химическое равновесие сохраняется до тех пор, пока остаются неизменными условия, в которых система находится. Изменение условий (концентрация веществ, температура, давление) вызывает нарушение равновесия. Через некоторое время химическое равновесие восстанавливается, но уже в новых, отличных от предыдущих условиях. Такой переход системы из одного равновесного состояния в другое называется смещением (сдвигом) равновесия. Направление смещения подчиняется принципу Ле Шателье.

При увеличении концентрации одного из исходных веществ равновесие смещается в сторону большего расхода этого вещества, усиливается прямая реакция. Уменьшение концентрации исходных веществ смещает равновесие в сторону образования этих веществ, так как усиливается обратная реакция. Повышение температуры смещает равновесие в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции. Увеличение давления смещает равновесие в сторону уменьшения количеств газообразных веществ, то есть в сторону меньших объемов, занимаемых этими газами. Напротив, при понижении давления равновесие смещается в сторону возрастания количеств газообразных веществ, то есть в сторону больших объемов, образуемых газами.

П р и м е р 1.

Как повлияет увеличение давления на равновесное состояние следующих обратимых газовых реакций:

а) SO 2 + C1 2 =SO 2 CI 2 ;

б) Н 2 + Вr 2 =2НВr.

Решение:

Используем принцип Ле Шателье, согласно которому повышение давления в первом случае (а) смещает равновесие вправо, в сторону меньшего количества газообразных веществ, занимающих меньший объем, что ослабляет внешнее воздействие возросшего давления. Во второй реакции (б) количество газообразных веществ, как исходных, так и продуктов реакции, равны, как равны и занимаемые ими объемы, поэтому давление не оказывает влияния и равновесие не нарушается.

П р и м е р 2.

В реакции синтеза аммиака (–Q) 3Н 2 + N 2 = 2NН 3 + Q прямая реакция экзотермическая, обратная – эндотермическая. Как следует изменить концентрацию реагирующих веществ, температуру и давление для увеличения выхода аммиака?

Решение:

Для смещения равновесия вправо необходимо:

а) увеличить концентрации Н 2 и N 2 ;

б) понизить концентрацию (удаление из сферы реакции) NH 3 ;

в) понизить температуру;

г) увеличить давление.

П р и м е р 3.

Гомогенная реакция взаимодействия хлороводорода и кислорода обратима:

4НС1 + O 2 = 2С1 2 + 2Н 2 O + 116 кДж.

1. Какое влияние на равновесие системы окажут:

а) увеличение давления;

б) повышение температуры;

в) введение катализатора?

Решение:

а) В соответствии с принципом Ле Шателье повышение давления приводит к смещению равновесия в сторону прямой реакции.

б) Повышение t° приводит к смещению равновесия в сторону обратной реакции.

в) Введение катализатора не смещает равновесия.

2. В каком направлении сместится химическое равновесие, если концентрацию реагирующих веществ увеличить в 2 раза?

Решение:

υ → = k → 0 2 0 2 ; υ 0 ← = k ← 0 2 0 2

После увеличения концентраций скорость прямой реакции стала:

υ → = k → 4 = 32 k → 0 4 0

то есть возросла по сравнению с начальной скоростью в 32 раза. Аналогичным образом скорость обратной реакции возрастает в 16 раз:

υ ← = k ← 2 2 = 16k ← [Н 2 O] 0 2 [С1 2 ] 0 2 .

Увеличение скорости прямой реакции в 2 раза превышает увеличение скорости обратной реакции: равновесие смещается вправо.

П р и м е р 4.

В какую сторону сместится равновесие гомогенной реакции:

PCl 5 = РС1 3 + Сl 2 + 92 КДж,

если повысить температуру на 30 °С, зная, что температурный коэффициент прямой реакции равен 2,5, а обратной – 3,2?

Решение:

Поскольку температурные коэффициенты прямой и обратной реакций не равны, повышение температуры по-разному скажется на изменении скоростей этих реакций. Пользуясь правилом Вант-Гоффа (1.3), находим скорости прямой и обратной реакций при повышении температуры на 30 °С:

υ → (t 2) = υ → (t 1)=υ → (t 1)2,5 0,1·30 = 15,6υ → (t 1);

υ ← (t 2) = υ ← (t 1) =υ → (t 1)3,2 0,1·30 = 32,8υ ← (t 1)

Повышение температуры увеличило скорость прямой реакции в 15,6 раза, обратной – в 32,8 раза. Следовательно, равновесие сместится влево, в сторону образования РСl 5 .

П р и м е р 5.

Как изменятся скорости прямой и обратной реакций в изолированной системе С 2 Н 4 + H 2 ⇄ С 2 Н 6 и куда сместится равновесие при увеличении объема системы в 3 раза?

Решение:

Начальные скорости прямой и обратной реакций следующие:

υ 0 = k 0 0 ; υ 0 = k 0 .

Увеличение объема системы вызывает уменьшение концентраций реагирующих веществ в 3 раза, отсюда изменение скорости прямой и обратной реакций будет следующим:

υ 0 = k = 1/9υ 0

υ = k = 1/3υ 0

Понижение скоростей прямой и обратной реакций неодинаково: скорость обратной реакции в 3 раза (1/3: 1/9 = 3) превышает скорость обратной реакции, поэтому равновесие сместится влево, в сторону, где система занимает больший объем, то есть в сторону образования С 2 Н 4 и Н 2 .

Изучение параметров системы, включающей исходные вещества и продукты реакции, позволяет выяснить, какие факторы смещают химическое равновесие и ведут к желаемым изменениям. На выводах Ле Шателье, Брауна и других ученых о способах проведения обратимых реакций основаны промышленные технологии, позволяющие осуществить ранее казавшиеся невозможными процессы, получить экономическую выгоду.

Разнообразие химических процессов

По особенностям теплового эффекта многие реакции относят к экзо- или эндотермическим. Первые идут с образованием теплоты, например, окисление углерода, гидратация концентрированной серной кислоты. Второй тип изменений связан с поглощением тепловой энергии. Примеры эндотермических реакций: распад карбоната кальция с образованием гашеной извести и углекислого газа, образование водорода и углерода при термическом разложении метана. В уравнениях экзо- и эндотермических процессов необходимо указывать тепловой эффект. Перераспределение электронов между атомами реагирующих веществ происходит в окислительно-восстановительных реакциях. Четыре типа химических процессов выделяют по особенностям реагентов и продуктов:

Для характеристики процессов важна полнота взаимодействия реагирующих соединений. Этот признак лежит в основе деления реакций на обратимые и необратимые.

Обратимость реакций

Обратимые процессы составляют большинство среди химических явлений. Образование конечных продуктов из реагентов является прямой реакцией. В обратной же исходные вещества получаются из продуктов своего разложения или синтеза. В реагирующей смеси возникает химическое равновесие, при котором получается столько же соединений, сколько разлагается исходных молекул. В обратимых процессах вместо знака «=» между реагентами и продуктами используются символы «↔» или «⇌». Стрелки могут быть неодинаковыми по длине, что связано с доминированием одной из реакций. В химических уравнениях можно указывать агрегатные характеристики веществ (г — газы, ж — жидкости, т — твердые). Огромное практическое значение имеют научно обоснованные приемы влияния на обратимые процессы. Так, производство аммиака стало рентабельным после создания условий, сдвигающих равновесие в сторону образования целевого продукта: 3Н 2(г) + N 2(г) ⇌ 2NH 3(г) . Необратимые явления приводят к появлению нерастворимого или малорастворимого соединения, образованию газа, покидающего сферу реакции. К таким процессам можно отнести ионный обмен, распад веществ.

Химическое равновесие и условия его смещения

На характеристики прямого и обратного процессов влияет несколько факторов. Один из них — время. Концентрация взятого для реакции вещества постепенно снижается, а конечного соединения — возрастает. Реакция прямого направления идет все медленнее, обратный процесс набирает скорость. В определенный промежуток два противоположных процесса идут синхронно. Взаимодействие между веществами происходит, но концентрации не меняются. Причина — динамическое химическое равновесие, установившееся в системе. Его сохранение или изменение зависит от:

  • температурных условий;
  • концентрации соединений;
  • давления (для газов).

Смещение химического равновесия

В 1884 году выдающийся ученый из Франции А. Л. Ле Шателье предложил описание способов вывода системы из состояния динамического равновесия. В основе метода лежит принцип нивелирования действия внешних факторов. Ле Шателье обратил внимание, что в реагирующей смеси возникают процессы, компенсирующие влияние посторонних сил. Сформулированный французским исследователем принцип гласит, что изменение условий в состоянии равновесия благоприятствует протеканию реакции, ослабляющей постороннее воздействие. Смещение равновесия подчиняется этому правилу, оно соблюдается, когда меняется состав, температурные условия и давление. Технологии, основанные на выводах ученых, используются в промышленности. Многие химические процессы, считавшиеся практически неосуществимыми, проводятся благодаря способам смещения равновесия.

Влияние концентрации

Сдвиг равновесия происходит, если изъять из зоны взаимодействия определенные компоненты или дополнительно ввести порции вещества. Удаление продуктов из реакционной смеси обычно вызывает увеличение скорости их образования, добавление веществ, наоборот, приводит к их преимущественному распаду. В процессе этерификации для обезвоживания используют серную кислоту. При введении ее в сферу реакции повышается выход метилацетата: СН 3 СООН + СН 3 ОН ↔ СН 3 СООСН 3 + Н 2 О. Если добавлять кислород, взаимодействующий с диоксидом серы, то химическое равновесие смещается в сторону прямой реакции образования триоксида серы. Кислород связывается в молекулы SO 3 , его концентрация понижается, что согласуется с правилом Ле Шателье для обратимых процессов.

Изменение температуры

Процессы, идущие с поглощением или выделением тепла, — эндо- и экзотермические. Для смещения равновесия используется нагревание или отвод тепла от реагирующей смеси. Рост температуры сопровождается повышением скорости эндотермических явлений, в которых дополнительная энергия поглощается. Охлаждение приводит к преимуществу экзотермических процессов, идущих с выделением тепла. При взаимодействии диоксида углерода с углем нагревание сопровождается увеличением концентрации монооксида, а охлаждение ведет к преимущественному образованию сажи: СО 2(г) + С (т) ↔ 2СО (г) .

Влияние давления

Изменение давления — важный фактор для реагирующих смесей, включающих в себя газообразные соединения. Также следует обратить внимание на разницу объемов исходных и получившихся веществ. Понижение давления ведет к преимущественному протеканию явлений, в которых увеличивается общий объем всех компонентов. Рост давления направляет процесс в сторону снижения объема всей системы. Такая закономерность соблюдается в реакции образования аммиака: 0,5N 2(г) + 1,5Н 2(г) ⇌ NH 3(г) . Изменение давления не повлияет на химическое равновесие в тех реакциях, которые идут при неизменном объеме.

Оптимальные условия осуществления химического процесса

Создание условий для смещения равновесия во многом определяет развитие современных химических технологий. Практическое использование научной теории способствует получению оптимальных результатов производства. Наиболее яркий пример — получение аммиака: 0,5N 2(г) + 1,5Н 2(г) ⇌ NH 3(г) . Повышение содержания в системе молекул N 2 и Н 2 благоприятно для синтеза сложного вещества из простых. Реакция сопровождается выделением теплоты, поэтому снижение температуры вызовет увеличение концентрации NH 3 . Объем исходных компонентов больше, чем целевого продукта. Рост давления обеспечит повышение выхода NH 3 .

В условиях производства подбирают оптимальное соотношение всех параметров (температуры, концентрации, давления). Кроме того, имеет большое значение площадь соприкосновения между реагентами. В твердых гетерогенных системах увеличение поверхности ведет к росту скорости реакции. Катализаторы увеличивают скорость прямой и обратной реакции. Применение веществ с такими свойствами не приводит к смещению химического равновесия, но ускоряет его наступление.

    Понятие химического равновесия

Равновесным считается состояние системы, которое остается неизменным, причем это состояние не обусловлено действием каких-либо внешних сил. Состояние системы реагирующих веществ, при котором скорость прямой реакции становится равной скорости обратной реакции, называется химическим равновесием . Такое равновесие называется еще подвижны м или динамическим равновесием.

Признаки химического равновесия

1. Состояние системы остается неизменным во времени при сохранении внешних условий.

2. Равновесие является динамическим, то есть обусловлено протеканием прямой и обратной реакции с одинаковыми скоростями.

3. Любое внешнее воздействие вызывает изменение в равновесии системы; если внешнее воздействие снимается, то система снова возвращается в исходное состояние.

4. К состоянию равновесия можно подойти с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.

5. В состоянии равновесия энергия Гиббса достигает своего минимального значения.

Принцип Ле Шателье

Влияние изменения внешних условий на положение равновесия определяется принципом Ле Шателье (принципом подвижного равновесия): если на систему, находящуюся в состоянии равновесия, производить какое–либо внешнее воздействие, то в системе усилится то из направлений процесса, которое ослабляет эффект этого воздействия, и положение равновесия сместится в том же направлении.

Принцип Ле Шателье применим не только к химическим процессам, но и к физическим, таким как кипение, кристаллизация, растворение и т. д.

Рассмотрим влияние различных факторов на химическое равновесие на примере реакции окисления NO:

2 NO (г) + O 2(г) 2 NO 2(г) ; H о 298 = - 113,4 кДж/моль.

Влияние температуры на химическое равновесие

При повышении температуры равновесие сдвигается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Степень смещения равновесия определяется абсолютной величиной теплового эффекта: чем больше по абсолютной величине энтальпия реакции H, тем значительнее влияние температуры на состояние равновесия.

В рассматриваемой реакции синтеза оксида азота (IV) повышение температуры сместит равновесие в сторону исходных веществ.

Влияние давления на химическое равновесие

Сжатие смещает равновесие в направлении процесса, который сопровождается уменьшением объема газообразных веществ, а понижение давления сдвигает равновесие в противоположную сторону. В рассматриваемом примере в левой части уравнения находится три объема, а в правой – два. Так как увеличение давления благоприятствует процессу, протекающему с уменьшением объема, то при повышении давления равновесие сместится вправо, т.е. в сторону продукта реакции – NO 2 . Уменьшение давления сместит равновесие в обратную сторону. Следует обратить внимание на то, что, если в уравнении обратимой реакции число молекул газообразных веществ в правой и левой частях равны, то изменение давления не оказывает влияния на положение равновесия.

Влияние концентрации на химическое равновесие

Для рассматриваемой реакции введение в равновесную систему дополнительных количеств NO или O 2 вызывает смещение равновесия в том направлении, при котором концентрация этих веществ уменьшается, следовательно, происходит сдвиг равновесия в сторону образования NO 2 . Увеличение концентрации NO 2 смещает равновесие в сторону исходных веществ.

Катализатор одинаково ускоряет как прямую, так и обратную реакции и поэтому не влияет на смещение химического равновесия.

При введении в равновесную систему (при Р = const) инертного газа концентрации реагентов (парциальные давления) уменьшаются. Поскольку рассматриваемый процесс окисления NO идет с уменьшением объема, то при добавлении ин

Константа химического равновесия

Для химической реакции:

2 NO (г) + O 2(г) 2 NO 2(г)

константа химической реакции К с есть отношение:

(12.1)

В этом уравнении в квадратных скобках – концентрации реагирующих веществ, которые устанавливаются при химическом равновесии, т.е. равновесные концентрации веществ.

Константа химического равновесия связана с изменением энергии Гиббса уравнением:

G T о = – RTlnK . (12.2).

Примеры решения задач

При некоторой температуре равновесные концентрации в системе 2CO (г) + O 2 (г) 2CO 2 (г) составляли: = 0,2 моль/л, = 0,32 моль/л, = 0,16 моль/л. Определить константу равновесия при этой температуре и исходные концентрации CO и O 2 , если исходная смесь не содержала СО 2 .

.

2CO (г) + O 2(г) 2CO 2(г).

Во второй строке под с прореагир понимается концентрация прореагировавших исходных веществ и концентрация образующегося CO 2 , причем, с исходн = с прореагир + с равн .

Используя справочные данные, рассчитать константу равновесия процесса

3 H 2 (Г) + N 2 (Г) 2 NH 3 (Г) при 298 К.

G 298 о = 2·(- 16,71) кДж = -33,42·10 3 Дж.

G T о = - RTlnK.

lnK = 33,42·10 3 /(8,314× 298) = 13,489. K = 7,21× 10 5 .

Определить равновесную концентрацию HI в системе

H 2(г) + I 2(г) 2HI (г) ,

если при некоторой температуре константа равновесия равна 4, а исходные концентрации H 2 , I 2 и HI равны, соответственно, 1, 2 и 0 моль/л.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л H 2.

.

Решая это уравнение, получаем x = 0,67.

Значит, равновесная концентрация HI равна 2× 0,67 = 1,34 моль/л.

Используя справочные данные, определить температуру, при которой константа равновесия процесса: H 2(г) + HCOH (г) CH 3 OH (г) становится равной 1. Принять, что Н о Т » Н о 298 , а S о T » S о 298 .

Если К = 1, то G о T = - RTlnK = 0;

G о T » Н о 298 - ТD S о 298 . Тогда ;

Н о 298 = -202 – (- 115,9) = -86,1 кДж = - 86,1× 10 3 Дж;

S о 298 = 239,7 – 218,7 – 130,52 = -109,52 Дж/К;

К.

Для реакции SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г) при некоторой температуре константа равновесия равна 4. Определить равновесную концентрацию SO 2 Cl 2 , если исходные концентрации SO 2 , Cl 2 и SO 2 Cl 2 равны 2, 2 и 1 моль/л соответственно.

Решение. Пусть к некоторому моменту времени прореагировало x моль/л SO 2.

SO 2(Г) + Cl 2(Г) SO 2 Cl 2(Г)

Тогда получаем:

.

Решая это уравнение, находим: x 1 = 3 и x 2 = 1,25. Но x 1 = 3 не удовлетворяет условию задачи.
Следовательно, = 1,25 + 1 = 2,25 моль/л.

Задачи для самостоятельного решения

12.1. В какой из приведенных реакций повышение давления сместит равновесие вправо? Ответ обосновать.

1) 2 NH 3 (г) 3 H 2 (г) + N 2 (г)

2) ZnCO 3 (к) ZnO (к) + CO 2 (г)

3) 2HBr (г) H 2 (г) + Br 2 (ж)

4) CO 2 (г) + C (графит) 2CO (г)


12.2. При некоторой температуре равновесные концентрации в системе

2HBr (г) H 2 (г) + Br 2 (г)

составляли: = 0,3 моль/л, = 0,6 моль/л, = 0,6 моль/л. Определить константу равновесия и исходную концентрацию HBr.


12.3. Для реакции H 2(г) + S (г) H 2 S (г) при некоторой температуре константа равновесия равна 2. Определить равновесные концентрации H 2 и S, если исходные концентрации H 2 , S и H 2 S равны, соответственно, 2, 3 и 0 моль/л.

Хим.равновесие -состояние системы,когда прям.и обр.реакции имеют один.скорости..В ходе процесса с уменьшением исходных веществ скорость прямой хим. реакции уменьшается, а скорость обратной с ростом С HI возрастает. В какой-то момент времениtскорость прямой и обратной хим. реакций приравниваются Состояние системы не изменяется пока не подействуеют внеш.факторы(Р,Т,с).Количественно состояние равновесия хар-ся с помощ.константы равновесия. Константа равновесия – Константа, отражающая соотношение концентраций компонентов обратимой реакции в состоянии хим равновесия. (зависит только от С).Для каж обратим хим. реакции в конкр усл как бы хар-ет собой тот предел, до которого идет хим. реакция. .K=.Если(концентрация исх )-необр реак;еслиравновесия смещается вправо- не протекает. Константа равновесия с изменением концентрации реагирующих веществ не изменяет своего значения. Дело в том, что изменение концентрации приводит лишь к смещению хим. равновесия в ту или иную сторону. При этом устанавливается новое равновесное состояние при той же константе. Истинное равновесие можно сместить в ту или иную сторонц действием каких-либо факторов. Но при отмене действия этих факторов система возвращается в исходное состояние.Ложное - состояние системы неизменно во времени, но при изменении внеіиних условий в системе происходит необратимый процесс(В темнотеH 2 +Cl 2 существует, при освещении обр-сяHCl. При прекращении освещения не вернемH 2 иCl 2).Изменение хотя бы одного из этих фак­торов приводит к смещению равновесия.Влияние различных факторов на состояние хим равн качест­венно описывается принципом смещения равновесия Ле Шателье (1884: при всяком внешнем воздействии на систему, находящуюся в состоянии химического равновесия, в ней протекают процессы, приводящие к уменьшению этого воздействия.

Константа равновесия

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается K С, а если между газами, то K Р.

где Р С, Р D , Р А и Р В – равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева, можно определить связь между K Р и K С

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

, (6.10)

где Dn – изменение числа молей газообразных участников реакции

Dn = (с + d ) – (а + в) (6.11)

Следовательно,

K Р = К С (RT) Dn (6.12)

Из уравнения (6.12) видно, что K Р = К С, если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.

Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D – твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

10 4 , то реакция необратима

Смещение равновесия. Принцип Ле-Шателье.

принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: ­C А или C В ®; ­C С или C D ¬; ¯ C А или C В ¬; ¯ C С или C D ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры – в обратном направлении. (Схематично можно записать: при +Q ­Т ¬; ¯Т ®; при -Q ­Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления – в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления – в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn <0 ­Р®, ¯Р¬; при Dn >0 ­Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

1. Среди всех известных реакций различают реакции обратимые и необратимые. При изучении реакций ионного обмена были перечислены условия, при которых они протекают до конца. ().

Известны и такие реакции, которые при данных условиях до конца не идут. Так, например, при растворении в воде сернистого газа происходит реакция: SO 2 +H 2 O → H 2 SO 3 . Но оказывается, что в водном растворе может образоваться только определенное количество сернистой кислоты. Это объясняется тем, что сернистая кислота непрочная, и происходит обратная реакция, т.е. разложение на оксид серы и воду. Следовательно, данная реакция не идет до конца потому, что одновременно происходит две реакции – прямая (между оксидом серы и водой) и обратная (разложение сернистой кислоты). SO 2 +H 2 O ↔ H 2 SO 3 .

Химические реакции, протекающие при данных условиях во взаимно противоположных направлениях, называются обратимыми.


2. Поскольку скорость химических реакций зависит от концентрации реагирующих веществ, то вначале скорость прямой реакции(υ пр ) должна быть максимальной,а скорость обратной реакции (υ обр ) равняется нулю. Концентрация реагирующих веществ с течением времени уменьшается, а концентрация продуктов реакции увеличивается. Поэтому скорость прямой реакции уменьшается, а скорость обратной реакции увеличивается. В определенный момент времени скорость прямой и обратной реакций становятся равными:

Во всех обратимых реакциях скорость прямой реакции уменьшается, скорость обратной реакции возрастает до тех пор, пока обе скорости не станут равными и не установится состояние равновесия:

υ пр = υ обр

Состояние системы, при котором скорость прямой реакции равна скорости обратной реакции, называют химическим равновесием.

В состоянии химического равновесия количественное соотношение между реагирующими веществами и продуктами реакции остается постоянным: сколько молекул продукта реакции в единицу времени образуется, столько их и разлагается. Однако состояние химического равновесия сохраняется до тех пор, пока остаются неизменными условия реакции: концентрация, температура и давление.

Количественно состояние химического равновесия описывается законом действующих масс.

При равновесии отношение произведения концентраций продуктов реакции (в степенях их коэффициентов) к произведению концентраций реагентов (тоже в степенях их коэффициентов) есть величина постоянная, не зависящая от исходных концентраций веществ в реакционной смеси.

Эта постоянная величина называется константой равновесия - k

Так для реакции: N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г) + 92,4 кДжконстанта равновесия выражается так:

υ 1 = υ 2

υ 1 (прямой реакции) = k 1 [ N 2 ][ H 2 ] 3 , где – равновесные молярные концентрации, = моль/л

υ 2 (обратной реакции) = k 2 [ NH 3 ] 2

k 1 [ N 2 ][ H 2 ] 3 = k 2 [ NH 3 ] 2

K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3 – константа равновесия .

Химическое равновесие зависит – от концентрации, давления, температуры.

Принцип определяет направление смешения равновесия:

Если на систему, находящуюся в равновесии оказали внешнее воздействие, то равновесие в системе сместится в сторону обратную этому воздействию.

1) Влияние концентрации – если увеличить концентрацию исходных веществ, то равновесие смещается в сторону образования продуктов реакции.

Например, K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3

При добавлении в реакционную смесь, например азота , т.е. возрастает концентрация реагента, знаменатель в выражении для К увеличивается, но так как К – константа, то для выполнения этого условия должен увеличиться и числитель. Таким образом, в реакционной смеси возрастает количество продукта реакции. В таком случае говорят о смещении химического равновесия вправо, в сторону продукта.

Таким образом, увеличение концентрации реагентов (жидких или газообразных) смещает в сторону продуктов, т.е. в сторону прямой реакции. Увеличение концентрации продуктов (жидких или газообразных) смещает равновесие в сторону реагентов, т.е. в сторону обратной реакции.

Изменение массы твердого вещества не изменяет положение равновесия.

2) Влияние температуры – увеличение температуры смещает равновесие в сторону эндотермической реакции.

а) N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г) + 92,4 кДж (экзотермическая – выделение тепла)

При повышении температуры равновесие сместится в сторону реакции разложения аммиака (←)

б) N 2 (Г) + O 2 (Г) ↔ 2 NO (Г) – 180,8 кДж(эндотермическая -поглощение тепла)

При повышении температуры равновесие сместится в сторону реакции образования NO (→)

3) Влияние давления (только для газообразных веществ) – при увеличении давления, равновесие смещается в сторону образовани я веществ, занимающих меньший о б ъ ём.

N 2 (Г) + 3 H 2 (Г) ↔ 2 NH 3 (Г)

1 V - N 2

3 V - H 2

2 V NH 3

При повышении давления ( P ): до реакции 4 V газообразных веществ после реакции 2 V газообразных веществ, следовательно, равновесие смещается вправо ( )

При увеличении давления, например, в 2 раза, объём газов уменьшается в такое же количество раз, а следовательно, концентрации всех газообразных веществ возрастут в 2 раза. K p = k 1 / k 2 = [ NH 3 ] 2 / [ N 2 ][ H 2 ] 3

В этом случае числитель выражения для К увеличится в 4 раза, а знаменатель в 16 раз, т.е. равенство нарушится. Для его восстановления должны возрасти концентрация аммиака и уменьшиться концентрации азота и водо рода. Равновесие сместится вправо.

Итак, при повышении давления равновесие смещается в сторону уменьшения объема, при понижении давления – в сторону увеличения объёма.

Изменение давления практически не сказывается на объёме твердых и жидких веществ, т.е. не изменяет их концентрацию. Следовательно, равновесие реакций, в которых газы не участвуют, практически не зависит от давления.

! На течение химической реакции влияют вещества – катализаторы. Но при использовании катализатора понижается энергия активации как прямой, так и обратной реакции на одну и ту же величину и поэтому равновесие не смещается.

Решите задачи:

№1. Исходные концентрации СO и O 2 в обратимой реакции

2CO (г) + O 2 (г)↔ 2 CO 2 (г)

Равны соответственно 6 и 4 моль/л. Вычислите константу равновесия, если концентрация CO 2 в момент равновесия равна 2 моль/л.

№2. Реакция протекает по уравнению

2SO 2 (г) + O 2 (г) = 2SO 3 (г) + Q

Укажите, куда сместится равновесие, если

а) увеличить давление

б) повысить температуру

в) увеличить концентрацию кислорода

г) введение катализатора?