Чем определяется собственная частота колебаний пружинного маятника. Пружинный маятник

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона :

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.


Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость ± υ 0 , то ,

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:


Свободные колебания. Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити . При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

и второй закон Ньютона для физического маятника принимает вид (см. §1.23)

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:


Превращения энергии при свободных механических колебаниях

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия - это энергия упругих деформаций пружины. Для математического маятника - это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ, в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания .

Частота свободных колебаний зависит от скорости затухания колебаний. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания быстро затухают.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q . Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ, умноженное на π:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Вынужденные колебания. Резонанс. Автоколебания

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

Если левый конец пружины смещен на расстояние y , а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой .

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Тогда запишется в виде

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты - частоту ω 0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x (t ) = x m cos (ωt + θ).

Амплитуда вынужденных колебаний x m и начальная фаза θ зависят от соотношения частот ω 0 и ω и от амплитуды y m внешней силы.

На очень низких частотах, когда ω << ω 0 , движение тела массой m , прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x (t ) = y (t ), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω 0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω 0 , возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом . Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2.5.2).

При резонансе амплитуда x m колебания груза может во много раз превосходить амплитуду y m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах - автоколебаниями . В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир.

Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 2.5.4. Часовой механизм с маятником.

Пружинный маятник представляет собой материальную точку массой , прикрепленную к абсолютно упругой невесомой пружине с жесткостью . Различают два наиболее простых случая: горизонтальный (рис.15,а ) и вертикальный (рис.15, б ) маятники.

а) Горизонтальный маятник (рис. 15,а). При смещении груза
из положения равновесия на величину на него действует в горизонтальном направлениивозвращающая упругая сила
(закон Гука).

Предполагается, что горизонтальная опора, по которой скользит груз
при своих колебаниях, абсолютно гладкая (трения нет).

б) Вертикальный маятник (рис.15, б ). Положение равновесия в этом случае характеризуется условием:

где - величина упругой силы, действующей на груз
при статическом растяжении пружины на под действием силы тяжести груза
.

а

Рис.15. Пружинный маятник: а – горизонтальный и б – вертикальный

Если растянуть пружину и отпустить груз, то он начнет совершать вертикальные колебания. Если смещение в какой-то момент времени будет
, то сила упругости запишется теперь как
.

В обоих рассмотренных случаях пружинный маятник совершает гармонические колебания с периодом

(27)

и циклической частотой

. (28)

На примере рассмотрения пружинного маятника можно сделать вывод о том, что гармонические колебания – это движение, вызванное силой, возрастающей пропорционально смещению . Таким образом, если возвращающая сила по виду напоминает закон Гука
(она получила название квазиупругой силы ), то система должна совершать гармонические колебания. В момент прохождения положения равновесия на тело не действует возвращающая сила, однако, тело по инерции проскакивает положение равновесия и возвращающая сила меняет направление на противоположное.

Математический маятник

Рис.16. Математический маятник

Математический маятник представляет собой идеализированную систему в виде материальной точки, подвешенной на невесомой нерастяжимой нити длиной , которая совершает малые колебания под действием силы тяжести (рис. 16).

Колебания такого маятника при малых углах отклонения
(не превышающих 5º) можно считать гармоническими, и циклическая частота математического маятника:

, (29)

а период:

. (30)

2.3. Энергия тела при гармонических колебаниях

Энергия, сообщенная колебательной системе при начальном толчке, будет периодически преобразовываться: потенциальная энергия деформированной пружины будет переходить в кинетическую энергию движущегося груза и обратно.

Пусть пружинный маятник совершает гармонические колебания с начальной фазой
, т.е.
(рис.17).

Рис.17. Закон сохранения механической энергии

при колебаниях пружинного маятника

При максимальном отклонении груза от положения равновесия полная механическая энергия маятника (энергия деформированной пружины с жесткостью ) равна
. При прохождении положения равновесия (
) потенциальная энергия пружины станет равной нулю, и полная механическая энергия колебательной системы определится как
.

На рис.18 представлены графики зависимостей кинетической, потенциальной и полной энергии в случаях, когда гармонические колебания описываются тригонометрическими функциями синуса (пунктирная линия) или косинуса (сплошная линия).

Рис.18. Графики временной зависимости кинетической

и потенциальной энергии при гармонических колебаниях

Из графиков (рис.18) следует, что частота изменения кинетической и потенциальной энергии в два раза выше собственной частоты гармонических колебаний.

Работа большинства механизмов основана на простейших законах физики и математики. Довольно большое распространение получило понятие пружинного маятника. Подобный механизм получил весьма широкое распространение, так как пружина обеспечивает требуемую функциональность, может быть элементом автоматических устройств. Рассмотрим подробнее подобное устройство, принцип действия и многие другие моменты подробнее.

Определения пружинного маятника

Как ранее было отмечено, пружинный маятник получил весьма широкое распространение. Среди особенностей можно отметить следующее:

  1. Устройство представлено сочетанием груза и пружины, масса которой может не учитываться. В качестве груза может выступать самый различный объект. При этом на него может оказываться воздействие со стороны внешней силы. Распространенным примером можно назвать создание предохранительного клапана, который устанавливается в системе трубопровода. Крепление груза к пружине проводится самым различным образом. При этом используется исключительно классический винтовой вариант исполнения, который получил наиболее широкое распространение. Основные свойства во многом зависят от типа применяемого материала при изготовлении, диаметра витка, правильности центровки и многих других моментов. Крайние витки часто изготавливаются таким образом, чтобы могли воспринимать большую нагрузку при эксплуатации.
  2. До начала деформации полная механическая энергия отсутствует. При этом на тело не влияет сила упругости. Каждая пружина имеет исходное положение, которое она сохраняет на протяжении длительного периода. Однако, за счет определенной жесткости происходит фиксация тела в начальном положении. Имеет значение то, каким образом прикладывается усилие. Примером назовем то, что она должна быть направлена вдоль оси пружины, так как в противном случае есть вероятность появления деформации и многих других проблем. У каждой пружины есть свои определенный придел сжатия и растяжения. При этом максимальное сжатие представлено отсутствием зазора между отдельными витками, при растяжении есть момент, когда происходит невозвратная деформация изделия. При слишком сильном удлинении проволоки происходит изменение основных свойств, после чего изделие не возвращается в свое первоначальное положение.
  3. В рассматриваемом случае колебания совершаются за счет действия силы упругости. Она характеризуется довольно большим количество особенностей, которые должны учитываться. Воздействие упругости достигается за счет определенного расположения витков и типа применяемого материала при изготовлении. При этом сила упругости может действовать в обе стороны. Чаще всего происходит сжатие, но также может проводится растяжение – все зависит от особенностей конкретного случая.
  4. Скорость перемещения тела может варьировать в достаточно большом диапазоне, все зависит от того, какое оказывается воздействие. К примеру, пружинный маятник может перемещать подвешенный груз в горизонтальной и вертикальной плоскости. Действие направленного усилия во многом зависит от вертикальной или горизонтальной установки.

В целом можно сказать, что пружинный маятник определение довольно обобщенное. При этом скорость перемещения объекта зависит от различных параметров, к примеру, величины приложенного усилия и других моментов. Перед непосредственным проведением расчетов проводится создание схемы:

  1. Указывается опора, к которой крепится пружина. Зачастую для ее отображения рисуется линия с обратной штриховкой.
  2. Схематически отображается пружина. Она часта представлена волнистой линией. При схематическом отображении не имеет значение длина и диаметральный показатель.
  3. Также изображается тело. Оно не должно соответствовать размерам, однако имеет значение место непосредственного крепления.

Схема требуется для схематического отображения всех сил, которые оказывают влияние на устройство. Только в этом случае можно учесть все, что влияет на скорость перемещения, инерцию и многие другие моменты.

Пружинные маятники применяются не только при расчетах ил решении различных задач, но также и на практике. Однако, не все свойства подобного механизма применимы.

Примером можно назвать случай, когда колебательные движения не требуются:

  1. Создание запорных элементов.
  2. Пружинные механизмы, связанные с транспортировкой различных материалов и объектов.

Проводимые расчеты пружинного маятника позволяют подобрать наиболее подходящий вес тела, а также тип пружины. Она характеризуется следующими особенностями:

  1. Диаметр витков. Он может быть самым различным. От показателя диаметра во многом зависит то, сколько требуется материала для производства. Диаметр витков также определяет то, какое усилие должно прикладываться для полного сжатия или частичного растяжения. Однако, увеличение размеров может создать существенные трудности с установкой изделия.
  2. Диаметр проволоки. Еще одним важным параметром можно назвать диаметральный размер проволоки. Он может варьировать в широком диапазоне, зависит прочность и степень упругости.
  3. Длина изделия. Этот показатель определяет то, какое усилие требуется для полного сжатия, а также какой упругостью может обладать изделие.
  4. Тип применяемого материала также определяет основные свойства. Чаще всего пружина изготавливается при применении специального сплава, который обладает соответствующие свойствами.

При математических расчетах многие моменты не учитываются. Усилие упругости и многие другие показатели выявляются путем расчета.

Виды пружинного маятника

Выделяют несколько различных видов пружинного маятника. Стоит учитывать, что классификация может проводится по типу устанавливаемой пружины. Среди особенностей отметим:

  1. Довольно большое распространение получили вертикальные колебания, так как в этом случае на груз не оказывается сила трения и другое воздействие. При вертикальном расположении груза существенно увеличивается степень воздействия силы тяжести. Распространен этот вариант исполнения при проведении самых различных расчетов. За счет силы тяжести есть вероятность того, что тело в исходной точке будет совершать большое количество инерционных движений. Этому также способствует упругость и инерция движения тела в конце хода.
  2. Также применяется горизонтальный пружинный маятник. В этом случае груз находится на опорной поверхности и на момент перемещения также возникает трение. При горизонтальном расположении сила тяжести работает несколько иначе. Горизонтальное расположение тела получило широкое распространение в различных задачах.

Рассчитывается движение пружинного маятника можно при использовании достаточно большого количества различных формул, который должны учитывать воздействие всех сил. В большинстве случаев устанавливается классическая пружина. Среди особенностей отметим следующее:

  1. Классическая витая пружина сжатия сегодня получила весьма широкое распространение. В этом случае между витками есть пространство, которое называется шагом. Пружина сжатия может и растягиваться, но зачастую она для этого не устанавливается. Отличительной особенностью можно назвать то, что последние витки выполнены в виде плоскости, за счет чего обеспечивается равномерное распределения усилия.
  2. Может устанавливаться вариант исполнения для растяжения. Он рассчитан на установку в случае, когда приложенное усилие становится причиной увеличения длины. Для крепления проводится размещение крючков.

В результате этого возникает колебание, которое может длиться в течение длительного периода. Приведенная выше формула позволяет провести расчет с учетом всех моментов.

Формулы периода и частоты колебаний пружинного маятника

При проектировании и вычислении основных показателей также уделяется довольно много внимания частоте и периоду колебания. Косинус – периодическая функция, в которой применяется значение, неизменяемое через определенный промежуток времени. Именно этот показатель называют период колебаний пружинного маятника. Для обозначения этого показателя применяется буква Т, также часто используется понятие, характеризующее значение, обратное периоду колебания (v). В большинстве случаев при расчетах применяется формула T=1/v.

Период колебаний вычисляется по несколько усложненной формуле. Она следующая: T=2п√m/k. Для определения частоты колебания используется формула: v=1/2п√k/m.

Рассматриваемая циклическая частота колебаний пружинного маятника зависит от следующих моментов:

  1. Масса груза, который прикреплен к пружине. Этот показатель считается наиболее важным, так как оказывает влияние на самые различные параметры. От массы зависит сила инерции, скорость и многие другие показатели. Кроме этого, масса груза – величина, с измерением которой не возникает проблем из-за наличия специального измерительного оборудования.
  2. Коэффициент упругости. Для каждой пружины этот показатель существенно отличается. Коэффициент упругости указывается для определения основных параметров пружины. Зависит этот параметр от количества витков, длины изделия, расстояние между витками, их диаметра и многого другого. Определяется он самым различным образом, зачастую при применении специального оборудования.

Не стоит забывать о том, что при сильном растяжении пружины закон Гука прекращает действовать. При этом период пружинного колебания начинает зависеть от амплитуды.

Для измерения периода применяется всемирная единица времени, в большинстве случаев секунды. В большинстве случаев амплитуда колебаний вычисляется при решении самых различных задач. Для упрощения процесса проводится построение упрощенной схемы, на которой отображаются основные силы.

Формулы амплитуды и начальной фазы пружинного маятника

Определившись с особенностями проходимых процессов и зная уравнение колебаний пружинного маятника, а также начальные значения можно провести расчет амплитуды и начальной фазы пружинного маятника. Для определения начальной фазы применяется значение f, амплитуда обозначается символом A.

Для определения амплитуды может использоваться формула: А=√x 2 +v 2 /w 2 . Начальная фаза высчитывается по формуле: tgf=-v/xw.

Применяя эти формулы можно провести определение основных параметров, которые применяются при расчетах.

Энергия колебаний пружинного маятника

Рассматривая колебание груза на пружине нужно учитывать тот момент, что при движение маятника может описываться двумя точками, то есть оно носит прямолинейный характер. Этот момент определяет выполнение условий, касающихся рассматриваемой силы. Можно сказать, что полная энергия потенциальная.

Провести расчет энергии колебаний пружинного маятника можно при учете всех особенностей. Основными моментами назовем следующее:

  1. Колебания могут проходить в горизонтальной и вертикальной плоскости.
  2. Ноль потенциальной энергии выбирается в качестве положения равновесия. Именно в этом месте устанавливается начало координат. Как правило, в этом положении пружина сохраняет свою форму при условии отсутствия деформирующей силы.
  3. В рассматриваемом случае рассчитываемая энергия пружинного маятника не учитывает силу трения. При вертикальном расположении груза сила трения несущественна, при горизонтальном тело находится на поверхности и при движении может возникнуть трение.
  4. Для расчета энергии колебания применяется следующая формула: E=-dF/dx.

Приведенная выше информация указывают на то, что закон сохранения энергии выглядит следующим образом: mx 2 /2+mw 2 x 2 /2=const. Применяемая формула говорит о следующем:

Провести определение энергии колебания пружинного маятника можно при решении самых различных задач.

Свободные колебания пружинного маятника

Рассматривая то, чем вызваны свободные колебания пружинного маятника следует уделить внимание действию внутренних сил. Они начинают формироваться практически сразу после того, как телу было передано движение. Особенности гармонических колебаний заключаются в нижеприведенных моментах:

  1. Могут также возникать и другие типы сил воздействующего характера, который удовлетворяют все нормы закона, называются квазиупругими.
  2. Основными причинами действия закона могут быть внутренние силы, которые формируются непосредственно на момент изменения положения тела в пространстве. При этом груз обладает определенной массой, усилие создается за счет фиксации одного конца за неподвижный объект с достаточной прочностью, второго за сам груз. При условии отсутствия трения тело может совершать колебательные движения. В этом случае закрепленный груз называется линейным.

Не стоит забывать о том, что существует просто огромное количество различных видов систем, в которых осуществляется движение колебательного характера. В них также возникает упругая деформация, которая становится причиной применения для выполнения какой-либо работы.

где k – коэффициент упругости тела, m - масса груза

Математическим маятником называется система, состоящая из материальной точки массой m, подвешенной на невесомой нерастяжимой нити, совершающей колебания под действием силы тяжести (рис.5.13,б).

Период колебаний математического маятника

где l – длина математического маятника, g – ускорение свободного падения.

Физическим маятником называется твердое тело, которое совершает колебания под действием силы тяжести вокруг горизонтальной оси подвеса, не проходящей через центр масс тела (рис.5.13,в).

,

где J – момент инерции колеблющегося тела относительно оси колебаний; d – расстояние центра масс маятника от оси колебаний; - приведенная длина физического маятника.

При сложении двух одинаково направленных гармонических колебаний одинакового периода получается гармоническое колебание того же периода с амплитудой

Результирующая начальная фаза , получаемая при сложении двух колебаний, :

, (5.50)

где A 1 и A 2 – амплитуды слагаемых колебаний, φ 1 и φ 2 – их начальные фазы.

При сложении двух взаимно перпендикулярных колебаний одинакового периода уравнение траектории результирующего движения имеет вид:

Если на материальную точку, кроме упругой силы действует сила трения, то колебания будут затухающими, и уравнение такого колебания будет иметь вид

, (5.52)

где называется коэффициентом затухания (r – коэффициент сопротивления).

Называется отношение двух амплитуд, отстоящих друг от друга по времени, равным периоду


Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины периодически меняются и сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур – цепь, состоящая из включенных последовательно катушки индуктивности L, конденсатора емкостью C и резистора сопротивлением R (рис.5.14).

Период T электромагнитных колебаний в колебательном контуре

. (5.54)

Если сопротивление колебательного контура мало, т.е. <<1/LC, то период колебаний колебательного контура определяется формулой Томсона

Если сопротивление контура R не равно нулю, то колебания будут затухающими . При этом разность потенциалов на обкладках конденсатора меняется со временем по закону

, (5.56)

где δ – коэффициент затухания, U 0 – амплитудное значение напряжения.

Коэффициент затухания колебаний в колебательном контуре

где L – индуктивность контура, R – сопротивление.

Логарифмическим декрементом затухания называется отношение двух амплитуд, отстоящих друг от друга по времени, равное периоду


Резонансом называется явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы ω к частоте, равной или близкой собственной частоте ω 0 колебательной системы (рис.5.15.).

Условие получения резонанса :

. (5.59)

Промежуток времени, в течение которого амплитуда затухающих колебаний уменьшится в e раз, называется временем релаксации

Для характеристики затухания колебательных контуров часто пользуются величиной, называемой добротностью контура. Добротностью контура Q называется число полных колебаний N, умноженное на число π, по истечению которых амплитуда уменьшается в e раз

. (5.61)

Если коэффициент затухания равен нулю, то колебания будут незатухающими, напряжение будет меняться по закону

. (5.62)

В случае постоянного тока отношение напряжения к силе тока называют сопротивлением проводника. Подобно этому при переменном токе отношение амплитуды активной составляющей напряжения U а к амплитуде тока i 0 называется активным сопротивлением цепи X

В рассматриваемой цепи оно равно сопротивлению постоянного тока. Активное сопротивление всегда приводит к выделению тепла.

Отношение

. (5.64)

называетсяреактивным сопротивлением цепи .

Наличие реактивного сопротивления в цепи не сопровождается выделением тепла.

Полным сопротивлением называется геометрическая сумма активного и реактивного сопротивления

, (5.65)

Емкостным сопротивлением цепи переменного тока X c называется соотношение

Индуктивное сопротивление

Закон Ома для переменного тока записывается в виде

где I эф и U эф – эффективные значения силы тока и напряжения , связанные с их амплитудными значениями I 0 и U 0 соотношениями

Если цепь содержит активное сопротивление R, емкость C и индуктивность L, соединенные последовательно, тоcдвиг фаз между напряжением и силой тока определяется формулой

. (5.70)

Если активное сопротивление R и индуктивность включены параллельно в цепь переменного тока, то полное сопротивление цепи определяется формулой

, (5.71)

и сдвиг фаз между напряжением и током определяется следующим соотношением

, (5.72)

где υ – частота колебаний.

Мощность переменного тока определяется следующим соотношением

. (5.73)

Длина волны связана с периодом следующим соотношением

где c=3·10 8 м/с – скорость распространения звука.


Примеры решения задач

Задача 5.1. По отрезку прямого провода длиной l = 80 см течет ток I = 50 А. Определить магнитную индукцию B поля, создаваемого этим током, в точке А, равноудаленной от концов отрезка провода и находящейся на расстоянии r 0 = 30 см от его середины.

где dB – магнитная индукция, создаваемая элементом провода длиной dl с током I в точке, определяемой радиус-вектором r; μ 0 – магнитная постоянная, μ – магнитная проницаемость среды, в которой находится провод (в нашем случае, т.к. средой является воздух, μ = 1).

Векторы от различных элементов тока сонаправлены (рис.), поэтому выражение (1) можно переписать в скалярной форме:

где α – угол между радиус-вектором и элементом тока dl .

Подставляя выражение (4) в (3), получим

Заметим, что при симметричном расположении точки А относительно отрезка провода cos α 2 = - cos α 1 .

С учетом этого формула (7) примет вид

Подставляя формулу (9) в (8), получим


Задача 5.2. Два параллельных бесконечно длинных провода D и C, по которым текут токи в одном направлении электрические токи силой I = 60 А, расположены на расстоянии d = 10 см друг от друга. Определить магнитную индукцию поля, создаваемого проводниками с током в точке А (рис.), отстоящей от оси одного проводника на расстоянии r 1 = 5 см, от другого – r 2 = 12 см.

Модуль вектора магнитной индукции найдем по теореме косинусов:

где α – угол между векторами B 1 и B 2 .

Магнитные индукции B 1 и B 2 выражаются соответственно через силу тока I и расстояния r 1 и r 2 от проводов до точки А:

Из рисунка видно, что α = Ð DAC (как углы с соответственно перпендикулярными сторонами).

Из треугольника DAC по теореме косинусов, найдем cosα

Проверим, дает ли правая часть полученного равенства единицу индукции магнитного поля (Тл)

Вычисления:

Ответ: B = 3,08·10 -4 Тл.

Задача 5.3. По тонкому проводящему кольцу радиусом R = 10 см течет ток I = 80 А. Найти магнитную индукцию в точке А, равноудаленной от всех точек кольца на расстояние r = 20 см.

определяемой радиус-вектором .

где интегрирование ведется по всем элементам dl кольца.

Разложим вектор dB на две составляющие dB ┴ , перпендикулярную плоскости кольца, и dB || , параллельную плоскости кольца, т.е.

где и (поскольку dl перпендикулярен r и, следовательно, sinα = 1).

С учетом этого формула (3) примет вид

Проверим, дает ли правая часть равенства (5) единицу магнитной индукции

Вычисления:

Тл.

Ответ: B = 6,28·10 -5 Тл.

Задача 5.4. Длинный провод с током I = 50 А изогнут под углом α = 2π/3. Определить магнитную индукцию в точке А (рис. к задаче 5.4., а). Расстояние d = 5 см.

Вектор сонаправлен с вектором и определяется правилом правого винта. На рисунке 5.4.,б это направление отмечено крестиком в кружочке (т.е. перпендикулярно плоскости чертежа, от нас).

Вычисления:

Тл.

Ответ: B = 3,46·10 -5 Тл.


Задача 5.5. Два бесконечно длинных провода скрещены под прямым углом (рис. к задаче 5.5.,а ). По проводам текут токи I 1 = 80 А и I 2 = 60 А. Расстояние d между проводами равно 10 см. Определить магнитную индукцию B в точке А, одинаково удаленной от обоих проводов.
Дано: I 1 = 80 А I 2 = 60 А d = 10 см = 0,1 м Решение: В соответствии с принципом суперпозиции магнитных полей магнитная индукция в точке А будет равна геометрической сумме магнитных индукций и , создаваемых токами I 1 и I 2 .
Найти: B - ?

Из рисунка следует, что векторы B 1 и B 2 взаимно перпендикулярны (их направления находятся по правилу буравчика и изображены в двух проекциях на рис. к задаче 5.5.,б).

Напряженность магнитного поля, согласно (5.8), созданного бесконечно длинным прямолинейным проводником,

где μ – относительная магнитная проницаемость среды (в нашем случае μ = 1).

Подставляя формулу (2) в (3), найдем магнитные индукций B 1 и B 2 , создаваемых токами I 1 и I 2

Подставляя формулу (4) в (1), получим

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 4·10 -6 Тл.

Задача 5.6. Бесконечно длинный провод изогнут так, как это изображено на рисунке к задаче 5.6,а . Радиус R дуги окружности равен 10 см. Определить магнитную индукцию поля, создаваемого в точке О током I = 80 A, текущим по этому проводу.

В нашем случае провод можно разбить на три части (рис. к задаче 5.6, б): два прямолинейных провода (1 и 3), одним концом, уходящие в бесконечность, и дугу полуокружности (2) радиуса R.

Учитывая, что векторы направлены в соответствии с правилом буравчика перпендикулярно плоскости чертежа от нас, то геометрическое суммирование можно заменить алгебраическим:

В нашем случае магнитное поле в точке О создается лишь половиной такого кругового тока, поэтому

В нашем случае r 0 = R, α 1 = π/2 (cos α 1 = 0), α 2 → π (cos α 2 = -1).

Проверим, дает ли правая часть полученного равенства единицу магнитной индукции (Тл):

Вычисления:

Тл.

Ответ: B = 3,31·10 -4 Тл.

Задача 5.7. По двум параллельным прямым проводам длиной l = 2,5 см каждый, находящимся на расстоянии d = 20 см друг от друга, текут одинаковые токи I = 1 кА. Вычислить силу взаимодействия токов.

Ток I 1 создает в месте расположения второго провода (с током I 2) магнитное поле. Проведем линию магнитной индукции (пунктир на рис.) через второй провод и по касательной к ней – вектор магнитной индукции B 1 .

Рисунок к задаче 5.7

Модуль магнитной индукции B 1 определяется соотношением

Так как вектор dl перпендикулярен вектору B 1 , то sin(dl ,B) = 1 и тогда

Силу F взаимодействия проводов с током найдем интегрированием:

Проверим, дает ли правая часть полученного равенства единицу силы (Н):

Вычисление:

Н.

Ответ: F = 2,5 Н.

Так как сила Лоренца перпендикулярна вектору скорости , то она сообщит частице (протону) нормальное ускорение a n .

Согласно второму закону Ньютона,

, (1)

где m – масса протона.

На рисунке совмещена траектория протона с плоскостью чертежа и дано (произвольно) направление вектора . Силу Лоренца направим перпендикулярно вектору к центру окружности (векторы a n и F л сонаправлены). Используя правило левой руки, определим направление магнитных силовых линий (направление вектора ).